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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select→ cross over→mutate approach

Conventional GA operators

✔ are not adaptive, and

✔ cannot (or ususally do not) discover and use
the interactions among solution components.
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select→ cross over→mutate approach

Conventional GA operators

✔ are not adaptive, and

✔ cannot (or ususally do not) discover and use
the interactions among solution components.

Interactions:

✔ we would like to create a new offspring by mutation

✔ we would like the offspring to have better, or at least the same, quality as the parent

✔ if we must modify xi together with xj to reach the desired goal
(if it is not possible to improve the solution by modifying either xi or xj only),
then xi interacts with xj.

The goal of recombination operators:

✔ Intensify the search in areas which contained “good” individuals in previous iterations.

✔ Must be able to take the interactions into account.

✔ Why not directly describe the distribution of “good” individuals???



GA vs EDA
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select→ cross over→mutate approach

Algorithm 2: Estimation-of-Distribution Alg.

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Learn a model of their distribution.
6 Sample new individuals.
7 Incorporate offspring into the population.

Select→model→ sample approach
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select→ cross over→mutate approach

Algorithm 2: Estimation-of-Distribution Alg.

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Learn a model of their distribution.
6 Sample new individuals.
7 Incorporate offspring into the population.

Select→model→ sample approach

Explicit probabilistic model:

✔ principled way of working with dependencies

✔ adaptation ability (different behavior in different stages of evolution)

Names:

EDA Estimation-of-Distribution Algorithm

PMBGA Probabilistic Model-Building Genetic Algorithm

IDEA Iterated Density Estimation Algorithm
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Usually classified on the basis of interactions complexity they can handle:

✔ Without interactions

✘ 1-dimensional marginal probabilities p(X = x)

✘ PBIL, UMDA, cGA

✔ Pairwise interactions

✘ conditional probabilities p(X = x|Y = y)

✘ sequences (MIMIC), trees (COMIT), forrest (BMDA)

✔ Multivariate interactions

✘ conditional probabilities p(X = x|Y = y, Z = z, . . .)

✘ Bayesian networks (BOA, EBNA, LFDA)
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Scalability of some algorithms:
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1. Personal history in the field of continuous EDAs:

✔ how I used increasingly complex probabilistic models

✔ only to learn that they do not work and that something else is fundamentally
wrong,

✔ and how I returned to the roots and study the simplest algorithms.

2. State of the art, current research directions

✔ What is the best evolutionary algorithm for numerical optimization?

✔ What are its competitors?

✔ What design principles do they use?

3. COCO: benchmark to compare continuous optimizers

✔ How do we judge which algorithm is the best?

4. Summary and future research directions
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✔ Just started PhD

✔ Discrete (especially binary) EDAs well explored

✔ Not much research done in continuous EDAs

✔ A lot of space for further research

✔ Common belief:

✘ “If EDAs work well in binary domain, they should work also in continuous
domain, provided some sufficiently complex and flexible model is used.”
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2 basic approaches:

✔ discretize the representation and use EDA with discrete model

✔ use EDA with natively continuous model
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2 basic approaches:

✔ discretize the representation and use EDA with discrete model

✔ use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

✔ Without interactions

✘ UMDA: model is product of univariate marginal models, only their type is
different

✘ Univariate histograms?

✘ Univariate Gaussian distribution?

✘ Univariate mixture of Gaussians?
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2 basic approaches:

✔ discretize the representation and use EDA with discrete model

✔ use EDA with natively continuous model

Again, classification based on the interactions complexity they can handle:

✔ Without interactions

✘ UMDA: model is product of univariate marginal models, only their type is
different

✘ Univariate histograms?

✘ Univariate Gaussian distribution?

✘ Univariate mixture of Gaussians?

✔ Pairwise and higher-order interactions:

✘ Many different types of interactions!

