Spectral Graph Clustering

Martin Vejmelka

19.3.2009

Martin Vejmelka Spectral Graph Clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣・

590

Graphs Graph Laplacian

Outline

- Graphs
- Graph Laplacian
- 2 Approaches to SGC
 - Graph cut methods
 - Matrix perturbation theory
 - Random walk approach
 - SGC Algorithms
- 3 Advanced approaches
 - Manor-Zelnik and Perona
 - Azran and Ghaharmani
- 4 Summary

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Э

SAR

Graphs Graph Laplacian

Spectral Graph Clustering

- Very successful technique for partitioning data
- Based on relatively "old" results
- Recently surged in popularity (computational advances)
- Already used in many research fields
- A lot of theoretical results, different approaches

イロト 不得 トイヨト イヨト 二日

Graphs Graph Laplacian

Why all the fuss ? (image Ng et al. NIPS, 2001)

Graphs Graph Laplacian

Graphs

- Undirected graph is a tuple G = (V, E)
- V are vertices $v_i \in V$
- *E* are edges $e_i = \{v_j, v_k\}$
- Weight matrix $W = w_{ij}$, $w_{ij} \ge 0$ (weighted graphs)
- degree of vertex $d_i = \sum_j w_{ij}$
- volume of a set of vertices $vol(A) = \sum_{i \in A} d_i$
- vertex set complement $\bar{A} = V \setminus A$

▲ロト ▲冊 ト ▲ 臣 ト ▲ 臣 ト 一臣 - つへで

Graphs Graph Laplacian

Graphs from data

- No principled or formalized way to generate affinity matrix
- Selection of affinity, typically

$$w_{ij} = \exp\left(-\frac{||x_i - x_j||}{\sigma^2}\right)$$

- Sparsification:
 - k-nearest neighbor graph
 - ϵ -distance graph (thresholded)
 - fully connected graph
- Prior knowledge integration

イロト イポト イヨト イヨト

э

Sac

Graphs Graph Laplacian

Graph Laplacian

- Name derived from similarity with Laplace operator
- No consistent definition of Graph Laplacian
- D is diagonal degree matrix, vertex degrees d_i on diagonal
- unnormalized Laplacian L = D W
- normalized Laplacian $L_{sym} = I D^{-1/2} W D^{-1/2}$
- normalized Laplacian $L_{\rm rw} = I D^{-1} W$

Graphs Graph Laplacian

Graph Laplacian — Properties

Quadratic form

$$x^T L x = \sum_{i,j} w_{ij} (x_i - x_j)^2$$

- L is symmetric, positive semi-definite
- Smallest eigenvalue is $\lambda_1 = 0$ with eigenvector **1**
- All eigenvalues are non-negative

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

イロト 不得 トイヨト イヨト 二日

Graphs Graph Laplacian

Overview

Martin Vejmelka Spectral Graph Clustering

3

Graphs Graph Laplacian

Summary

- Examples
- Graphs basic notions
- Graphs built from data
- Laplacians of Graphs
- Basic properties of Laplacians

イロト 不得 とうほう 不良 とう

3

Graphs Graph Laplacian

Some History

• M. Fiedler, 1973–1975

relationship between connected components and the Laplacian of graph

- Donnath and Hoffman, 1973 suggested use of eigenvalues of adjacency matrix for graph partitioning
- Pothen, Simon and Liou, 1990 2-way partitioning using Fiedler vector

イロト 不得 トイヨト 不良ト 一日

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Outline

- Introduction
 - Graphs
 - Graph Laplacian
- 2 Approaches to SGC
 - Graph cut methods
 - Matrix perturbation theory
 - Random walk approach
 - SGC Algorithms
 - Advanced approaches
 - Manor-Zelnik and Perona
 - Azran and Ghaharmani
 - 4 Summary

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Graph cuts — MinCut

• For disjoint $A, B \subset V$,

$$\operatorname{cut}(A, B) = \sum_{v_i \in A, v_j \in B} w_{ij}$$

$$\operatorname{MINCUT}(A_1,...,A_k) = \sum_{i=1}^k \operatorname{cut}(A_i,\bar{A}_i)$$

- Can be solved efficiently but partitioning unsatisfactory
- Isolated vertices often become clusters

イロト イボト イヨト イヨト 二日

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Graph cuts — RatioCut

• RatioCut (Hagen and Kahng, 1992)

RATIOCUT
$$(A_1, ..., A_k) = \sum_{i=1}^k \frac{cut(A_i, \overline{A}_i)}{|A_i|}$$

- Clusters more balanced (small clusters are penalized)
- Leads to NP-hard problem, for 2-way

 $\min_{x} x^{T} L x, x \perp \mathbf{1}, x$ piecewise constant, $||x|| = \sqrt{|V|}$

- Solved by relaxing the piecewise constant constraint then solution is the 2nd smallest eigenvector
- This eigenvector must be thresholded

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Graph cuts — NCut

• NCUT (Normalized Cut), Shi and Malik, 2000

$$\operatorname{NCUT}(A_1,...,A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i,\bar{A}_i)}{\operatorname{vol}(A_i)}$$

- Intuitive explanation: maximizes connectedness inside clusters and disconnectedness between clusters at the same time
- Leads to NP-hard problem, for 2-way

 $\min_{x} x^{T} L x, D x \perp 1, x$ piecewise constant, $x^{T} D x = |V|$

 Again relaxing the piecewise continuity constraint solution is 2nd smallest generalized eigenvector of

$$Lx = \lambda Dx$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Graph cuts — Problems

- Only NCut has a "nice" justification
- Relaxed solution has no theoretical relationship to original solution except in special cases
- \bullet Other relaxations possible \rightarrow SDP programming
- Eigenvector must be postprocessed
 - thresholding on *c* (usually 0)
 - thresholding on median (to get equal-sized groups)
 - thresholding at largest gap

