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Optimization

optimization (minimization) is finding such x? ∈ Rn that

f (x?) = min
∀x∈Rn

f (x)

“near-optimal” solution is usually sufficient

f(x)

x
f(x)

x
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Continuous white-box optimization

also known as numerical optimization methods

requirements:
gradients: ∇f (x)

. . . can be approximated by finite difference approximations

and sometimes also Hessians: ∇2f (x)

1 gradient descend (1st order)
2 Newthon method (2nd order)
3 quasi-Newthon methods (2nd order approximated)
4 trust-region, conjugate gradients
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1st order: gradient descend

iterative steps in the direction of negative gradient

x(k+1) = x(k) − σ∇f (x(k))

σ – step size, usually changes every iteration, adapted, for
example, using a line search along the gradient direction

x 0 

x 1 

x 2 

x 3 
x 4 

*

*

source: (CC) Wikipedia

pros:
guaranteed to converge theoretically
suitable even for large problems (deep NN. . . )

limitations:
can be very slow, especially without a momentum
often ends-up much sooner due to round-off errors

source: (GNU) Wikipedia, author: P.A. Simionescu
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2nd order: Newton’s method

take into account the second-order term of a Taylor
expansion of f (x) around x(k):

f (x(k) + h) ≈ q(k)(h) = f (x(k)) + h>∇f (k) +
1
2

h>
[
∇2f (k)

]
h

the next iterate is then

x(k+1) = (x(k) + h(k))

where h(k) minimizes q(k)(h)

x(k+1) = x(k) − γ
[
∇2f (k)

]−1
∇f (k)

x

x
0

pros:
very fast convergence on quadratic-like function

limitations:
needs a Hessian matrix to be computed and inverted
thus rarely usable in practice
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Quasi-Newton’s methods

Hessian matrix ∇2f (k) is not computed,
only iteratively approximated B(k),B(k+1), . . .

Hessians’ inverses are often calculated without inversions

BFGS
the most successful for the last three decades
independently discovered by 4 (!) people in 1970
C. G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno

Hessian approximation updated via rank-two updates
works even without derivatives (with finite differences)

shown to behave well on a variety of (even multimodal) functions
L-BFGS – a popular memory-limited version (Nocedal, 1980)
in every optimization package (Matlab, Python,. . . )
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Other numerical optimization techniques

quadratic approximations:
by far the most popular optimization technique

trust-region methods
quadratic approximations around current point x(k)

minimizes the model within region of trust

NEWOUA, BOBYQA (J. D. Powell, 2004, 2009)

construct the quadratic model using much fewer points
than (n + 1)(n + 2)/2 using additional minimizing a norm

that saves time and enhances performance

conjugate gradients
do not approximate Hessians
conjugate vectors – a momentum guiding the search
cheaper variant to quasi-Newton’s methods
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Optimization of black-box functions

black-box functions

x f(x)

f

only evaluation of the function value, no derivatives or
gradients→ no gradient methods available

we consider continuous domain: x ∈ Rn
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Optimization of empirical black-box functions

empirical function:
assessing the function-value via an experiment
(measuring, intensive calculation, evaluating a prototype)
evaluating such functions are expensive (time and/or
money)
search cost ∼ the number of function evaluations
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Metaheuristics

Metaheuristic
optimization techniques finding sufficiently good solution
treat the objective function as black-box
sample a set of candidate solutions
(search space often too large to be completely sampled)
often nature-inspired

particle/swarn optimization
simulated annealing
. . .
evolutionary computation (EA, GA, ES, . . . )
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EA’s for empirical black-box optimization

what can help with decreasing
the number of function evaluations:

utilize already measured values
(at least prevent measuring the same thing twice)
learn the shape of the function landscape
or learn the (global) gradient or step direction & size

f(X)

i

Re f(X)

CrSe

Mu?

X*

source: (GNU) Wikipedia, author: Johann "nojhan" Dréo
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Model-based methods accelerating the convergence

several methods are used in order to decrease
the number of objective function evaluations needed by EA’s

1 Bayesian optimization (EGO)

2 Surrogate modelling
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Bayesian optimization

Bayesian optimizer

Input : objective function f , the size of the initial sample d
x1, . . . , xd ← generate an initial sample
A ← {(xi, yi)} /* initialize the archive */

for generation g = 1, 2, . . . until stopping conditions met do
M← generate the probabilistic model based on A
x1, . . .← choose next points x ∈ X accord. to CM(x)
y1, . . .← f (x1), . . . /* evaluate the new point(s) */
A ← A∪ {(x1, y1), . . .} /* update the archive */

suitable for very low budgets of f -evaluations (∼ 10 · D)
Gaussian processes used in the criterion CM most often
existing algorithms: EGO (D. R. Jones, 1998),
SPOT (T. Bartz-Beielstein, 2005), SMAC (F. Hutter, 2011) etc.
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Surrogate modelling

Surrogate modelling
technique which builds an approximating model
of the fitness function landscape
the model provides a cheap and fast,
but also inaccurate replacement of the fitness function
for part of the population
inaccurate approximating model can deceive the optimizer
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Gaussian Process

GP is a stochastic approximation method based on Gaussian
distributions

GP can express uncertainty of the prediction in a new point x:
it gives a probability distribution of the output value
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Gaussian Process
A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its
mean function m(x) = E [fGP(x)]

covariance function cov(xi, xj) = cov(fGP(x1), fGP(x2))

and we write the Gaussian process as

f (x) ∼ GP(m(x), cov(x, x)).