✘ Model which would describe all possible kinds of interaction is virtually
impossible to find!
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Continuous UMDA [Poš03]
EDA with univariate marginal product
model

p(x) =
D

∏
d=1

p(xd) (1)

The following univariate models were
compared:

✔ Equi-width histogram

✔ Equi-height histogram

✔ Max-diff histogram

✔ Univariate mixture of Gaussians

Features:

✔ the most straightforward analogy
with discrete histograms

✔ if any bin is empty, there is no way
to create new individual in that bin
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[Poš03] Petr Pošı́k. Estimation of distribution algorithms. In Pedro Quaresma, editor, Soft Computing and Complex Systems, pages 119–122,
Coimbra, Portugal, 2003. Centro Internacional de Matemática.
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Continuous UMDA [Poš03]
EDA with univariate marginal product
model

p(x) =
D

∏
d=1

p(xd) (1)

The following univariate models were
compared:

✔ Equi-width histogram

✔ Equi-height histogram

✔ Max-diff histogram

✔ Univariate mixture of Gaussians

Features:

✔ instead of fixing the bin width, fix
the number of points in each bin

✔ no empty bins, always possible to
generate any point in the
hyperrectangle
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[Poš03] Petr Pošı́k. Estimation of distribution algorithms. In Pedro Quaresma, editor, Soft Computing and Complex Systems, pages 119–122,
Coimbra, Portugal, 2003. Centro Internacional de Matemática.
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P. Pošı́k c© 2010, MFF UK, 21.10.2010 11 / 40

Continuous UMDA [Poš03]
EDA with univariate marginal product
model

p(x) =
D

∏
d=1

p(xd) (1)

The following univariate models were
compared:

✔ Equi-width histogram

✔ Equi-height histogram

✔ Max-diff histogram

✔ Univariate mixture of Gaussians

Features:

✔ place the bin boundaries to the
largest gaps between the points

✔ no empty bins, always possible to
generate any point in the
hyperrectangle
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[Poš03] Petr Pošı́k. Estimation of distribution algorithms. In Pedro Quaresma, editor, Soft Computing and Complex Systems, pages 119–122,
Coimbra, Portugal, 2003. Centro Internacional de Matemática.
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Continuous UMDA [Poš03]
EDA with univariate marginal product
model

p(x) =
D

∏
d=1

p(xd) (1)

The following univariate models were
compared:

✔ Equi-width histogram

✔ Equi-height histogram

✔ Max-diff histogram

✔ Univariate mixture of Gaussians

Features:

✔ built by the EM algorithm
(probabilistic version of k-means
clustering)

✔ more suitable for unbounded spaces
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[Poš03] Petr Pošı́k. Estimation of distribution algorithms. In Pedro Quaresma, editor, Soft Computing and Complex Systems, pages 119–122,
Coimbra, Portugal, 2003. Centro Internacional de Matemática.
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Continuous UMDA [Poš03]
EDA with univariate marginal product
model

p(x) =
D

∏
d=1

p(xd) (1)

The following univariate models were
compared:

✔ Equi-width histogram

✔ Equi-height histogram

✔ Max-diff histogram

✔ Univariate mixture of Gaussians

The winner of comparison:

Equi-height histogram

✔ precise

✔ non-parametric
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[Poš03] Petr Pošı́k. Estimation of distribution algorithms. In Pedro Quaresma, editor, Soft Computing and Complex Systems, pages 119–122,
Coimbra, Portugal, 2003. Centro Internacional de Matemática.
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Suitable when

✔ the search space is bounded by a hyperrectangle

✔ there are no strong interactions among variables

Lessons learned:

✔ If a separable function is rotated, UMDA does not work.

✔ If there are nonlinear interactions, UMDA does not work.

✔ EDAs with univariate marginal product models are not flexible enough!

✔ We need EDAs that can handle some kind of interactions!
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Distribution Tree-Building Real-valued EA [Poš04]
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Distribution-Tree model

✔ identifies hyper-rectangular areas of the search space with significantly different
densities

✔ can handle certain type of interactions
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Distribution Tree-Building Real-valued EA [Poš04]
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Distribution-Tree model

✔ identifies hyper-rectangular areas of the search space with significantly different
densities

✔ can handle certain type of interactions

Lessons learned:

✔ Cannot model promising areas not aligned with the coordinate axes.

✔ We need models able to rotate the coordinate system!

