Seminář strojového učení a modelování / Machine Learning and Modelling Seminar

čtvrtek / Thursday 14:00
posluchárna / room S8
Malostranské náměstí 2

Společný seminář katedry teoretické informatiky a matematické logiky MFF UK a oddělění umělé inteligence ústavu informatiky AV ČR

Organized jointly by the Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathemeatics and Physics of the Charles University, and by the Department of Artificial Intelligence, Institute of Computer Science of the Czech Academy of Sciences

Kontakt: / Contact:
Martin Holeňa
www.cs.cas.cz/~martin
martin@cs.cas.cz

 

Na posledním semináři zimního semestru, ve čtvrtek 18. prosince, budeme mít hosta z Mnichova. / At the last seminar of the winter semester, on Thursday, December 18, we will have a guest from Munich.

Program:

Valentin Margraf. Imprecise Acquisitions in Bayesian Optimization

Valentin proposes maintaining multiple GP models with different hyperparameters and evaluating acquisition functions separately under each to capture model disagreement, aggregating either at the acquisition level combining AF values, or decision level comparing optimal points via stochastic dominance.

 

Přehled seminářů v roce 2025 / List of seminars in 2025

19.  2.

Ondřej Maršálek and Hubert Beck

Machine-learned interatomic potentials for molecular dynamics: committees and foundation models

18. 12.

Valentin Margraf

Imprecise Acquisitions in Bayesian Optimization

 4. 12.

Matthias Wolf

CVKAN: Complex-Valued Kolmogorov-Arnold Networks

pdf

20. 11.

Antonio Purificato

Recommendation Systems: From Traditional Approaches to Sheaf Neural Networks

pptx

 6. 11.

Christos Fragkathoulas

Counterfactual Explanations in ML: Concepts, Methods, and Fairness Audits

pptx

23. 10.

Francesco Caso

Entropy, Renormalization, and Structure: Toward Physically-Inspired Learning Across Domains

pdf

 9. 10.

Arno Geimer

To the Winner Go the Spoils: Decentralized Machine Learning and the Fair Rewarding of Participation

pdf

22.  5.

Victor Letzelter

Learning under ambiguity through multiple hypotheses and quantization

pdf

24.  4.

Jelle Hüntelmann

Learning to be uncertain: Of soft labels and soft losses

html

10.  4.

Marcel Kühn

Anti-Correlated Noise in Epoch-Based Stochastic Gradient Descent and its Implications

pdf

27.  3.

Andreas Opedal

Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs

pdf

13.  3.

Antoni Kowalczuk

Image Autoregressive Models Leak More Training Data Than Diffusion Models

pdf

27.  2.

Thomas Kleine Buening

Strategic Interactive Decision-Making

pdf

 

Přehled seminářů v roce 2024 / List of seminars in 2024

19. 12.

Peter Blohm

Probably Approximately Global Robustness Certification

pdf

 5. 12.

Vlad Yorsh

Structured State-Space Neural-Network Models

pdf

21. 11.

Jonas Hübotter

Transductive Active Learning for Fine-Tuning Large (Language) Models

pdf

 7. 11.

Krzysztof Kacprzyk

AI4Science: Discovering Governing Equations and Beyond

pdf

10. 10.

Ondřej Tichý

Bayesian Regression and Its Application to Atmospheric Emissions Estimation

pdf

23.  5.

Pierre Nicolay

Kinematic-Aware Neural Network for Dynamics Modeling

pdf

25.  4.

Balint Gyevnar

How Do We make Explainable AI Work for People?

pptx

11.  4.

Alex Goodall

Theory and Applications of Approximate Model-based Shielding for Safe Reinforcement Learning

pdf

28.  3.

Simon Rittel

Bayesian Causal Structure Learning

pdf

14.  3.

Oliver Sutton

Can Adversarial Robustness Be Certified for Classifiers Learning High Dimensional Data?

pdf

29.  2.

Michal Znalezniak

Contrastive Hierarchical Clustering

pdf

 1.  2.

TomᚠPevný

Tractable Probabilistic Models for Hierarchical Data

pdf

Archiv: / Archive: 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023