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Spectral Graph Clustering

Very successful technique for partitioning data

Based on relatively “old” results

Recently surged in popularity (computational advances)

Already used in many research fields

A lot of theoretical results, different approaches
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Why all the fuss ? (image Ng et al. NIPS, 2001)
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Graphs

Undirected graph is a tuple G = (V ,E)

V are vertices vi ∈ V

E are edges ei = {vj , vk}

Weight matrix W = wij , wij ≥ 0 (weighted graphs)

degree of vertex di =
∑

j wij

volume of a set of vertices vol(A) =
∑

i∈A di

vertex set complement Ā = V\A
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Graphs from data

No principled or formalized way to generate affinity matrix

Selection of affinity, typically

wij = exp
(
−
||xi − xj ||

σ2

)
Sparsification:

k -nearest neighbor graph
ε-distance graph (thresholded)
fully connected graph

Prior knowledge integration
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Graph Laplacian

Name derived from similarity with Laplace operator

No consistent definition of Graph Laplacian

D is diagonal degree matrix, vertex degrees di on diagonal

unnormalized Laplacian L = D −W

normalized Laplacian Lsym = I − D−1/2WD−1/2

normalized Laplacian Lrw = I − D−1W
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Graph Laplacian — Properties

Quadratic form

xT Lx =
∑
i,j

wij(xi − xj)
2

L is symmetric, positive semi-definite

Smallest eigenvalue is λ1 = 0 with eigenvector 1

All eigenvalues are non-negative

0 = λ1 ≤ λ2 ≤ ... ≤ λn
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Summary

Examples

Graphs — basic notions

Graphs built from data

Laplacians of Graphs

Basic properties of Laplacians
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Some History

M. Fiedler, 1973–1975
relationship between connected components and the Laplacian of
graph

Donnath and Hoffman, 1973
suggested use of eigenvalues of adjacency matrix for graph partitioning

Pothen, Simon and Liou, 1990
2-way partitioning using Fiedler vector
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Graph cuts — MinCut

For disjoint A,B ⊂ V ,

cut(A,B) =
∑

vi∈A,vj∈B

wij

MinCut

MINCUT(A1, ...,Ak ) =
k∑

i=1

cut(Ai , Āi)

Can be solved efficiently but partitioning unsatisfactory

Isolated vertices often become clusters
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Graph cuts — RatioCut

RatioCut (Hagen and Kahng, 1992)

RATIOCUT(A1, ...,Ak ) =
k∑

i=1

cut(Ai , Āi)

|Ai |

Clusters more balanced (small clusters are penalized)
Leads to NP-hard problem, for 2-way

minxxT Lx , x ⊥ 1, x piecewise constant, ||x || =
√
|V |

Solved by relaxing the piecewise constant constraint —
then solution is the 2nd smallest eigenvector
This eigenvector must be thresholded
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Graph cuts — NCut

NCUT (Normalized Cut), Shi and Malik, 2000

NCUT(A1, ...,Ak ) =
k∑

i=1

cut(Ai , Āi)

vol(Ai)

Intuitive explanation: maximizes connectedness inside
clusters and disconnectedness between clusters at the
same time
Leads to NP-hard problem, for 2-way

minxxT Lx ,Dx ⊥ 1, x piecewise constant, xT Dx = |V |

Again relaxing the piecewise continuity constraint —
solution is 2nd smallest generalized eigenvector of

Lx = λDx
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Graph cuts — Problems

Only NCut has a “nice” justification

Relaxed solution has no theoretical relationship to original
solution except in special cases

Other relaxations possible→ SDP programming

Eigenvector must be postprocessed
thresholding on c (usually 0)
thresholding on median (to get equal-sized groups)
thresholding at largest gap
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Matrix perturbation theory

Ng, Jordan and Weiss,
NIPS, 2001.
Block-like structure of
ideal connectivity matrix
Guaranteed to work
under ideal conditions
Davis-Kahan
perturbation theorem
(of eigenvalues)

Martin Vejmelka Spectral Graph Clustering



Introduction
Approaches to SGC

Advanced approaches
Summary

Graph cut methods
Matrix perturbation theory
Random walk approach
SGC Algorithms

Random walk matrix

Meila and Shi, 2001
Markov random walk theory basis
A good cluster is such that a random walk originating in it
stays in it for a long time
P = D−1W is a stochastic (transition) matrix
Pij represents probability of moving from node i to j
Eigenvalues λ of Px = λx correspond to 1− λ of Lx = λDx
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Random walk matrix — theoretical analysis

NCUT (A,B) criterion corresponds to transition probability
between sets A and B under stationary distribution of
states.
Guaranteed to work if transition probabilities between
partitions only depend on partition index
Connected with the lumpability of Markov chains
Cf. with Ng, Jordan, Weiss ideal block matrix
This directly extends the usefulness of NCUT algorithm
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Algorithms for SGC

For purposes of this talk we will divide the algoritms into three
generations.

1st generation — individual works, ad-hoc approaches
2nd generation — incorporation of other people’s work
(mixing)
3rd generation — beyond basic clustering strategies
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Generation I

Pothen, Simon, Liou, 1990.
Scott, Longuet-Higgins, 1990 — use of multiple
eigenvectors, image segmentation.
Costeira and Kanade, 1995 — Shape analysis from motion
Perona and Freeman, 1998 — thresholding of eigenvector,
image segmentation.
Shi and Malik, 2000 — normalized cut.
Work with criterion and its solution primarily
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Generation II

Ng, Jordan, Weiss, 2001 — k -means clustering if
eigenvector basis.
Meila, 2000 — multiway cut.
Meila and Shi, 2001 — random walk approach.
Ding et al, 2001 — MinMaxCut.
Work end-to-end (data→ clusters, postprocessing).
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Generation III

Manor-Zelnik and Perona, 2004.
Azran and Ghaharmani, 2006.
Concentrate on postprocessing or preprocessing, new
perspectives on previous algorithms.
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Manor-Zelnik and Perona

Based on the Ng,Jordan,Weiss approach
Multicut method (k -way clustering)
Automatic tuning of affinity matrix
Determination of clusters from eigenvectors
Eigenvalue analysis: clusters from λ not clear.
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Affinity matrix

Sometimes clusters have different densities
Construct modified affinity matrix

Wij = exp−
||xi − xj ||
σiσj

With σi = ||xi − xiK || distance to the k -th neighbor
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Cluster count determination

Using Givens rotations, try to recover block structure of
matrix

V = (v1, ..., vk )

with vi the 2nd, 3rd, ... eigenvectors
If cluster count is k then a rotation matrix is guaranteed to
exist which will ensure each row of V has only 1 non-zero
element
Minimize cost function — “diagonality” of V
Incremental approach — fast implementation
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Azran and Ghaharmani

Based on the random-walk
approach
Multicut method (k -way
clustering)
Noticed that Pm represents
m-step random walks
Pm for increasing m reveals
coarser clusters
Computing Pm is expensive,
but computing λm

i is fast
Search for maximal eigengap
λm

i − λm
i−1
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Things left out

Derivations of results
Some algorithms variants
Some theoretical connections
Manifold learning
Probably lots of other concepts ...
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Thank you

Thank you for your attention !
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