[Poš04] Petr Pošı́k. Distribution tree–building real-valued evolutionary algorithm. In Parallel Problem Solving From Nature — PPSN VIII,
pages 372–381, Berlin, 2004. Springer. ISBN 3-540-23092-0.
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Algorithm 3: EDA with global coordinate transformation

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Transform the parents to a space where the variables are independent of each

other.
6 Learn a model of the transformed parents distribution.
7 Sample new individuals in the tranformed space.
8 Tranform the offspring back to the original space.
9 Incorporate offspring into the population.

The individuals are

✔ evaluated in the original space (where the fitness function is defined), but

✔ bred in the transformed space (where the dependencies are reduced).
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UMDA with equi-height histogram models [Poš05]:

✔ No tranformation vs. PCA vs. ICA

✔ PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality
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UMDA with equi-height histogram models [Poš05]:

✔ No tranformation vs. PCA vs. ICA

✔ PCA and ICA are used to find a suitable rotation of the space, not to reduce the space dimensionality
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Different results: the difference matters!

Lessons learned:

✔ The global information extracted by linear transformations was often not useful.

✔ We need non-linear transformations or local transformations!!!

[Poš05] Petr Pošı́k. On the utility of linear transformations for population-based optimization algorithms. In Preprints of the 16th World Congress of the International
Federation of Automatic Control, Prague, 2005. IFAC. CD-ROM.
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Kernel PCA as the transformation technique in EDA [Poš04]
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Works too well:

✔ It reproduces the pattern with high fidelity

✔ If the population is not centered around the optimum, the EA will miss it
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Kernel PCA as the transformation technique in EDA [Poš04]
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Data points sampled from KPCA

Works too well:

✔ It reproduces the pattern with high fidelity

✔ If the population is not centered around the optimum, the EA will miss it

Lessons learned:

✔ Continuous EDA must be able to effectively move the whole population!!!

✔ Is the MLE principle actually suitable for model building in EAs???

[Poš04] Petr Pošı́k. Using kernel principal components analysis in evolutionary algorithms as an efficient multi-parent crossover operator.
In IEEE 4th International Conference on Intelligent Systems Design and Applications, pages 25–30, Piscataway, 2004. IEEE. ISBN
963-7154-29-9.
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Consider a simple EDA with the following settings:

Algorithm 4: Gaussian EDA

1 begin

2 {µ1, Σ
1} ← InitializeModel()

3 g← 1
4 while not TerminationCondition() do
5 X← SampleGaussian(µg, k · Σg)

6 f ← Evaluate(X)
7 Xsel ← Select(X, f , τ)

8 {µg+1, Σ
g+1} ← LearnGaussian(Xsel)

9 g← g + 1

✔ Generational model: no member of the
current population survives to the next one

✔ Truncation selection: use τ · N best
individuals to build the model

✔ Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate
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3 g← 1
4 while not TerminationCondition() do
5 X← SampleGaussian(µg, k · Σg)

6 f ← Evaluate(X)
7 Xsel ← Select(X, f , τ)

8 {µg+1, Σ
g+1} ← LearnGaussian(Xsel)

9 g← g + 1

✔ Generational model: no member of the
current population survives to the next one

✔ Truncation selection: use τ · N best
individuals to build the model

✔ Gaussian distribution: fit the Gaussian
using maximum likelihood (ML) estimate

Gaussian distribution:

N (x|µ, Σ) =
1

(2π)
D
2 |Σ| 12

exp{− 1

2
(x− µ)T

Σ
−1(x− µ)}

Maximum likelihood (ML) estimates of parameters

µML =
1

N

N

∑
n=1

xn, where xn ∈ Xsel ΣML =
1

N − 1

N

∑
n=1

(xn − µML)(xn − µML)
T
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Using Gaussian distribution and ML estimation seems as a good idea. . .

. . . but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum
(population in the valley):

Population far away from optimum
(population on the slope):
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. . . but it is actually very bad optimizer!!!