◆□ → ◆◎ → ◆臣 → ◆臣 → □臣

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Matrix perturbation theory

- Ng, Jordan and Weiss, NIPS, 2001.
- Block-like structure of ideal connectivity matrix
- Guaranteed to work under ideal conditions
- Davis-Kahan perturbation theorem (of eigenvalues)

イロト イポト イヨト イヨト

Sac

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Random walk matrix

- Meila and Shi, 2001
- Markov random walk theory basis
- A good cluster is such that a random walk originating in it stays in it for a long time
- $P = D^{-1}W$ is a stochastic (transition) matrix
- P_{ij} represents probability of moving from node i to j
- Eigenvalues λ of $Px = \lambda x$ correspond to 1λ of $Lx = \lambda Dx$

イロト イボト イヨト イヨト 二日

Sar

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Random walk matrix — theoretical analysis

- NCUT(A, B) criterion corresponds to transition probability between sets A and B under stationary distribution of states.
- Guaranteed to work if transition probabilities between partitions only depend on partition index
- Connected with the *lumpability* of Markov chains
- Cf. with Ng, Jordan, Weiss ideal block matrix
- This directly extends the usefulness of NCUT algorithm

イロト イボト イヨト イヨト 二日

Sar

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Algorithms for SGC

For purposes of this talk we will divide the algoritms into three generations.

- 1st generation individual works, ad-hoc approaches
- 2nd generation incorporation of other people's work (mixing)
- 3rd generation beyond basic clustering strategies

イロト イボト イヨト イヨト 二日

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Generation I

- Pothen, Simon, Liou, 1990.
- Scott, Longuet-Higgins, 1990 use of multiple eigenvectors, image segmentation.
- Costeira and Kanade, 1995 Shape analysis from motion
- Perona and Freeman, 1998 thresholding of eigenvector, image segmentation.
- Shi and Malik, 2000 normalized cut.
- Work with criterion and its solution primarily

イロト イボト イヨト イヨト 二日

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Generation II

- Ng, Jordan, Weiss, 2001 k-means clustering if eigenvector basis.
- Meila, 2000 multiway cut.
- Meila and Shi, 2001 random walk approach.
- Ding et al, 2001 MinMaxCut.
- Work end-to-end (data \rightarrow clusters, postprocessing).

イロト イボト イヨト イヨト 二日

Graph cut methods Matrix perturbation theory Random walk approach SGC Algorithms

Generation III

- Manor-Zelnik and Perona, 2004.
- Azran and Ghaharmani, 2006.
- Concentrate on postprocessing or preprocessing, new perspectives on previous algorithms.

イロト イポト イヨト イヨト

-

Sac

Manor-Zelnik and Perona Azran and Ghaharmani

Outline

Introduction

- Graphs
- Graph Laplacian
- 2 Approaches to SGC
 - Graph cut methods
 - Matrix perturbation theory
 - Random walk approach
 - SGC Algorithms

3 Advanced approaches

- Manor-Zelnik and Perona
- Azran and Ghaharmani

Summary

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Manor-Zelnik and Perona Azran and Ghaharmani

Manor-Zelnik and Perona

- Based on the Ng, Jordan, Weiss approach
- Multicut method (k-way clustering)
- Automatic tuning of affinity matrix
- Determination of clusters from eigenvectors
- Eigenvalue analysis: clusters from λ not clear.

・ロト ・ 同ト ・ ヨト ・ ヨト

Manor-Zelnik and Perona Azran and Ghaharmani

Affinity matrix

- Sometimes clusters have different densities
- Construct modified affinity matrix

$$W_{ij} = \exp{-rac{||x_i - x_j||}{\sigma_i \sigma_j}}$$

• With $\sigma_i = ||x_i - x_{iK}||$ distance to the *k*-th neighbor

イロト イポト イヨト イヨト 二日

Manor-Zelnik and Perona Azran and Ghaharmani

Cluster count determination

 Using Givens rotations, try to recover block structure of matrix

$$V = (v_1, ..., v_k)$$

with v_i the 2nd, 3rd, ... eigenvectors

- If cluster count is k then a rotation matrix is guaranteed to exist which will ensure each row of V has only 1 non-zero element
- Minimize cost function "diagonality" of V
- Incremental approach fast implementation

イロト イボト イヨト イヨト 二日

Manor-Zelnik and Perona Azran and Ghaharmani

Examples

990

Manor-Zelnik and Perona Azran and Ghaharmani

Azran and Ghaharmani

- Based on the random-walk approach
- Multicut method (*k*-way clustering)
- Noticed that P^m represents m-step random walks
- *P^m* for increasing *m* reveals coarser clusters
- Computing *P^m* is expensive, but computing λ^m_i is fast
- Search for maximal eigengap $\lambda_i^m \lambda_{i-1}^m$

イロト イポト イヨト イヨト

-

Sac

Manor-Zelnik and Perona Azran and Ghaharmani

Examples

Martin Vejmelka Sp

Spectral Graph Clustering

ъ

990

Outline

Introduction

- Graphs
- Graph Laplacian
- 2 Approaches to SGC
 - Graph cut methods
 - Matrix perturbation theory
 - Random walk approach
 - SGC Algorithms
- 3 Advanced approaches
 - Manor-Zelnik and Perona
 - Azran and Ghaharmani

Summary

イロト イポト イヨト イヨト

3

SAR

Things left out

- Derivations of results
- Some algorithms variants
- Some theoretical connections
- Manifold learning
- Probably lots of other concepts ...

イロト イボト イヨト イヨト 二日

Thank you

Thank you for your attention !

Martin Vejmelka Spectral Graph Clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