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Introduction: topics of my research

Evolutionary Algorithms: Adaptation of parameters

Evolutionary Algorithms: Cooperation (parallel) models

Applied statistics methods
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Global optimisation problem

objective function f : Ω→ R, Ω ⊆ RD, D is the dimension
of the task

global minimum is a point x∗, which satisfies:
∀x ∈ Ω: f (x∗) ≤ f (x)

search space is usually bounded Ω:
Ω = [a1,b1]× [a2,b2]× . . .× [aD,bD], aj < bj , j = 1,2, . . . ,D

goal of an optimisation process is to search for a solution
x∗
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Global and local extrema
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Methods used in optimisation

Optimisation methods

Traditional (analyt.)
-Lin. program.

-Nonlin. program.
-Newton. methods
-Gradient. methods

. . .

Heuristics

Stochastic

One solution
-Simul. annealing
-Random search

. . .

Population
(Evolutionary)

algorithms

PSO
SOMA

Bee
Bat
Fly

Cuckoo
. . .

DE GA ES CRS

Deterministic
-Tabu-search

. . .
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Variants of objective functions

differentiable objective function

separable objective function

multimodal objective function

continuous objective function

constrained objective function
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Bound-constrained continuous test functions

test functions enable to evaluate and compare various
optimisation methods

the goal is also to indicate poor optimisation methods

the difficulty of test problems is given by their complexity,
dimensionality and unbounded search space

dimensionality of the scalable problems is not restricted
(typically from D = 1 to D = 1000)

known true solutions of the test problems enable to
evaluate the success or reliability of methods
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Example: function Bukin n.6

Bukin function n.6 - multimodal, non-separable, non-scalable:

f (x) = 100
√
|x2 − 0.01x2

1 |+ 0.01|x1 + 10|,
x1 ∈ [−15,−5], x2 ∈ [−3,3].
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Test functions from competitions

there are many sets of functions for competitions:

bound-constrained, unconstrained, feasible
conditioned (constrained), multi-objective, etc.

some sets are overlapped

beside ‘artificial’ test functions, there is a set of 22
selected real-world problems (CEC 2011)

true solutions of CEC 2011 functions (minimisation) are
not known

Q: ‘Which set is the best to evaluate new methods?’
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Congress on evolutionary competitions (CEC)

CEC’05 - Real parameter single objective
CEC’06 - Constrained real parameter single objective
CEC’07 - Real-parameter MOEAs
CEC’08 - Large scale single objective with bound constraints
CEC’09 - Dynamic optimisation (composition functions)
CEC’09 - Real-parameter MOEAs
CEC’10 - Large-scale single objective with bound constraints
CEC’10 - Constrained real parameter single objective
CEC’10 - Niching scalable test problems
CEC’11 - Real-world numerical problems
CEC’13 - Real parameter single objective
CEC’14 - Real parameter single objective (2 scenarios)
CEC’14 - Dynamic MOEA benchmark problems
CEC’15 - Real parameter single objective (3 scenarios)
CEC’16 - Real parameter single objective (4 scenarios)
CEC’17 - Real parameter single objective (3 scenarios)
CEC’18 - Real parameter single objective (3 scenarios)
CEC’19 - 100-digit challenge on single objective
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Black-box optimisation competition: BBComp

benchmark D problems maxFES
BBComp2015: CEC 2 - 64 1000 100 D2

GECCO 2 - 64 1000 10 D - 100 D
BBComp2016: 1OBJ 2 - 64 1000 100 D2

1OBJ-expensive 2 - 64 1000 10 D - 100 D
2OBJ 2 - 64 1000 1000 D

2OBJ-expensive 2 - 64 1000 10 D - 100 D
3OBJ 2 - 64 1000 1000 D

BBComp2017: 1OBJ 2 - 64 1000 100 D2

1OBJ-expensive 2 - 64 1000 10 D - 100 D
2OBJ 2 - 64 1000 1000 D

2OBJ-expensive 2 - 64 1000 10 D - 100 D
3OBJ 2 - 64 1000 1000 D

BBComp2018: 1OBJ 2 - 64 1000 100 D2

1OBJ-expensive 2 - 64 1000 10 D - 100 D
2OBJ 2 - 64 1000 1000 D

2OBJ-expensive 2 - 64 1000 10 D - 100 D
3OBJ 2 - 64 1000 1000 D

BBComp2019: 1OBJ 2 - 64 1000 100 D2

1OBJ-expensive 2 - 64 1000 10 D - 100 D
2OBJ 2 - 64 1000 1000 D

2OBJ-expensive 2 - 64 1000 10 D - 100 D
3OBJ 2 - 64 1000 1000 D
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Example: CEC 2014 test problems