Two situations:

Population centered around optimum
(population in the valley):
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Algorithm fails:

✔ the optimum is far away

✔ the algorithm is not able to shift the
population towards optimum
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The change of population statistics in 1 generation:

Expected value:

µt+1 = E(X|X > xmin) = µt + σt · d(τ),
where

d(τ) =
φ(Φ−1(τ))

τ
.
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The change of population statistics in 1 generation:

Expected value:

µt+1 = E(X|X > xmin) = µt + σt · d(τ),
where

d(τ) =
φ(Φ−1(τ))

τ
.

Variance:

(σt+1)2 = Var(X|X > xmin) = (σt)2 · c(τ),
where

c(τ) = 1+
Φ−1(1− τ) · φ(Φ−1(τ))

τ
− d(τ)2.
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where
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φ(Φ−1(τ))

τ
.

Variance:

(σt+1)2 = Var(X|X > xmin) = (σt)2 · c(τ),
where

c(τ) = 1+
Φ−1(1− τ) · φ(Φ−1(τ))
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Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√

c(τ)i−1

σt = σ0 ·
√

c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1

1−
√

c(τ)

lim
t→∞

σt = 0
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Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√
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c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1
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lim
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σt = 0

Geometric series

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!
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P. Pošı́k c© 2010, MFF UK, 21.10.2010 20 / 40

Population statistics in generation t:

µt = µ0 + σ0 · d(τ) ·∑t
i=1

√

c(τ)i−1

σt = σ0 ·
√

c(τ)t

Convergence of population statistics:

lim
t→∞

µt = µ0 + σ0 · d(τ) · 1

1−
√

c(τ)

lim
t→∞

σt = 0

Geometric series

The distance the population can “travel” in this algorithm is bounded!

Premature convergence!

Lessons learned:

✔ Maximum likelihood estimates are suitable in situations when model fits the
fitness function well (at least in local neighborhood)

✘ Gaussian distribution may be suitable in the neighborhood of optimum.

✘ Gaussian distribution is not suitable on the slope of fitness function!

✔ We need something different from MLE to traverse the slopes!!!
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What happens if we enlarged the MLE estimate of variance with a constant multiplier k? [Poš08]

✔ What is the minimal value kmin ensuring that the model will not converge on the slope?

✔ What is the maximal value kmax ensuring that the model will not diverge in the valley?

✔ Is there a single value k of the multiplier for MLE variance estimate that would ensure a reasonable
behavior in both situations?

✔ Does it depend on the type of the single-peak distribution being used?

Gaussian “Isotropic” Gaussian “Isotropic” Cauchy

10
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1

10
0

10
1

dim

k

 

 

kmax

kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

10
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1
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0

10
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dim

k

 

 

kmax

kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

dim

k

 

 

kmax, τ = 0.1
kmax, τ = 0.3
kmax, τ = 0.5
kmax, τ = 0.7
kmax, τ = 0.9
kmin, τ = 0.1
kmin, τ = 0.3
kmin, τ = 0.5
kmin, τ = 0.7
kmin, τ = 0.9

✔ For Gaussian and “isotropic Gaussian”, allowable k is hard or impossible to find.

✔ For isotropic Cauchy, allowable k seems to always exist. . .

✘ . . . but this does not guarantee a reasonable behavior.

[Poš08] Petr Pošı́k. Preventing premature convergence in a simple EDA via global step size setting. In Günther Rudolph, editor, Parallel Problem Solving from Nature –
PPSN X, volume 5199 of Lecture Notes in Computer Science, pages 549–558. Springer, 2008.
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Initially, high expectations:

✔ Started with structurally simple models for complex objective functions.

✘ They did not work, partially because of the discrepancy between the
complexities of the model and the function.
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Initially, high expectations:

✔ Started with structurally simple models for complex objective functions.

✘ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

✔ Used increasingly complex and flexible models.

✘ Some improvements were gained, but even the most complex models did not
fulfill the expectations.
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Initially, high expectations:

✔ Started with structurally simple models for complex objective functions.

✘ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

✔ Used increasingly complex and flexible models.

✘ Some improvements were gained, but even the most complex models did not
fulfill the expectations.

✔ Realized that a fundamental mistake was present all the time:

✘ MLE principle builds models which try to reconstruct the points they were
build upon.

