Gaussian processes: surrogate models for continuous black-box optimization

Lukáš Bajer

MFF UK 04/2018

Contents

Optimization

- Continuous optimization
- Metaheuristics, black-box functions
- 2 Gaussian processes
 - Gaussian process prediction
 - Gaussian process covariance functions
- Ooubly trained Surrogate CMA-ES
 - CMA-ES
 - Doubly trained Surrogate CMA-ES
 - Experimental results

Continuous optimization Metaheuristics, black-box functions

Optimization

• optimization (minimization) is finding such $\mathbf{x}^{\star} \in \mathbb{R}^{n}$ that

$$f(\mathbf{x}^{\star}) = \min_{\forall \mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

• "near-optimal" solution is usually sufficient

Continuous white-box optimization

also known as numerical optimization methods

requirements:

- gradients: $\nabla f(\mathbf{x})$
 - ... can be approximated by finite difference approximations
- and sometimes also *Hessians*: $\nabla^2 f(\mathbf{x})$
- gradient descend (1st order)
- Newthon method (2nd order)
- Quasi-Newthon methods (2nd order approximated)
- trust-region, conjugate gradients

Continuous optimization Metaheuristics, black-box functions

1st order: gradient descend

• iterative steps in the direction of negative gradient

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \sigma \nabla f(\mathbf{x}^{(k)})$$

 σ – step size, usually changes every iteration, adapted, for example, using a *line search* along the gradient direction

source: (CC) Wikipedia

Continuous optimization Metaheuristics, black-box functions

2nd order: Newton's method

 take into account the second-order term of a Taylor expansion of f(x) around x^(k):

$$f(\mathbf{x}^{(k)} + \mathbf{h}) \approx q^{(k)}(\mathbf{h}) = f(\mathbf{x}^{(k)}) + \mathbf{h}^{\top} \nabla f^{(k)} + \frac{1}{2} \mathbf{h}^{\top} \left[\nabla^2 f^{(k)} \right] \mathbf{h}$$

the next iterate is then

$$\mathbf{x}^{(k+1)} = (\mathbf{x}^{(k)} + \mathbf{h}^{(k)})$$

where $\mathbf{h}^{(k)}$ minimizes $q^{(k)}(\mathbf{h})$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \gamma \left[\nabla^2 f^{(k)}\right]^{-1} \nabla f^{(k)}$$

Continuous optimization Metaheuristics, black-box functions

Quasi-Newton's methods

- Hessian matrix $\nabla^2 f^{(k)}$ is not computed, only iteratively approximated $B_{(k)}, B_{(k+1)}, \dots$
- Hessians' inverses are often calculated without inversions

BFGS

- the most successful for the last three decades
- independently discovered by 4 (!) people in 1970
 C. G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
- Hessian approximation updated via rank-two updates
- works even without derivatives (with finite differences)
- shown to behave well on a variety of (even multimodal) functions
- L-BFGS a popular memory-limited version (Nocedal, 1980)
- in every optimization package (Matlab, Python,...)

Other numerical optimization techniques

• quadratic approximations:

by far the most popular optimization technique

trust-region methods

- quadratic approximations around current point x^(k)
- minimizes the model within region of trust

NEWOUA, BOBYQA (J. D. Powell, 2004, 2009)

- construct the quadratic model using much fewer points than (n+1)(n+2)/2 using additional minimizing a norm
- that saves time and enhances performance

conjugate gradients

- do not approximate Hessians
- conjugate vectors a momentum guiding the search
- cheaper variant to quasi-Newton's methods

Continuous optimization Metaheuristics, black-box functions

Optimization of black-box functions

black-box functions

 only evaluation of the function value, no derivatives or gradients → no gradient methods available

• we consider continuous domain: $\mathbf{x} \in \mathbb{R}^n$

Optimization of empirical black-box functions

empirical function:

- assessing the function-value via an experiment (measuring, intensive calculation, evaluating a prototype)
- evaluating such functions are expensive (time and/or money)
- search cost \sim the number of function evaluations

Continuous optimization Metaheuristics, black-box functions

Metaheuristics

Metaheuristic

- optimization techniques finding sufficiently good solution
- treat the objective function as black-box
- sample a set of candidate solutions (search space often too large to be completely sampled)
- often nature-inspired
- particle/swarn optimization
- simulated annealing
- ...
- evolutionary computation (EA, GA, ES, ...)

