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What is clustering ?

“Finding natural (and/or interesting) subgroups of data.”

Many clustering approaches and methods exist

Clustering approaches differ widely
disjoint/overlapping clusters, hierarchical/direct, probabilistic

Assumptions of each method must be considered
shape, size, parametrization of clusters

Computational efficiency required for large datasets
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Spectral graph clustering

A family of successful techniques for partitioning data

Already used in many research fields
document clustering, image segmentation, genetics, ...

Available theoretical results linking SGC to other methods
(kernel k-Means)

Represents data by a graph and analyzes the weight
matrix of the graph

Based on objective optimization
Ratio cut, Normalized Cut, Average Association, ...
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Average association with Residuals (AAR)

Given elements V , |V | = n, a symmetric weight matrix
W ∈ Rn×n and the number k > 0, construct a partition
V = {V1,V2, ...,Vk ,Vo} of the set V so that the objective

Jk =
k∑

l=1

Sl =
k∑

l=1

∑
vi ,vj∈Vl

wi,j

nl
,

where |Vl | = nl and Sl is the “cluster strength” of Vl , is
maximized over all partitions of V . The set Vo is will be called
the residual set.
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Average association with Residuals — notes

Need not partition all elements (“remainder” is in Vo)

We may set k = 1 to get one cluster (“main mode” of data)

Does not manipulate the weight matrix W
unlike e.g. normalized cut SGC

May retrieve “sparse” clusters in the sense that the clusters
cover major structures in the analyzed data but contain a
small part of the elements in the data
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Motivation

We are asked to find spatial modes of low frequency
spontaneous brain activity in the human brain

We have fMRI measurements from the gray matter (GM):
50k voxels, 300 time points

Spontaneous brain activity may be characterized by resting
state networks (RSNs)

RSNs are regions in the brain exhibiting coherent
fluctuations

We do not know if all anatomical regions in the GM belong
to some RSN

Can we find RSNs using clustering ? How ?
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Matrix formulation I

The AAR objective can be rewritten in matrix form using
indicator vectors for the k clusters ul , l ∈ {1,2, ..., k}

[ul ]j =

{
1 if vj ∈ Vl
0 if vj /∈ Vl .

The objective can be rewritten in matrix form

Jk =
k∑

i=1

uT
i Wui

uT
i ui

.

The disjointness constraint is simply expressed: uT
i uj = 0 when

i 6= j .
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Matrix formulation II

The indicator vectors can be normalized to unit size to remove
the division by uT

i ui in Jk . This is simple, if zi = ui/||ui ||, then

[zi ]j =

{
n−1/2

i if vi ∈ Vj
0 if vi /∈ Vj .

We accumulate the normalized indicator vectors into a matrix
Z = (z1, z2, ..., zk ) and write the objective in trace form:

Jk = tr{Z T WZ},Z T Z = Ik ,

where the values of zi are constrained as above.
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Solution by relaxation

Relaxation of the discrete constraint optimization problem is a
standard tool for finding “good” solutions. A standard relaxation
of the optimization problem rests in removing the constraint on
the discrete nature of the values of Z . The relaxed optimization
problem becomes:

Jk = tr{Z T WZ},Z T Z = Ik ,

where W is the weight matrix (connectivity matrix).
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Solution by relaxation II

Let WY = Y Λ be the eigendecomposition of W such that:

Y T Y = IN ,Y = (y1, y2, ..., yN)

and
Λ = diag(λ1, λ2, ..., λN), λl ≥ λl+1.

Then the objective Jk is maximized if zi = yi for l ∈ {1,2, ..., k}
and the value of the maximized objective is

Jk =
k∑

l=1

λl .

(Yu and Shi, 2003)
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Solution by relaxation III

The solution Y = (y1, y2, ..., yk ) that maximizes the objective Jk
is not unique, rather, the space of all solutions is parametrized
by orthogonal matrices R ∈ O(k) so that

Z = YR

is also a solution. Matrix trace is unaffected by orthogonal
transformation Jk = tr{Y T WY} = tr{RT Y T WYR} = tr{Z T WZ}
and the orthogonality constraint remains in effect
Z T Z = RT Y T YR = RT R = Ik . (Yu and Shi, 2003)
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Solution by relaxation IV.