✘ This allows to focus on already covered areas, but not to shift the population to
unexplored places.
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Initially, high expectations:

✔ Started with structurally simple models for complex objective functions.

✘ They did not work, partially because of the discrepancy between the
complexities of the model and the function.

✔ Used increasingly complex and flexible models.

✘ Some improvements were gained, but even the most complex models did not
fulfill the expectations.

✔ Realized that a fundamental mistake was present all the time:

✘ MLE principle builds models which try to reconstruct the points they were
build upon.

✘ This allows to focus on already covered areas, but not to shift the population to
unexplored places.

My current work:

✔ Aimed at understanding and developing principles critical for successful
continuous EDAs.

✘ Studying behavior on simple functions first.

✘ Using simple, single-peak models so that the resulting algorithm behave (more
or less) as local search procedures.



State of the Art

Introduction to EDAs

Personal History in
EDAs

State of the Art

Current Trend
Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES

NES
Optimization via
Classification

Remarks on SotA

COCO Benchmarking
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There’s something about the population:
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There’s something about the population:

✔ data set forming a basis for offspring creation
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There’s something about the population:

✔ data set forming a basis for offspring creation

✔ allows for searching the space in several places at once
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There’s something about the population:

✔ data set forming a basis for offspring creation

✔ allows for searching the space in several places at once
(replaced by restarted local search with adaptive neighborhood)
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There’s something about the population:

✔ data set forming a basis for offspring creation

✔ allows for searching the space in several places at once
(replaced by restarted local search with adaptive neighborhood)

Hypothesis:

✔ The data set (population) is very useful when creating (sometimes implicit) global
model of the fitness landscape or a local model of the neighborhood.

✔ It is often better to have a robust adaptive local search procedure and restart it,
than to deal with a complex global search algorithm.
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✔ self-adaptation of the variance [OKHK04] (let the variance be part of the
chromosome)

✔ adaptive variance scaling when population is on the slope, ML estimate of variance
when population is in the valley

✔ anticipate the shift of the mean and move part of the offspring in the anticipated
direction

✔ use weighted estimates of distribution parameters

✔ do not estimate the distribution of selected points, but rather a distribution of
selected mutation steps

✔ use a different principle to estimate the parameters of the Gaussian

[OKHK04] Jiřı́ Očenášek, Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. A mixed bayesian optimization algorithm with
variance adaptation. In Xin Yao, editor, Parallel Problem Solving from Nature – PPSN VIII, pages 352–361. Springer-Verlag, Berlin,
2004.
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AVS [GBR06]:

✔ Enlarge the ML estimate of Σ by an adaptive coefficient cAVS

✔ If an improvement was not found in the current generation, we explore to much,
thus decrease cAVS: cAVS ← ηDECcAVS, ηDEC ∈ (0, 1)

✔ If an improvement was found in the current generation, we may get better results
with increased cAVS: cAVS ← ηINCcAVS, ηINC

> 1

✔ cAVS is bounded: 1 ≤ cAVS ≤ cAVS−MIN

[GBR06] Jörn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of
the 8th annual conference on Genetic and Evolutionary Computation Conference – GECCO 2006, pages 397–404, New York, NY, USA,
2006. ACM Press.
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With AVS, all improvements increase cAVS:

✔ This is not always needed, especially in the valleys.

✔ Trigger AVS when on slope; in the valley, use ordinary MLE.
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With AVS, all improvements increase cAVS:

✔ This is not always needed, especially in the valleys.

✔ Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBR06]:

✔ Compute the ranked correlation coefficient of p.d.f. values and function values, p(xi) and f (xi).

✔ If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

✔ If the distribution is on a slope, correlation will be close to zero. Use AVS.
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With AVS, all improvements increase cAVS:

✔ This is not always needed, especially in the valleys.

✔ Trigger AVS when on slope; in the valley, use ordinary MLE.

Correlation trigger for AVS (CT-AVS) [GBR06]:

✔ Compute the ranked correlation coefficient of p.d.f. values and function values, p(xi) and f (xi).

✔ If the distribution is placed around optimum, function values increase with decreasing p.d.f.,
correlation will be large. Use ordinary MLE.