30 functions of four kinds of difficulty:

unimodal - simple functions with one extremum

multimodal - functions contain many extrema

hybrid - functions approximate of real problems

composed - complex functions composed of several
functions

the search space is bounded (box-constrained),
Ω = [−100, 100]D

the functions are scalable for D = 2, 10, 30, 50, 100
(restricted by rotation matrices)

the search process is limited: FES ≤ 10000× D

the accuracy of found solution is evaluated by
error = fmin − f ∗, error < 1× 10−8 is a good solution
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CEC 2014 multimodal test problem

shifted and rotated Ackley function - multimodal, non-separable:
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CEC 2014 multimodal test problem

shifted and rotated Weierstrass function - multimodal,
non-separable, differentiable only on a set of points:
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CEC 2014 multimodal test problem

shifted and rotated Katsuura function - multimodal,
non-separable, non-differentiable:
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CEC 2014 composition test problem

composed of five functions - multimodal, non-separable,
asymmetrical:
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Discrete (combinatorial) problems

search space Ω is not continuous

values of variables (x) are from a finite set

popular combinatorial problems are:

searching of the path in a graph

travelling salesman problem

time scheduling

knapsack problem, etc.
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TSP problem solved by GA, n = 500 and n = 1000
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Constrained (continuous) optimisation problems

objective function f : Ω→ RD is constrained into feasible
area(s):

a) gi (x) ≤ 0, i = 1, 2, . . .p
b) hj (x) = 0, j = p + 1, p + 2, . . .m

global minimum (maximum) of the objective function, x∗, is
located in a feasible area defined by constraints
possible criterion is average violation of constraints:

v̄ =

∑p
i=1 Gi(x) +

∑m
j=p+1 Hj(x)

m
Gi(x) = gi(x), for gi(x) > 0, otherwise Gi(x) = 0
Hj(x) = |hj(x)|, for |hj(x)| − ε > 0,
otherwise Hj(x) = 0
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Constrained optimisation problems: example
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Constrained optimisation problems

Possible ways to solve constraints problems:

only information about acceptance of the solution is
provided (located in feasible area)

combination of the objective function value f and penalty
criterion v̄ (multi-objective approach)

penalty criterion v̄ and objective function value f are
used independently

penalty criterion v̄ is used as an objective function
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Multi-objective optimisation problems

called ‘multicriteria decision making’ or Pareto front

more than one objective function that are to be minimized
(or maximized)

the solution is a set of results that define the best
compromise between problem objectives

for M objective functions:

fm(x), m = 1, 2, . . . , M

Pareto front is defined by non-dominated (Pareto efficient)
points
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Pareto front: example
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Real-world optimisation problems

the main goal of the development of optimisation methods
is their application on a real problem

each real problem is represented by an objective function
(with restricted conditions)

a set of 22 real-world problems of CEC 2011 competition
enables to identify a good optimisation method

the set includes:
9 bound-constrained problems
12 constrained problems (equality, inequality)
1 unconstrained problem

all problems are minimisation, true solution is not known
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Estimation of parameters in nonlinear regression

Tvrdík, J., Křivý, I., Mišík, L.: Adaptive population-based
search: Application to estimation of nonlinear regression
parameters, Computational Statistics & Data Analysis 52
(2007) 713-724

additive nonlinear regression:

Yi = g(x i , β) + εi , i = 1, . 2, . . . ,n

estimation of parameters β by minimisation (least
squares):

Q(β) =
n∑

i=1

[Yi − g(x i , β)]2

Q(β) could be a multimodal optimisation problem
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Estimation of parameters in nonlinear regression
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Estimation of parameters in nonlinear regression

27 non-linear regression data sets (NIST)

standard gradient-based methods are compared with
proposed competitive CRS

two proposed competitive CRS variants use four various
strategies

both CRS algorithms are more reliable compared with
deterministic approach in all of 27 problems

no CRS method needs tuning and they are not dependent
on starting positions
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Differential Evolution and optimal clustering

Tvrdík, J., Křivý, I.: Hybrid differential evolution algorithm
for optimal clustering, Applied Soft Computing 35 (2015)
502-512

optimal partitioning of n data objects (defined by p
variables) to k clusters is solved:

i v1 v2 . . . vp class
1 z11 z12 . . . z1p 2
2 z21 z22 . . . z2p 5
...