There are many relaxed solutions, which one to select ?
Apply VARIMAX method (Kaiser, 1958) to the Zk

VARIMAX finds an orthogonal transform RV ∈ O(k) such
that

RV = arg max
R∈O(k)

v∗(ZkR),

where the VARIMAX objective v∗(Y ),Y ∈ Rn×k is

v∗(Y ) =
1
n2

k∑
l=1

(
n

n∑
i=1

y4
i,l −

( n∑
i=1

y2
i,l

)2
)
.

VARIMAX objective attempts to quantify the concept of
“simple structure” (Thurstone, 1935)
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Discretization

Heuristic procedure

Use VARIMAX rotation to obtain RV , compute Z ∗ = ZK RV

Each element is pre-assigned to the cluster vi ∈ Vl if

l = arg max
m={1,2,...,k}

(z∗i,m)2

The normalized indicator vector (slide 2) for different
cluster sizes is fit to the relaxed solution (least-squares fit)
and the best fit wins

Many other choices considered but most require building
the weight matrix W explicitely
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Example I

Let the graph G = (V ,E) be composed of two cliques
containing elements g1, ...,gn1 and gn1+1, ...,gn,
n1 + n2 = n,n1 > n2. The cliques are mutually disconnected, all
edges inside the cliques are weighted ε > 0. The weight matrix
W is block-diagonal with two blocks. The matrix has two
non-zero eigenvalues λ1 = (n1 − 1)ε and λ2 = (n2 − 1)ε and
n − 2 zero eigenvalues. The eigenvector corresponding to λ1 is

y1 = (α, α, ..., α︸ ︷︷ ︸
n1

,0,0, ...,0︸ ︷︷ ︸
n2

), α =
1√
n1

while the eigenvector corresponding to λ2 is

y2 = (0,0, ...,0,︸ ︷︷ ︸
n1

β, β, ...., β︸ ︷︷ ︸
n2

), β =
1√
n2
.
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Example II

Let us have a model simulating N = 32 coupled dynamical
systems. Two clusters: N1 = 10, mean connectivity ρ1 = 0.8
and N2 = 22, ρ2 = 0.34. Intercluster connectivity ρint = 0.2.
Actual entries in matrix ∼ N (ρ, σ(ρ)).
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(Top) full=eigvecs, dashed=rotated. (Bottom) same with squared elements.
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Restatement

AAR partitions datasets into k clusters and a residual set
residual set may be empty

Interpretation of clusters depends on W
W is provided to us

Part A: compute a relaxed solution
Run eigendecomposition on connectivity matrix W
Use VARIMAX transform to “enhance” cluster structure

Part B: discretize relaxed solution to form clusters
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AAR for time series analysis

Let us have n elements we wish to cluster and for each element
vi ∈ V , let there be a time series ti ∈ Rp. The weight matrix
(similarity matrix) is now not given but rather estimated from the
given time series. Examples:

vi are EEG electrodes, then ti are the EEG time series

vi are weather stations, ti are temperature profiles

vi are brain voxels and ti are BOLD fluctuations (fMRI)

vi are obligations (stock market), and ti are their values

We may estimate similarity between vi using e.g. Pearson
correlation, mutual information, coherence, ...
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Required result: Singular Value Decomposition

Let XV = UΣ define the reduced SVD of the matrix X ∈ Rn×p,
n ≥ p so that

V T V = Ip, V ∈ O(k) is an orthogonal matrix

Columns of V are right singular vectors

Σ = diag(σ1, σ2, ..., σp), σi ≥ σi+1 is diagonal

UT U = Ip, U ∈ Rn×p has orthonormal columns

Columns of U are left singular vectors
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Shortcut lemma

Let a matrix X ∈ Rn×p be given with rows xi representing p
features of the i-th element from a set of n elements. Let the
connectivity (or similarity) function f : Rp ×Rp → R between the
features of the elements be defined for each pair of row vectors
of the matrix X . The function f must be symmetric in its
arguments. If there is a function g : Rp → Rq such that

∀xi , xj ∈ Rp : f (xi , xj) = 〈g(xi),g(xj)〉,

where 〈·, ·〉 denotes the scalar product, then the eigenvalues of
the connectivity matrix W = (wi,j), wi,j = f (xi , xj) are
(σ2

1, σ
2
2, ..., σ

2
q) and the corresponding eigenvectors are

(u1,u2, ...,uq), where σi are the singular values of XG and ui are
the left singular vectors of XG (i-th row of XG is g(xi)). Note:
n − q eigvals of W are zero.