✔ If the distribution is on a slope, correlation will be close to zero. Use AVS.

Standard-deviation ratio trigger for AVS (SDR-AVS) [BGR07]:

✔ Compute xIMP as the average of all improving individuals in the current population

✔ If p(xIMP) is “low” (the improvements are found far away from the distribution center), we are
probably on a slope. Use AVS.

✔ If p(xIMP) is “high” (the improvements are found near the distribution center), we are probably in a
valley. Use ordinary MLE.

[BGR07] Peter A. N. Bosman, Jörn Grahl, and Franz Rothlauf. SDR: A better trigger for adaptive variance scaling in normal EDAs. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and Evolutionary Computation, pages 492–499, New York, NY, USA, 2007. ACM Press.

[GBR06] Jörn Grahl, Peter A. N. Bosman, and Franz Rothlauf. The correlation-triggered adaptive variance scaling IDEA. In Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation Conference – GECCO 2006, pages 397–404, New York, NY, USA, 2006. ACM Press.
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Anticipated mean shift (AMS) [BGT08]:

✔ AMS is defined as: µ̂shift = µ̂(t)− µ̂(t− 1)

✔ AMS is an estimate of the direction of
improvement

✔ 100α% of offspring are moved by certain

fraction of AMS: x = x + δµ̂shift

✔ When centered around optimum, µ̂shift = 0
and the original approach is unchanged.

✔ Selection must choose parent from both the
old and the shifted regions to adjust Σ

suitably.

MLE
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[BGT08] Peter Bosman, Jörn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Günter Rudolph et al., editor, Parallel Problem Solving from Nature – PPSN X, volume 5199 of LNCS, pages 133–143. Springer, 2008.
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Anticipated mean shift (AMS) [BGT08]:

✔ AMS is defined as: µ̂shift = µ̂(t)− µ̂(t− 1)

✔ AMS is an estimate of the direction of
improvement

✔ 100α% of offspring are moved by certain

fraction of AMS: x = x + δµ̂shift

✔ When centered around optimum, µ̂shift = 0
and the original approach is unchanged.

✔ Selection must choose parent from both the
old and the shifted regions to adjust Σ

suitably.

AMS: µ̂shift = (1, 0)T
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[BGT08] Peter Bosman, Jörn Grahl, and Dirk Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In
Günter Rudolph et al., editor, Parallel Problem Solving from Nature – PPSN X, volume 5199 of LNCS, pages 133–143. Springer, 2008.
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Account for the values of p.d.f. of the selected parents Xsel [TT09]:

✔ assign weights inversely proportional the the values of p.d.f.
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[TT09] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of distribution algorithms. In GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 453–460, New York, NY, USA, 2009. ACM.



CMA-ES

Introduction to EDAs

Personal History in
EDAs

State of the Art

Current Trend
Preventing the
Premature Convergence

AVS

AVS Triggers

AMS

Weighted ML Estimates

CMA-ES

NES
Optimization via
Classification

Remarks on SotA

COCO Benchmarking
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Evolutionary strategy with cov. matrix adaptation [HO01]

✔ (µ/µ, λ)-ES (recombinative, mean-centric)

✔ model is adapted, not built from scratch each generation

✔ accumulates the successful steps over many generations

Compare:

✔ Simple Gaussian EDA estimates the distribution of selected individuals (left fig.)

✔ CMA-ES estimates the distribution of successful mutation steps (right fig.)

−0.5 0 0.5 1 1.5 2 2.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5 0 0.5 1 1.5 2 2.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

[HO01] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001.
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Natural Evolution Strategies

✔ based on the idea of Fitness Expectation Maximization (FEM) [WSPS08]

✘ similar to weighted ML estimation, but more general

✔ recent incarnation: Exponential Natural Evolution Strategies (xNES) [GSY+10]

✔ the resulting implementation of NES and its behavior is very close to the behavior
of CMA-ES

[GSY+10] Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen Schmidhuber. Exponential natural evolution strategies. In
GECCO ’10: Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages 393–400, New York, NY, USA,
2010. ACM.