(Rasmussen, Williams, 2006)
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Gaussian Process

given a set of N training points XN = (x1 . . . xN)>, xi ∈ Rd,
and measured values yN = (y1, . . . , yN)>

of a function f being approximated

yi = f (xi), i = 1, . . . ,N

GP considers vector of these function values as a sample
from N-variate Gaussian distribution

yN ∼ N(0,CN)
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Gaussian Process prior distribution
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Draws from Gaussian processes prior for three different covariance functions
KSE, Kν=3/2

Mat«ern , Kν=5/2
Mat«ern (in that order), all of them with the parameters ` = 1 and

σ2
f = 1 without noise
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Gaussian Process prediction (posterior)

Making predictions
Let CN+1 be extended covariance matrix – extended by entries
belonging to an unseen point (x, y∗). Because yN is known and

the inverse C−1
N+1 can be expressed using inverse of the training

covariance CN
−1,

the density in a new point marginalize to 1D Gaussian density

p(y∗ |XN+1, yN) ∝ exp

(
−1

2
(y∗ − ŷN+1)2

s2
yN+1

)
where
the mean ŷN+1 and the
variance s2

yN+1

is easily expressible from
CN
−1 and yN .
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Gaussian Process prediction (posterior)
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Graphs of Gaussian processes prediction N = 2, 3, 4 training data. (+) –
training set, thick line – mean prediction, thin lines – three draws from the GP
posterior (without noise). Predictions ŷ∗ and ±2ŝ∗ are generated for 101
points, computationally stable as the matrix inversion only for the training
covariace CN .
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Gaussian Process covariance

The covariance matrix CN is determined by the covariance
function cov(xi, xj) which is defined on pairs from the input
space

(C)ij = cov(xi, xj), xi,j ∈ Rd

expressing the degree of correlations between two points’
values; typically decreasing functions on two points distance

d(xi,xj)

cov(xi,xj)
1
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Gaussian Process covariance

The most frequent covariance function is squared-exponential

(K)ij = covSE(xi, xj) = θ exp

(
−1
2`2 (xi − xj)

>(xi − xj)

)
with the parameters (usually fitted by MLE)

θ – signal variance (scales the correlation)
` – characteristic length scale
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Gaussian Process covariance

Another usual option in data-minig applications is
Matérn covariance, which is for r = (xi − xj)

(K)ij = covMatern
ν=5/2(r) = θ

(
1 +

√
5r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)
.

with the parameters (same as for squared exponential)
θ – signal variance
` – characteristic length scale
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Gaussian Process covariance

source: (Rasmussen and Williams, 2006)
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Stochastic search of Evolutionary algorithms

Stochastic black box search
initilize distribution parameters θ
set population size λ ∈ N
while not terminate

1 sample distribution P(x|θ)→ x1, . . . , xλ ∈ Rn

2 evaluate x1, . . . , xλ on f
3 update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

schema of most of the evolutionary strategies (and EDA
algorithms)
as well as CMA-ES (Covariance Matrix Adaptation ES)
– current state of the art in continuous optimization
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The CMA-ES
Input: m ∈ Rn, σ ∈ R+, λ ∈ N
Initialize: C = I (and several other parameters)
Set the weights w1, . . . wλ appropriately

while not terminate

1 xi = m + σyi, yi ∼ N(0,C), for i = 1, . . . , λ sampling

2 m←
∑µ

i=1 wi xi:λ = m + σyw where yw =
∑µ

i=1 wi yi:λ update
mean

3 update C
4 update step-size σ
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Covariance matrix adaptation

eigenvectors of the covariance matrix C are the principle
components – the principle axes of the mutation ellipsoid
CMA-ES learns and updates a new Mahalanobis metric
successively approximates the inverse Hessian on
quadratic functions
– transforms ellipsoid function into sphere function
– it somehow holds for other functions, too (up to some
degree)

b1

b2

source: (S. Finck, N. Hansen, R. Ros, and A. Auger, 2009)
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Is the CMA-ES the best for everything?

