Heuristic best-first search in separation of interleaved Web sessions

Matjaž Kukar matjaz.kukar@fri.uni-lj.si

University of Ljubljana Faculty of Computer and Information Science

Overview

- Introduction
- Clickstream data
- Motivation: interleaved sessions
- Separation process with best-first search
- Evaluation methods
- Data: university student records IS, large web shop
- Results
- Conclusion

Introduction

- Web sites important for companies
 - Sell products, services, data access
- Strong competition
- Web pages
 - Complexity of sites rising
 - Increased number of users
- Importance of web site visitor's behavior
 - Customizing pages → better user experience

Clickstream

- Main source of data for user behavior analysis
- Clickstream
 - A sequence of clicks user makes
 - Detailed view on user transitions between pages
 - Source: HTTP server log file (CLF, ECLF)
- Incomplete picture of user's activity
 - Noisy, large, duplicated data
 - Inadequately structured
 - No user session is logged
- Needs to be preprocessed and cleaned
 - Sessionization gather all individual events
 - Hard to reliably identify user sessions

User session

- User session
 - One visit of a user to a web site
 - In order to do one or more tasks
- Sessionization prone to errors
- The problem of interleaved sessions

Interleaved sessions

- User session with interleaved actions from several browser windows/tabs
 - A single long user session
 - Consists of two or more sesions
 - Conceals actual user intentions
- Reasons
 - Parallel user behavior
 - Users often browse the same site:
 - With multiple browsers opened, multiple tabs
 - Switching between tasks
 - Advanced users

Effects of interleaved sessions

- Negative effect on data quality
 - ... and user behaviour analyses
- Three choices
 - 1. Ignore the problem
 - Possibly adverse effect on data quality if too many
 - 2. Detect and ignore such sessions
 - Possibly discard data about valuable users
 - 3. <u>Properly separate interleaved sessions</u>
 - Cannot be easily separated
 - Context help needed

Some facts

- Student records IS
 - All interleaved sessions belong to either professors or administrators
- Web shop
 - There are twice as many buyers in interleaved sessions than in non-interleaved ones

Some combinatorics ...

• Interleaving two sessions s_1 and s_2 of lengths n_1 and n_2 :

$$\binom{n_1+n_2}{n_1} = \binom{n_1+n_2}{n_2}$$

• Sessions as sets? What about the order of elements?

Some combinatorics ...

- Interleaved session s of length n: in how many ways can it be constructed from up to n non-empty sessions?
- Bell numbers: the number of ways a set of *n* elements can be partitioned into (up to *n*) nonempty subsets

$$B_n = \sum_{k=1}^{n-1} \binom{n}{k} B_{n-1}$$
 $B_0 = 1$

Some combinatorics ...

- Interleaved session s of length n: in how many ways can it be constructed from exactly k sessions?
- Stirling numbers of the second kind: the number of ways of partitioning a set of *n* elements into *k* nonempty sets

$$S_{n,k} = \begin{cases} n \\ k \end{cases} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$

• Unsurprisingly $B_n = \sum_{n=1}^{\infty} S_{n,k}$

11

Bell numbers (number of possible separations)

Separating method

- Discrete Markov model (MM) used for data representation
 - Clickstream represented with first-order MM
 - Present users' path through web site
 - Model trained (probabilities) with validated clean sessions
- Training MM
 - Background knowledge
 - Training data
- Separation <u>based</u> on former user behavior
 - Searching in state space
 - Uses trained Markov model

Separating with state space search

- Problem of separation transformed into the problem of searching alternatives in MM state space
 Partially sepa-
- State Z:
 - Partially separated interleaved session
 - $Z = [[S_{R_1}, S_{R_2}, \dots S_{R_3}], S_P]$
 - $Z_{S} = [[], (s_{1}, s_{2}, ..., s_{n})]$
 - $Z_G = [[(s_{r_{1_1}}, s_{r_{1_2}}, \dots s_{r_{1_a}}), \dots (s_{r_{r_1}}, s_{r_{r_2}}, \dots s_{r_{r_b}})], ()]$
- Transition between states
 - Assignment of page s_i from interleaved part
 - Starting a new separated session S_{R+1}

rated interleaved

session

Partially

reconstructed

sessions

Separating with state space search

- Transition between states $z_1 \rightarrow z_2$ at a cost $c(z_1, z_2)$
 - Transition probability to page *s_i*
 - Start a new session (probability that *s_i* is a starting page)
- Probability of separated session S_R

$$P(S_R) = P_{Z_S}(sr_1) \prod_{i=1}^{a-1} P(sr_i \longrightarrow sr_{i+1})$$
$$f(Z) = \prod_{i=1}^r P(S_{R(i)})$$