Martin Vejmelka Average association clustering with Residuals



Introduction
Average association clustering with Residuals

Theoretical relationship of ICA and AAR/C

Formulations
AAR for time series analysis
AAR/C for fMRI data

Example: fMRI analysis with Pearson correlation

T ∈ R50000×300 typical for 3T MRI system, 10 mins
Pearson correlation coefficient to estimate similarity

ρi,j = f (ti , tj) =
1

299

300∑
m=1

([ti ]m − t̄i)([tj ]m − t̄j)
σiσj

.

If [̃ti ]m = 1√
299

([ti ]m − t̄i)/σi . Then ρi,j = 〈̃ti , t̃j〉.
W = X̃ X̃ T ≈ 2× 109 elements (≈ 18 GB with 64-bit floats)
VIC3 in Gent: 80 Intel CPUs take 25 mins to build & dcmp.
For SVD of X̃ , can use eigdcmp of X̃ T X̃ of size 300× 300
(a few seconds on a laptop, speedup ≈ 104)
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Preprocessing of fMRI/time series data

For fMRI: data T ∈ Rn×p (voxel time series)

We first center the data T to obtain TC by removing row
and column mean (important !)

We scale the data by a factor X = (p − 1)−
1
2 TC

Sample covariance matrix cov(TC) = 1
p−1TCT T

C = XX T

Notation
M[k ] means first k columns of matrix M
M[k×k ] is k × k submatrix obtained by removing rows r > k
and columns r > k
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AAR/C

AAR with covariance connectivity: AAR/C
Weight matrix W = cov(TC) = XX T

Given k , relaxed solution is U[k ], X = UΣV T (shortcut)
Relaxed solution can be obtained by a linear mapping of
data

U[k ] = XV[k ]Σ
−1
[k×k ]

F[k ] = V[k ]Σ
−1
[k×k ] is a matrix mapping X to first k

eigenvectors
The relaxed solution of the AAR/C problem for data TC is

CAAR/C = XF[k ]RV ,

where RV is the VARIMAX transformation for U[k ]
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Restatement

AAR is a clustering framework, interpretation of clustering
depends on W

W computed from time series may have special structure
(outer product)

If this special structure is there:
we may exploit it for faster computation
relaxed solution is a linear mapping of the data matrix
(we never compute W !!)

The mapping may be constructed using the SVD of X

CAAR/C = XF[k ]RV , F[k ] = V[k ]Σ
−1
[k×k ]
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Independent Component Analysis I

The ICA model assumes that data are samples from observed
random variables x ∈ Rp (RVs) that arised by mixing several
independent non-gaussian RVs s ∈ Rk , where typically (and
we will assume this) p ≥ k . The mixing model can be specified
as x = As + b, where b ∈ Rp is a vector of means.

We ensure that b = 0, model is simplified x = As,

ICA problem: find unmixing matrix W , s.t.

s = Wx

Solutions not determined fully (Tong, 1991) — order, scale

ICA minimizes redundancy of ŝ = Ŵx over suitable space
of matrices
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Independent Component Analysis II

Dependency is quantified by the redundancy

R(y1, ..., yk ) =
k∑

i=1

H(yi)− H(y1, y2, ..., yk ),

where H(yi) is the differential entropy of yi and H(y1, y2, ..., yk )
is the joint entropy of y1, ..., yk .

In practice the RV x may have been generated as x = As,
where the RVs in the vector s are not independent. In that case,
ICA attempts to find a set of RVs that have least dependency.
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Pre-whitening

Computations are simplified with whitening &
dimensionality reduction (WDR)

Linear transform y = Mx,M ∈ Rk×p, k ≤ p

Target: y, such that E[yyT ] = Ik .