CMA-ES is state-of-the-art optimization algorithm,
especially for rugged and ill-conditioned objective functions
however, not the fastest if we can afford
only very few objective function evaluations

what we have already seen:
use a surrogate model!
however, original evaluated solutions are available
only along the search path
solution: construct local surrogate models
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Doubly trained Surrogate CMA-ES

m,σ

1

1st model
training

m,σ

4

fitness
evaluation
of a few
chosen
points

m,σ

2

sampling from
N(m,σ)

CMA-ES m,σ

5

2nd model
training

m,σ3rd3rd

3 criterion ranking
according to 1st model

1st1st

2nd2nd

s2 m,σ

6

population

mean-prediction
2nd model

for the rest of
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Doubly trained Surrogate CMA-ES

1 sample a new population of size λ (standard CMA-ES
offspring),

2 train the first surrogate model on the original-evaluated
points from the archive A,

3 select dαλe point(s) wrt. a criterion C, which is based on
the first model’s prediction,

4 evaluate these point(s) with the original fitness,
5 re-train the surrogate model also using these new point(s),

and
6 predict the fitness for the non-original evaluated points with

this second model.
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Criteria for the selection of original-evaluated points

GP predictive mean

CM(x) = − ŷ(x)

GP predictive standard deviation

CSTD(x) = ŝ(x)
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Criteria for the selection of original-evaluated points

Expected improvement (EI). ymin – the minimum so-far
fitness

CEI(x) = E((ymin − f̂ (x))I(f̂ (x) < ymin) | y1, . . . , yN) , where

I(f (x) < ymin) =

{
1 for f̂ (x) < ymin

0 for f̂ (x) ≥ ymin

Probability of improvement (PoI). the probability of finding
lower fitness than some threshold T

CPoI(x,T) = P(f (x) ≤ T | y1, . . . , yN) = Φ

(
T − ŷ(x)

ŝ(x)

)
where Φ is the CDF of N (0, 1), T = ymin or a slightly higher
value
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Criteria for the selection of original-evaluated points
selected unimodal COCO functions f1,2, f8...14

0 50 100 150 200 250
-8

-6

-4

-2

0

"
flo

g

 5-D

GP predictive mean (M)
GP predictive stand. deviation (STD)
Expected improvement (EI)

0 50 100 150 200 250
-8

-6

-4

-2

0
 20-D

Probability of improvement (PoI)
Expected RDE (ERDE)

multimodal COCO functions f3,4, f15...24

0 50 100 150 200 250
Number of evaluations / D

-8

-6

-4

-2

0

"
flo

g

 5-D

0 50 100 150 200 250
Number of evaluations / D

-8

-6

-4

-2

0
 20-D

The log10 of the median best f -value distances to the benchmarks’ optima
were scaled linearly to [−8, 0] for each COCO function.
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GP model training

trainModel(A,Nmax,TSS, rAmax,K, σ
(g),C(g),m(g))

(XN , yN)← select at most Nmax points from the archive A using TSS
and rAmax

XN ← transform the selected points into the (σ(g))2C(g) basis with the
origin at m(g)

yN ← standardize the f -values in yN to zero mean and unit variance
(mµ, σ2

f , `, σn)← fit the hyperparameters of µ(x) and K using ML
estimation
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Training set selection

1 TSS1 taking up to Nmax most recently evaluated points

2 TSS2 selecting the union of the k nearest neighbors of
every point for which the fitness should be predicted,
where k is maximal such that the total number of selected
points does not exceed Nmax,

3 TSS3 clustering the points in the input space into Nmax
clusters and taking the points nearest to clusters’ centroids

4 TSS4 selecting Nmax points which are closest to any point
in the current population.
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GP model parameters

parameter considered values

training set selection method TSS TSS1, TSS2 TSS3, TSS4
maximum distance rAmax 2

√
Qχ2(0.99,D), 4

√
Qχ2(0.99,D)

Nmax 10 · D, 15 · D, 20 · D
covariance function K KSE, Kν=3/2

Mat«ern , Kν=5/2
Mat«ern

Parameters of the GP surrogate models. The maximum distance rAmax is
derived using the Mahalanobis distance given by the covariance matrix σ2C.
Qχ2(0.99,D) is the 0.99-quantile of the χ2

D distribution, and therefore√
Qχ2(0.99,D) is the 0.99-quantile of the norm of a D-dimensional normal

distributed random vector.
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Gaussian process parameter settings – heatmap
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Ranking prediction error. Solid horizontal lines separate different TSS
methods TSS1–TSS4 (in that order), dashed lines separate sectors with
smaller and larger maximum distance rAmax. Three triples of settings within
each sector represent raising values of Nmax and three covariance functions
KSE, Kν=3/2

Mat«ern , Kν=5/2
Mat«ern within each triple.
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Testing framework
Black-Box Optimization Benchmarking (BBOB)
COmparing Continuous Optimisers (COCO)

24 artificial functions
different degree of separability, conditioning, modality or with or
without a global structure
testing sets defined for dimensions 2, 3, 5, 10, 20 (and 40:)
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Aggregated experimental results on BBOB
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Experimental results on BBOB (5 D)
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