[WSPS08] Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen Schmidhuber. Fitness expectation maximization. In Günter Rudolph,
Thomas Jansen, Simon Lucas, Carlo Poloni, and Nicola Beume, editors, Parallel Problem Solving from Nature – PPSN X, volume
5199 of Lecture Notes in Computer Science, chapter 34, pages 337–346. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2008.
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Build a quadratic classifier separating the selected and the discarded individuals [PF07]
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✔ Classifier built by modified perceptron
algorithm or by semidefinite programming

✔ Works well for pure quadratic functions

✔ If the selected and discarded individuals are
not separable by an ellipsoid, the training
procedure fails to create a good model

✔ Work in progress; not solved yet
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[PF07] Petr Pošı́k and Vojtěch Franc. Estimation of fitness landscape contours in EAs. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 562–569, New York, NY, USA, 2007. ACM Press.
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✔ Many techniques to fight premature convergence

✔ Although based on different principles, some of them converge to similar
algorithms (weighted MLE, CMA-ES, NES)

✔ Only a few sound principles; the most of them are heuristic approaches
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Comparing Continuous Optimizers (COCO): http://coco.gforge.inria.fr/

✔ “. . . is a platform for systematic and sound comparisons of real-parameter global optimisers.
COCO provides benchmark function testbeds and tools for processing and visualizing data
generated by one or several optimizers.”

http://coco.gforge.inria.fr/
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Comparing Continuous Optimizers (COCO): http://coco.gforge.inria.fr/

✔ “. . . is a platform for systematic and sound comparisons of real-parameter global optimisers.
COCO provides benchmark function testbeds and tools for processing and visualizing data
generated by one or several optimizers.”

Black-box optimization benchmarking (BBOB) workshop:

✔ Held at GECCO conference in 2009 and 2010

✔ Organized by the COCO people

✔ Provides

✘ benchmark functions (MATLAB/Octave, C, Java) with automatic storage of
statistics,

✘ Python post-processing scripts for result tables and graphs,

✘ LATEX templates for articles.

✘ The user adds only the algorithm descriptions, discussion of results, . . .

http://coco.gforge.inria.fr/
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Comparing Continuous Optimizers (COCO): http://coco.gforge.inria.fr/

✔ “. . . is a platform for systematic and sound comparisons of real-parameter global optimisers.
COCO provides benchmark function testbeds and tools for processing and visualizing data
generated by one or several optimizers.”

Black-box optimization benchmarking (BBOB) workshop:

✔ Held at GECCO conference in 2009 and 2010

✔ Organized by the COCO people

✔ Provides

✘ benchmark functions (MATLAB/Octave, C, Java) with automatic storage of
statistics,

✘ Python post-processing scripts for result tables and graphs,

✘ LATEX templates for articles.

✘ The user adds only the algorithm descriptions, discussion of results, . . .

✔ Benchmark functions

✘ 24 noiseless, 30 noisy (3 different types of noise)

✘ separable, unimodal (moderate and high conditioning), multimodal (with
adequate and weak global structure)

http://coco.gforge.inria.fr/
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Comparing Continuous Optimizers (COCO): http://coco.gforge.inria.fr/

✔ “. . . is a platform for systematic and sound comparisons of real-parameter global optimisers.
COCO provides benchmark function testbeds and tools for processing and visualizing data
generated by one or several optimizers.”

Black-box optimization benchmarking (BBOB) workshop:

✔ Held at GECCO conference in 2009 and 2010

✔ Organized by the COCO people

✔ Provides

✘ benchmark functions (MATLAB/Octave, C, Java) with automatic storage of
statistics,

✘ Python post-processing scripts for result tables and graphs,

✘ LATEX templates for articles.

✘ The user adds only the algorithm descriptions, discussion of results, . . .