...
...

...
...

...
n zn1 zn2 . . . znp 2
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Differential Evolution and optimal clustering

count of possible partitions:

S(n, k) =
1
k !

k∑
l=1

(−1)k−l
(

k
l

)
ln

n k S(n, k)

10 2 511
20 4 4.52E+010

100 5 7.89E+069
200 20 6.60E+241

criterion to be minimized is TRW = tr(W ):

W =
k∑

l=1

W l

where W l is variance matrix of attributes for the objects
belonging to cluster Cl , l = 1, 2, . . . , k
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Differential Evolution and optimal clustering

three variants of DE algorithm (DE, jDE, b6e6rl) were
applied and compared with k -means, (N = 30)

eight various real-world data sets are used as a
benchmark

n : 150− 871, p : 3− 34, k : 2− 6

k -means algorithm is more efficient than DE-based
methods in some easier problems of the benchmark

the proposed approach is applicable in any arbitrary
DE-based algorithm
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Comparison of nature-inspired algorithms

Bujok, P., Tvrdík, J., Poláková, R.: Comparison of
nature-inspired population-based algorithms on continuous
optimisation problems, Swarm and Evolutionary
Computation 50 (2019) DOI:10.1016/j.swevo.2019.01.006

many ‘new’ optimisation methods are proposed each year
(especially nature-based ones)

often, poor existing methods and simple test problems are
used in the comparison

advanced adaptive methods are developed to perform
well on various optimisation problems

the main goal of the study is to answer the question:
‘How do very often applied Nature-inspired methods
perform in comparison with advanced DE variants?’
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Nature-inspired algorithms in comparison

1. ABC (artificial bee colony, 2009) is controlled by limit= N

y(j) = P(i , j) + (P(i , j)− P(k , j)) · U(−1,1)

2. Bat algorithm (2009), frequencies fmax = 2, fmax = 0,
loudness Ai = 1.2 is reduced for unsuccessful individuals
by α = 0.9, emission rate ri = 0.1 is for successful
individuals increased by γ = 0.9

3. Cuckoo search (2009), probability to put a Cuckoo’s egg
into a host nest is pa = 0.25, Lévy flight parameter is
λ = 1.5

4. ACS-CS (Adaptive Cuckoo Search, 2016) is an enhanced
variant of CS with pa = 0.25
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Nature-inspired algorithms in comparison

5. DFO (dispersive flies optimisation, 2014) is controlled by a
disturbance threshold, dt = 1× 10−3

6. Firelfy algorithm (2008), randomisation α = 0.5, light
absorption γ = 1, and attractiveness is updated between
β0 = 1 and βmin = 0.2

7. Flower Pollination Algorithm (2012) enables to switch
between local and global optimisation (p = 0.8), Lé
vy flight parameter is λ = 1.5

8. MBO (Monarch Butterfly Optimisation, 2015), elitism
parameter keep= 2, MaxStepSize= 1,
seasonalPeriod= 1.2, and proportion of the first
sub-population part= 5/12
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Nature-inspired algorithms in comparison

9. PSO (Particle Swarm Optimisation, 1998), variation w is
linearly interpolated from wmax = 1 to wmin = 0.3, local and
global velocity weight is c = 1.05

10. HFPSO (Hybrid Firefly and PSO algorithm, 2018) uses
parameters for both original methods - α = 0.2, β0 = 2,
γ = 1, and c1 = c2 = 1.49

11. SOMA (Self-Organising Migration Algorithm, 2000) has
parameters strategy (all-to-one), and parameters
PathLength= 2, Step= 0.11, and Prt= 0.1

(blind) Random Search (RS, 1963) was incorporated in the
comparison as a reference to indicated poor methods
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Differential Evolution algorithm variants

1. classic DE (1997) DE/randrl/1/bin, F = 0.8, CR = 0.8

2. CoBiDE (2014) uses covariance-matrix-based crossover
and bimodal distribution of {F , CR}, peig= 0.4 and
ps= 0.5

3. L-SHADE (2014) uses current-to-pbest mutation, archive
A and linearly decreased population size

4. SHADE4 (2016) is SHADE with competition of four DE
strategies (current-to-pbest - randrl/1, binomial -
exponential) based on their success