EA's for empirical black-box optimization

what can help with decreasing the number of function evaluations:

- utilize already measured values

 (at least prevent measuring the same thing twice)
- learn the shape of the function landscape or learn the (global) gradient or step direction & size

source: (GNU) Wikipedia, author: Johann "nojhan" Dréo

Continuous optimization Metaheuristics, black-box functions

Model-based methods accelerating the convergence

several methods are used in order to **decrease** the number of objective function **evaluations** needed by EA's

- Bayesian optimization (EGO)
- Surrogate modelling

Continuous optimization Metaheuristics, black-box functions

Bayesian optimization

Bayesian optimizer

- suitable for very low budgets of *f*-evaluations ($\sim 10 \cdot D$)
- $\bullet~$ Gaussian processes used in the criterion $\mathcal{C}_{\mathcal{M}}$ most often
- existing algorithms: EGO (D. R. Jones, 1998), SPOT (T. Bartz-Beielstein, 2005), SMAC (F. Hutter, 2011) etc.

Surrogate modelling

Surrogate modelling

- technique which builds an approximating model of the fitness function landscape
- the model provides a cheap and fast, but also inaccurate replacement of the fitness function for part of the population
- inaccurate approximating model can deceive the optimizer

Gaussian process prediction Gaussian process covariance functions

Gaussian Process

GP is a stochastic approximation method based on Gaussian distributions

GP can express **uncertainty** of the prediction in a new point **x**: it gives a probability distribution of the output value

Gaussian process prediction Gaussian process covariance functions

Gaussian Process

Gaussian Process

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its

- mean function $m(\mathbf{x}) = \mathsf{E}[f_{GP}(\mathbf{x})]$
- covariance function $cov(\mathbf{x}_i, \mathbf{x}_j) = cov(f_{GP}(\mathbf{x}_1), f_{GP}(\mathbf{x}_2))$ and we write the Gaussian process as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), cov(\mathbf{x}, \mathbf{x})).$$

(Rasmussen, Williams, 2006)

Gaussian process prediction Gaussian process covariance functions

Gaussian Process

• given a set of *N* training points $\mathbf{X}_N = (\mathbf{x}_1 \dots \mathbf{x}_N)^\top$, $\mathbf{x}_i \in \mathbb{R}^d$, and measured values $\mathbf{y}_N = (y_1, \dots, y_N)^\top$ of a function *f* being approximated

$$y_i = f(\mathbf{x}_i), \quad i = 1, \ldots, N$$

GP considers vector of these function values as a sample from *N*-variate Gaussian distribution

$$\mathbf{y}_N \sim \mathbf{N}(\mathbf{0}, \mathbf{C}_N)$$

Gaussian process prediction Gaussian process covariance functions

Gaussian Process prior distribution

Draws from Gaussian processes prior for three different covariance functions K_{SE} , $K_{\text{Matern}}^{\nu=3/2}$, $K_{\text{Matern}}^{\nu=5/2}$ (in that order), all of them with the parameters $\ell = 1$ and $\sigma_f^2 = 1$ without noise

Gaussian Process prediction (posterior)

Making predictions

Let C_{N+1} be extended covariance matrix – extended by entries belonging to an unseen point (\mathbf{x}, y^*) . Because \mathbf{y}_N is known and the inverse C_{N+1}^{-1} can be expressed using inverse of the training covariance C_N^{-1} ,

the density in a new point marginalize to 1D Gaussian density

$$p(y^* | \mathbf{X}_{N+1}, \mathbf{y}_N) \propto \exp\left(-\frac{1}{2} \frac{(y^* - \hat{y}_{N+1})^2}{s_{y_{N+1}}^2}\right)$$

where
the mean \hat{y}_{N+1} and the
variance $s_{y_{N+1}}^2$
is easily expressible from
 \mathbf{C}_N^{-1} and \mathbf{y}_N .

