Hierarchical structural model of primary visual cortex

Ján Antolík

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education MINISTRY OF EDUCATION, YOUTH AND SPORTS

Early visual system

How do neurons in primary visual cortex process visual information?

RF: position in visual field Cortical surface

Responses can be obtained in a given optic nerve fiber only upon illumination of a certain restricted region of the retina, termed the receptive field of the fiber.

Hartline, H K (1938)

RF: map of exc/inh regions Cortical surface

Receptive Field Estimation

RF as a function

f: l[°]→ (0,1)

Spike triggered averaging

Spike triggered averaging

Spike triggered covariance

1st eig. vec. 2nd eig. vec.

. . .

Spike triggered averaging

Spike triggered covariance

Volterra kernel estimation

Is RF real ?

Stimulus

2nd order

Volterra kernel estimation :

Is RF real ?

Stimulus

2nd order

(Fournier et al, 2011)

(David et al, 2004)

Volterra kernel estimation :

Volterra kernel estimation :

Is RF real?

Stimulus

1st order

2nd order

(Fournier et al, 2011)

(David et al, 2004)

Volterra kernel estimation :

Volterra kernel estimation :

Phase-separated Fourier model:

Phase-separated Fourier model:

 $h(\omega_x, \omega_y, \phi, \tau)$

RF estimation limitations

- Limited expressiveness of the fitted models
- Fitting to narrow stimulus statistics

- Limited prediction power
- Non unique estimation of the RF
- Poor interpretability in terms of underlying biological substrate

What can we do about it?

1.Introduce domain knowledge:

more priors = better and less biased fit

What can we do about it?

1.Introduce domain knowledge:

more priors = better and less biased fit

2.Think of the underlying biological substrate

What can we do about it?

1.Introduce domain knowledge:

more priors = better and less biased fit

2.Think of the underlying biological substrate

1+2 : Use knowledge about the architecture of the underlying neural circuitry as prior for your model.

Hierarchical structural model (HSM)

The structural priors

• Receptive fields of LGN units can be well approximated by difference-of-Gaussian function

The structural priors

• Receptive fields of LGN units can be well approximated by difference-of-Gaussian function

 Local population of V1 neurons receives common input from limited number of LGN cells

(Jin et al, 2011)

The structural priors

• Receptive fields of LGN units can be well approximated by difference-of-Gaussian function

 Local population of V1 neurons receives common input from limited number of LGN cells

• Hierarchical organization

The HSM structure

The model

LGN units:

$$\psi_{i1} = \sum_{k,l} I_{kl} \left(\frac{\alpha_i}{\sigma_i^2} e^{-\frac{\left(k - \mu_i^x\right)^2 + \left(l - \mu_i^y\right)^2}{2\sigma_i^2}} - \frac{\beta_i}{\rho_i^2} e^{-\frac{\left(k - \mu_i^x\right)^2 + \left(l - \mu_i^y\right)^2}{2\rho_i^2}} \right)$$

Cortical units:

$$\boldsymbol{\psi}_{il} = f\left(\sum_{j} w_{ij} \boldsymbol{\psi}_{j(l-1)}\right)$$

Transfer function:

$$f(x) = \log(1 + \exp(x - t_i))$$

Log-likelyhood:

$$\log p(y|x,\phi) = \sum_{i} y_{i} \log M(\phi, x_{i}) - \sum_{i} M(\phi, x_{i})$$

Model optimization

- Optimized with Constrained Truncated Newton Conjugate method
- Non-convex model
 - 100 restarts with different seeds of initial random parameter initialization
 - pick the best fit to training data
- Meta-parameters:
 - Number of LGN units (9)
 - Number of hidden units (20%)
 - Determined based on prior 1D searches based on training data performance

2-photon imaging of neural populations

Calcium imaging of local population of neurons in mouse V1

- 2 mice, 30-40 postnatal day
- Anesthesized: isoflurane
- 3 imaged regions
- OGB1-AM calcium indicator

In vivo imaging

The recordings

- 3 imaged regions in 2 mice
- 257 neurons in total
- Training set: 1260-1800 images 1 t
- Validation set: 50 images

1 trial 8-12 trials

Results

The model performance

Comparison: reference models

STA with laplacian regularization (Smyth et. al, Journal of Neuroscince, 2003)

$$\mathbf{L}_{\mathbf{s}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{S} \\ \lambda \mathbf{L} \end{bmatrix} \mathbf{f} = \begin{bmatrix} r \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

Г

Comparison: reference models

STA with laplacian regularization (Smyth et. al, Journal of Neuroscince, 2003)

$$\mathbf{L}_{\mathbf{s}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{S} \\ \lambda \mathbf{L} \end{bmatrix} \mathbf{f} = \begin{bmatrix} r \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

Г

п

Barkely-wavelet transform based linear model (Kay et. al, Nature, 2008)

Comparison: performance

Fitted HSM weights

Fitted HSM weights

Fitted HSM weights

RF comparison across models

Metaparameters

Conclusions

- Introduction of cortical architecture into model leads to more accurate prediction of population responses to natural images
- Significant reduction of free parameters compared to many competing models
- Diverse set of receptive fields in local population of mouse V1 neurons can be constructed from surprisingly few LGN-like units
- Can systematic introduction of prior knowledge about the thalamo-cortical circuitry lead to better correspondence between fitted models and underlying neural substrate, and thus save the RF?

Future work: better calcium imaging systems

- Widefield objective = more simultaneously recorded cells
- Chronic preparation = more image presentations
- Deeper recordings = more available priors
- New dyes = less noise, single spike resolution
- Faster scanning frequency
- Recordings combined with neuronal markers

Future work: model extensions

- Temporal receptive fields to fit natural scenes animations
- Stimulus dependent surround contributions, with explicit priors about structure of lateral connectivity
- Coupling filters between cortical neurons (a.k.a. GLM)
- Adaptative mechanisms
- Sepparete excitatory and inhibitory neurons
- Explicit handling of ongoing-state
- Trans-laminar model fitting

Trans-laminar model fitting

Exploration of different image statistics (adaptation?)

Recent entry of CNNs into neuroscience

Cadena et al. 2018

New Deep Architectures

Dan Butts, Univ. of Maryland

THE END

WE ARE ALWAYS LOOKING FOR TALENTED STUDENTS

Dependence on initialization seed

Dependence on data resampling