Simplification: The unmixing matrix H ∈ Rk×k , s = Qy is
now orthogonal because

Ik = E[ssT ] = E[QyyT QT ] = QE[yyT ]QT = QQT

FastICA (Hyvarinen, 2000), JADE, MaxKurt (Cardoso,
1999)

Whole “unmixing” transform is a linear mapping s = QMx
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Practical ICA

We work with same data X ∈ Rn×p as AAR/C
Data whitening using Principal Component Analysis
First the data is passed through a WDR stage using
M ∈ Rp×k so that

Y = XM,Y T Y = Ik

Linear subspace of columns of Y is that of the first k
principal components
An orthogonal matrix Q ∈ O(k) is found to “unmix” the
white data Y
The complete mapping is CICA = YQ = XMQ, Q ∈ O(k)
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Practical ICA: how to find H

Q may be obtained by finding the most non-gaussian
projections of the columns of white data Y
(Hyvarinen,2000)

Redundancy of Z = (z1, z2, ..., zk ) is
k∑

i=1

Ĥ(zi)− Ĥ(z1, z2, ..., zk )

joint entropy unaffected by ortho. transforms

Then, task is to minimize
∑k

i=1 Ĥ(zi) for Z = YQ over
Q ∈ O(k)

Non-gaussian distributions are typically platykurtic or
leptokurtic (heavy tails)
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Linear mappings from data

Mapping from data to AAR/C relaxed solution

CAAR/C = XF[k ]RV ,

where RV ∈ O(k)

Mapping from data to ICA components

CICA = XMQ

where Q ∈ O(k)

Martin Vejmelka Average association clustering with Residuals



Introduction
Average association clustering with Residuals

Theoretical relationship of ICA and AAR/C

Independent Component Analysis
Theoretical relationship of ICA and AAR/C

Linear mappings II

Without proof: If M is WDR for X and Y = XM is white
data and linear subspace of columns of Y is equal to that
of the first k principal components, then there exists
P ∈ O(k) such that Y = XF[k ]P

Thus CICA = XF[k ]PQ for some P ∈ O(k)

Then Q̃ = PQ ∈ O(k) and

CICA = XF[k ]Q̃

Remember:
CAAR/C = XF[k ]RV
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Meaning ?

AAR/C:
we wish to cluster fMRI data TC into k clusters using
covariance as connectivity
relaxed solution is a linear mapping of the data
CAAR/C = XF[k ]RV

ICA:
we wish to find k “least dependent components” from the
observed mixture X
components obtained by linear mapping of data
CICA = XF[k ]Q̃

Solutions live in the same linear subspace spanned by
columns of U[k ] = XF[k ]

Both methods use auxiliary objectives to find a different
basis using an orthogonal transform
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Orthogonal transforms

Reminder: VARIMAX transform of data Z is accomplished
by matrix RV ∈ O(k) such that

RV = arg max
R∈O(k)

v∗(ZR),

where v∗(·) is the VARIMAX objective

For matrices with zero mean and equivariant columns,
maximizing v∗(Z ) is equal to maximizing the sum of the
sample kurtoses of the columns
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Theoretical extension of AAR/C

Let us naturally extend AAR/C clustering to random
variables

This will be a two stage procedure
1 whiten the expected covariance matrix of the RVs
2 find orthogonal transform to maximize sum of kurtoses of

RVs

Let us call this theoretical algortihm AAR/C∗

Embodiment of AAR/C∗ on real datasets is AAR/C
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Equivalence of AAR/C∗ and ICA

Let s ∈ Rk be a vector of independent, zero mean, unit
variance, random variables with leptokurtic distributions. If the
observable RVs x ∈ Rp, p ≥ k are given as a mixture x = As
and A ∈ Rp×k has rank k , then

1 the optimal solution of ICA under this model is ŝICA, which
may be s or its permutation or reflection

2 the optimal solution of AAR/C∗ is some ŝAAR/C, which may
be s or its permutation or reflection