✔ Benchmark functions

✘ 24 noiseless, 30 noisy (3 different types of noise)

✘ separable, unimodal (moderate and high conditioning), multimodal (with
adequate and weak global structure)

✔ Many already benchmarked algorithms to compare with!!! (Others on the way.)

http://coco.gforge.inria.fr/
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COCO approach to benchmarking:

✔ any incomplete algorithm can be restarted

✔ any restarted algorithm will eventually find
a solution of the desired quality

✔ the expected running time (ERT) is the main
measure of the algorithm efficiency

✔ comparisons based on empirical cumulative
distribution functions (ECDF) of ERT

Scenario:

✔ set ftarget and compare RTDs of the
algorithms

✔ . . . and add another ftarget level . . .
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✔ the expected running time (ERT) is the main
measure of the algorithm efficiency

✔ comparisons based on empirical cumulative
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P. Pošı́k c© 2010, MFF UK, 21.10.2010 36 / 40

COCO approach to benchmarking:

✔ any incomplete algorithm can be restarted

✔ any restarted algorithm will eventually find
a solution of the desired quality

✔ the expected running time (ERT) is the main
measure of the algorithm efficiency

✔ comparisons based on empirical cumulative
distribution functions (ECDF) of ERT

This way we can aggregate RTDs of an algorithm
A not only

✔ over various ftarget levels, but also

Scenario:

✔ set ftarget and compare RTDs of the
algorithms

✔ . . . and add another ftarget level . . .
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COCO approach to benchmarking:

✔ any incomplete algorithm can be restarted

✔ any restarted algorithm will eventually find
a solution of the desired quality

✔ the expected running time (ERT) is the main
measure of the algorithm efficiency

✔ comparisons based on empirical cumulative
distribution functions (ECDF) of ERT

This way we can aggregate RTDs of an algorithm
A not only

✔ over various ftarget levels, but also

✔ over different problems π ∈ Π (!!!), of course
with certain loss of information

Scenario:

✔ set ftarget and compare RTDs of the
algorithms

✔ . . . and add another ftarget level . . .
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Workshop on black-box optimization benchmarking (BBOB) at GECCO conference:

all unimodal, low cond. unimodal, high cond.
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separable multimodal, structured multimodal, weak structure

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

NEWUOA

GLOBAL

DIRECT

MCS

BIPOP-CMA-ES

best 2009f1-5

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

GLOBAL

NEWUOA

MCS

DIRECT

BIPOP-CMA-ES

best 2009f15-19

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

DIRECT

GLOBAL

MCS

NEWUOA

BIPOP-CMA-ES

best 2009f20-24



BBOB-2009

Introduction to EDAs

Personal History in
EDAs

State of the Art

COCO Benchmarking

COCO and BBOB
Expected Running Time
and Its Distribution

Example of comparison

BBOB-2009
Final Summary and
Future Trends
Thanks for your
attention
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The page for BBOB-2009 workshop:

✔ http://coco.gforge.inria.fr/doku.php?id=bbob-2009

A summary paper with the comparison of the 31 BBOB-2009 algorithms:

✔ http://portal.acm.org/citation.cfm?id=1830761.1830790

http://coco.gforge.inria.fr/doku.php?id=bbob-2009
http://portal.acm.org/citation.cfm?id=1830761.1830790
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Empirical results:

✔ there is no best algorithm

✔ some are fast at the beginning, some can solve large proportion of problems in later
stages

✔ there are algorithms which present a good compromise
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Empirical results:

✔ there is no best algorithm

✔ some are fast at the beginning, some can solve large proportion of problems in later
stages

✔ there are algorithms which present a good compromise

EDAs for continuous optimization:

✔ naive transfer of knowledge from the discrete domain does not work

✔ still far from perfect (many things can go wrong. . . )

✔ yet, algorithms of this class belong to the best algorithms for BBO
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Empirical results:

✔ there is no best algorithm

✔ some are fast at the beginning, some can solve large proportion of problems in later
stages

✔ there are algorithms which present a good compromise

EDAs for continuous optimization:

✔ naive transfer of knowledge from the discrete domain does not work

✔ still far from perfect (many things can go wrong. . . )

✔ yet, algorithms of this class belong to the best algorithms for BBO

Future trends:

✔ increasing efficiency of the current algorithms

✔ adaptivity (update previously used model, don’t build it from scratch)

✔ search for general and unifying principles underlying the model building

✔ hybridization with global optimization methods of mathematical programming
community
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Questions?
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