Gaussian process prediction Gaussian process covariance functions

Gaussian Process prediction (posterior)

Graphs of Gaussian processes prediction N = 2, 3, 4 training data. (+) – training set, thick line – mean prediction, thin lines – three draws from the GP posterior (without noise). Predictions \hat{y}^* and $\pm 2\hat{s}^*$ are generated for 101 points, computationally stable as the matrix inversion only for the *training* covariace C_N .

Gaussian Process covariance

The covariance matrix \mathbb{C}_N is determined by the covariance function $cov(\mathbf{x}_i, \mathbf{x}_j)$ which is defined on pairs from the input space

$$(\mathbf{C})_{ij} = cov(\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{x}_{i,j} \in \mathbb{R}^d$$

expressing the degree of correlations between two points' values; typically decreasing functions on two points distance

Gaussian process prediction Gaussian process covariance functions

Gaussian Process covariance

The most frequent covariance function is squared-exponential

$$(\mathbf{K})_{ij} = cov^{\mathrm{SE}}(\mathbf{x}_i, \mathbf{x}_j) = \theta \exp\left(\frac{-1}{2\ell^2}(\mathbf{x}_i - \mathbf{x}_j)^\top (\mathbf{x}_i - \mathbf{x}_j)\right)$$

with the parameters (usually fitted by MLE)

- θ signal variance (scales the correlation)
- ℓ characteristic length scale

Gaussian process prediction Gaussian process covariance functions

Gaussian Process covariance

Another usual option in data-minig applications is *Matérn covariance*, which is for $r = (\mathbf{x}_i - \mathbf{x}_j)$

$$(\mathbf{K})_{ij} = cov_{\nu=5/2}^{\text{Matern}}(r) = \theta \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2}\right) \exp\left(-\frac{\sqrt{5}r}{\ell}\right)$$

with the parameters (same as for squared exponential)

- θ signal variance
- ℓ characteristic length scale

Gaussian process prediction Gaussian process covariance functions

Gaussian Process covariance

source: (Rasmussen and Williams, 2006)

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Stochastic search of Evolutionary algorithms

Stochastic black box search

initilize distribution parameters θ set population size $\lambda \in \mathbb{N}$ while not terminate

- **1** sample distribution $P(\mathbf{x}|\theta) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 evaluate $\mathbf{x}_1, \ldots, \mathbf{x}_{\lambda}$ on f
- **3** update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

- schema of most of the evolutionary strategies (and EDA algorithms)
- as well as CMA-ES (Covariance Matrix Adaptation ES)

 current state of the art in continuous optimization

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

The CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_{λ} appropriately

while not terminate

- 2 $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$ where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Covariance matrix adaptation

- eigenvectors of the covariance matrix C are the principle components the principle axes of the mutation ellipsoid
- CMA-ES learns and updates a new Mahalanobis metric
- successively approximates the inverse Hessian on quadratic functions
 - transforms ellipsoid function into sphere function
 - it somehow holds for other functions, too (up to some degree)

Is the CMA-ES the best for everything?

- CMA-ES is state-of-the-art optimization algorithm, especially for rugged and ill-conditioned objective functions
- however, not the fastest if we can afford only very few objective function evaluations
- what we have already seen: use a surrogate model!
- however, original evaluated solutions are available only along the search path
- solution: construct local surrogate models

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Doubly trained Surrogate CMA-ES

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Doubly trained Surrogate CMA-ES

- sample a new population of size λ (standard CMA-ES offspring),
- 2 train the *first* surrogate model on the original-evaluated points from the archive A,
- Select [αλ] point(s) wrt. a criterion C, which is based on the *first* model's prediction,
- evaluate these point(s) with the original fitness,
- re-train the surrogate model also using these new point(s), and
- predict the fitness for the non-original evaluated points with this second model.