Notes: this is true irrespective of whether WDR is used or not in
ICA. The claim also does not depend on any particular ICA
estimation algorithm being used, provided that it converges to
the optimal solution.
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RV Schema

s ∈ Rk

x ∈ Rp, p ≥ ky ∈ Rk

E[yyT ] = Ik

E[si] = 0, E[s2i ] = 1

x = As, rank(A) = k

si independent, leptokurtic

E[xxT ] = AAT
y = Mx

s = Qy

QTQ = Ik
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Proof outline

Q ∈ O(k) because y = Mx = MAs and

E [yyT ] = Ik = E [MAssT AT MT ] = (MA)(MA)T = QQT

M ∈ Rk×p exists:
if AAT = BSBT , BBT = Ip, then S is diagonal with exactly k
nonzero eigenvalues
then AAT = B[k ]S[k ](B[k ])

T and we take M = S− 1
2

[k ] (B[k ])
T

AAR/C∗ first stage (whitening) maps x to y

Second stage finds Q ∈ O(k) so that sum of kurtoses of
RVs Qy is maximized (“VARIMAX on random variables”)
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Proof outline II

Sets of reachable RV vectors by orthogonal transforms
From y : Ay = {z|z = Ry,R ∈ O(k)}
From s: As = {z|z = Rs,R ∈ O(k)}

Since s = Qy and orthonormal transforms are closed
under composition Ay = As

Lemma: In the set As, only RVs that are permutations and
reflections of s have the maximum sum of kurtoses
Let SP be the set containing s and all its permutations and
reflections, then SP ⊂ As

Corollary: Optimal Q∗ ∈ O(k) maximizing the sum of
kurtoses maps y to a solution s′ ∈ SP
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Summary

AAR/C on centered data is related to ICA
solution in same linear subspace, orthogonal transforms related

The above relies on use of whitening & dimensionality
reduction in the algorithm
In theory, the AAR/C∗ problem has the same optimal
solutions as ICA
for independent, leptokurtic source RVs

Meaning: on some problems, ICA and AAR/C∗ are
identical

ICA gives a relaxed solution to a clustering problem
AAR/C∗ relaxed solution is the ICA under model
assumptions
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Thank you

Thank you for your attention !
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Illustration of objective J1, J2

If there are N elements with mutually connected with a
connectivity ρ > 0 (self-connectivity wi,i = 0).

Clustering into one cluster: the objective value J1 only depends
on the number of elements in the cluster J1 = ρ(N1 − 1) and
the maximum of this objective is reached if all the elements are
in one cluster, or N1 = N. Vo = ∅.

Clustering into two clusters: the objective value
J2 = ρ(N1 + N2 − 2), if there are N1 elements in the first cluster
and N2 elements in the second cluster — no relative cluster
size is preferred but all elements must be assigned to one of
the clusters to maximize J2. Vo = ∅.
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Zero-one programming formulation

The AAR objective may be formulated as a zero-one
programming problem:

Jk =
k∑

l=1

uT
l Wul

uT
l ul

,ul ∈ {0,1}n

where the disjointness constraints may be formulated as
inequalities

∀i ∈ {1,2, ...,n}
k∑

l=1

[ul ]i ≤ 1.
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Simple discretization

Let us expand the objective Jk for the solution V of the
eigenvectors:

Jk = Y T WY = Y T ΛY =
k∑

l=1

λlyT
l yl =

k∑
l=1

λl

N∑
i=1

[yl ]
2
i .

By disjointness of the clusters, each element vi must go into at
most one cluster Vl . If we put the element vj into cluster Vi ,
then the contribution of the element to the criterion Jk will be
λl [yl ]

2
i . So one may assign each element vi to the cluster

arg max
1≤l≤k

λj [yl ]
2
i .

(Bialonski and Lehnertz, 2006)
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Simple discretization II

This approach has some problems (Bialonski and
Lehnertz, 2006), (Vejmelka and Palus, 2010)
e.g. cannot separate clusters of similar size

The method assigns all elements to clusters
We considered several options as to how to assign
elements to clusters
e.g. first assigning using above method, then attempting to maximize
the cluster strength for each cluster

Most methods depended on forming explicitely the matrix
W , which is in some applications huge
We found a more effective heuristic to remove “unwanted
elements” into the residual set
fit the ideal form of the indicator vector to the relaxed solution
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