- Goal:
 - find the cheapest way between Z_S and Z_G
 - results in the most probable separation

State space

- Directed graph with actions
 - Nodes correspond to problem situations
- Number of states by level increases rapidly
 - Solution: use of heuristic search algorithm
- Sample state space limited to 2 possible separations

State space

Heuristic best first search

- Potentially lower combinatorial complexity
 - Searching in direction of the most promising node
- Estimator *f*(*Z*)
 - f(Z) = g(Z) + h(Z)
 - g(Z) cost of optimal path from node Z_S to node Z
 - h(Z) estimate of the best path from node Z to goal Z_G
- Algorithm RBFS
 - Linear space complexity O(bd)
 - Efficient admissible heuristic function

g(Z)

h(Z)

Devising a heuristic function

- Trivial heuristic function: h(Z) = 1
- Improvements, we consider
 - max probability of transition to page $S_i max p(? \rightarrow S_i)$
 - Structure of session, only possible transitions
 - Transitions only from end states of partial separations

Admissibility of heuristic function

Admissibility

- Desired property
- Has to optimistically estimate the nodes
- Guarantees to find an optimal solution
- Admissible heuristics *h*(*z*) guarantees the most probable separation
- The most probable separation is not necessary correct solution to the problem
 - Example: interleaved sessions with low probability
- Illustration (admissibility)

max{ P(?
$$\rightarrow$$
 S_i) }
z3 so st s4 s5 st5 s7

 $P(So \rightarrow S_4) P(S_1 \rightarrow S_5) P(S_5 \rightarrow S_{15}) P(S_4 \rightarrow S_7)$

 $\max\{P(? \rightarrow S_4)\} \max\{P(? \rightarrow S_5)\} \max\{P(? \rightarrow S_{15})\} \max\{P(? \rightarrow S_{7})\}$

Evaluation of separating process

- Quality of separated sessions their similarity to original ones
- Measuring similarity between sequences many methods.
- Methods used:
 - Perfect match
 - Similarity based on edit distance
 - LCS longest common subsequence
 - WLCS weighted LCS

MATERIALS – synthetic data

• Synthetic problem

- Artificial web site map
- Artificially generated clickstream data
- Sessions, similar to real ones
 - Average session length
 - Lower number of total site pages (30 pages)
- Protocol
 - User sessions generated according to site map
 - Generation of clickstream data
 - Separation process
- Separation: about 90%, perfect match
- Heuristic function for session length 10: on average 712 of 140.000 states

Real-world data

- Two real clickstream data sources
 - Student records information system
 - Web shop
- Considerably different types of clickstream data

Student records IS

- Approx. 300 different web pages, 160.000 validated user sessions
- Each state in MM corresponds to one web page
- Typical user paths well defined
- User has to log on (user identity is known)
- Easily identified entry point
- Server log files use basic CLF format
- Interleaved sessions: user with different concurrent user roles

Session length for the student IS

Web shop

- Lots of application pages (tens of thousands) and users sessions (millions, 50.000 validated)
- Each state in MM corresponds to a group of pages
- Typical user path is not well defined
- Logon not required
 - User identity is not known
 - Logon only when purchase is made
- Entry point can be almost any page
- Pages are strongly linked (little use of site map)
- User login not required
- Hard to identify and eliminate Web robots

Session length for the web shop

Conclusion

- A new method for improved clickstream data preprocessing
- Data representation is based on first-order discrete MM
- Method
 - based on best-first heuristic search
 - tested on two real-world clickstream data sources
- Experiments on two datasets quite successful
 - promising results
 - can be used on any clickstream data source
 - independant of the number of consisting sessions

Lessons learned and further work

- More data for training (hundreds of thousands or millions of sessions)
- Better context help (semantic web?)
- Better utilization of available memory (SMA*)
- Estimate reliability of separation process
 - Probability
 - Number of searched states