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

• GP predictive mean

$$\mathcal{C}_{\mathsf{M}}(\mathbf{x}) = -\,\hat{y}(\mathbf{x})$$

• GP predictive standard deviation

 $\mathcal{C}_{\mathsf{STD}}(\mathbf{x}) = \hat{s}(\mathbf{x})$

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

Expected improvement (EI). y_{min} – the minimum so-far fitness

$$\begin{aligned} \mathcal{C}_{\mathsf{EI}}(\mathbf{x}) &= E((y_{\mathsf{min}} - \hat{f}(\mathbf{x}))I(\hat{f}(\mathbf{x}) < y_{\mathsf{min}}) \mid y_1, \dots, y_N) \,, \text{ where} \\ I(f(\mathbf{x}) < y_{\mathsf{min}}) &= \begin{cases} 1 & \text{for } \hat{f}(\mathbf{x}) < y_{\mathsf{min}} \\ 0 & \text{for } \hat{f}(\mathbf{x}) \geq y_{\mathsf{min}} \end{cases} \end{aligned}$$

 Probability of improvement (PoI). the probability of finding lower fitness than some threshold T

$$\mathcal{C}_{\mathsf{Pol}}(\mathbf{x},T) = P(f(\mathbf{x}) \le T \mid y_1,\ldots,y_N) = \Phi\left(\frac{T - \hat{y}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)$$

where Φ is the CDF of $\mathcal{N}(0,1),$ $T=y_{\min}$ or a slightly higher value

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

The \log_{10} of the median best *f*-value distances to the benchmarks' optima were scaled linearly to [-8, 0] for each COCO function.

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

GP model training

trainModel($\mathcal{A}, N_{\max}, TSS, r_{\max}^{\mathcal{A}}, K, \sigma^{(g)}, \mathbf{C}^{(g)}, \mathbf{n}^{(g)}$)

- $(\mathbf{X}_N, \mathbf{y}_N) \leftarrow$ select at most N_{max} points from the archive \mathcal{A} using *TSS* and $r_{max}^{\mathcal{A}}$
- $\mathbf{X}_N \leftarrow \text{transform the selected points into the } (\sigma^{(g)})^2 \mathbf{C}^{(g)}$ basis with the origin at $\mathbf{m}^{(g)}$

 $\mathbf{y}_N \leftarrow \text{standardize the } f\text{-values in } \mathbf{y}_N \text{ to zero mean and unit variance} (m_\mu, \sigma_f^2, \ell, \sigma_n) \leftarrow \text{ fit the hyperparameters of } \mu(\mathbf{x}) \text{ and } K \text{ using ML}$ estimation

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Training set selection

- TSS1 taking up to N_{max} most recently evaluated points
- TSS2 selecting the union of the k nearest neighbors of every point for which the fitness should be predicted, where k is maximal such that the total number of selected points does not exceed N_{max},
- TSS3 clustering the points in the input space into N_{max} clusters and taking the points nearest to clusters' centroids
- TSS4 selecting N_{max} points which are closest to any point in the current population.

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

GP model parameters

parameter	considered values
training set selection method TSS	TSS1, TSS2 TSS3, TSS4
maximum distance $r_{\max}^{\mathcal{A}}$	$2\sqrt{Q_{\chi^2}(0.99,D)}, 4\sqrt{Q_{\chi^2}(0.99,D)}$
N _{max}	$10 \cdot D$, $15 \cdot D$, $20 \cdot D$
covariance function K	$K_{\rm SE}, K_{\rm Matern}^{\nu=3/2}, K_{\rm Matern}^{\nu=5/2}$

Parameters of the GP surrogate models. The maximum distance $r_{\text{max}}^{\mathcal{A}}$ is derived using the Mahalanobis distance given by the covariance matrix $\sigma^2 \mathbb{C}$. $Q_{\chi^2}(0.99, D)$ is the 0.99-quantile of the χ_D^2 distribution, and therefore $\sqrt{Q_{\chi^2}(0.99, D)}$ is the 0.99-quantile of the norm of a *D*-dimensional normal distributed random vector.

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Gaussian process parameter settings – heatmap

Lukáš Bajer

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Testing framework

Black-Box Optimization Benchmarking (BBOB) COmparing Continuous Optimisers (COCO)

- 24 artificial functions
- different degree of separability, conditioning, modality or with or without a global structure
- testing sets defined for dimensions 2, 3, 5, 10, 20 (and 40:)

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

Aggregated experimental results on BBOB

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

CMA-ES Doubly trained Surrogate CMA-ES Experimental results