5. jSO (2017) is improved L-SHADE version with weighted
mutation (second best algorithm in CEC 2017)
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Experiments - CEC 2014

test and real-world optimisation problems were used to
indicate the difference between the efficiency of
algorithms

the set of artificial problems CEC 2014 contains 30
problems in four classes of difficulty: unimodal (3),
multimodal (13), hybrid (6), and composition (8)

three dimensions of the search space were used:
D = 10, 30, 50

for each algorithm and problem, 51 independent runs
were carried out

the error value of each run is computed,
error = f (x∗)− fmin
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Experiments - CEC 2011

22 real-world optimisation problems from CEC 2011
competition were used as the second benchmark set

dimensionality of the problems is 1 ≤ D ≤ 240

a true solution is not known, a lower function value is
better

for each method and problem, 25 independent runs were
carried out

the minimal function value is recorded in three stages of
each run, FES =50,000, 100,000, 150,000
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Mean ranks from the Friedman tests (CEC 2014)

D, Alg. jSO LSHA CoBi SHA4 Firefly ACS-CS Cuckoo ABC

D=10 3 4.1 3.6 3.7 7.4 7.6 6.8 8.4
D=30 2.1 3 3.9 4.2 6.7 7 7.4 8.3
D=50 2.3 3.2 4.2 4.1 5.9 7.3 8.6 7.1

avg 2.5 3.5 3.9 4 6.7 7.3 7.6 7.9

Flower HFPSO SOMA DE08 PSO MBO DFO RS Bat

7.9 9.5 8.9 9.5 11.3 14 15.1 15.2 16.9
9 8.6 9.1 10.3 11.9 13.9 15.3 15.6 16.9

9.1 8 8.9 10.8 11.8 14 15.3 15.5 16.9

8.7 8.7 9 10.2 11.7 14 15.2 15.4 16.9
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Counts of shared best positions from the
Kruskal-Wallis tests (CEC 2014)

D jSO LSHA CoBi SHA4 Firefly ACS-CS Cuckoo Flower

10 22 13 15 17 7 4 4 4
30 25 21 15 11 8 5 4 1
50 23 20 9 10 6 2 0 0

Σ 70 54 39 38 21 11 8 5

PSO HFPSO ABC DE08 SOMA MBO DFO RS Bat

2 2 2 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0

4 4 3 2 1 0 0 0 0
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Counts of shared worst positions from the Friedman
tests (CEC 2014)

D jSO LSHA CoBi SHA4 Firefly ACS-CS Cuckoo Flower

10 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0

Σ 0 0 0 0 0 0 0 0

PSO HFPSO ABC DE08 SOMA MBO DFO RS Bat

0 0 1 3 0 4 23 25 30
0 0 0 2 0 4 20 24 30
0 0 0 1 0 4 15 26 30

0 0 1 6 0 12 58 75 90
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Mean ranks from the Friedman tests (CEC 2011)

FES jSO LSHA SHA4 CoBi Cuckoo HFPSO Flower SOMA

50,000 7.5 8.3 2.3 5.9 5.5 5.5 6.8 6.7
100,000 4.8 7.1 2.8 5.9 6.3 6.3 6.9 7.2
150,000 2.8 3.5 3.8 6.1 6.9 7.0 7.6 7.9

ACS-CS ABC DE08 PSO MBO DFO RS Firefly Bat

7 8.9 10.6 8.7 11.9 13.9 14.6 14.1 14.7
7.6 8.9 9.8 8.8 12.6 13.8 14.5 14.7 15
8.3 9.1 9.6 9.7 12.7 13.9 14.1 14.9 15
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Counts of shared best and worst positions from the
Friedman tests (CEC 2011)

posit jSO SHA4 LSHA CoBi HFPSO PSO Cuckoo DE08

best 18 16 15 6 5 5 3 2
worst 0 0 0 0 1 1 0 2

Flower ABC SOMA ACS-CS MBO DFO RS Bat Firefly

1 1 0 0 0 0 0 0 0
0 1 0 1 7 15 16 17 17
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Differences of mean ranks from the Friedman tests

Alg Firefly CoBi PSO Bat HFPSO DFO MBO RS
diff 8.2 2.2 -2 -1.9 -1.7 -1.3 -1.3 -1.3

ABC Flower ACS-CS SOMA Cuckoo DE08 jSO SHA4 LSHA
1.2 -1.1 1 -1 -0.7 -0.6 0.3 -0.2 0
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Conclusion

different performance of 17 stochastic optimisation
methods on artificial and real-world problems
(No-Free-Lunch theorem)

advanced nature-inspired methods achieved acceptable
results, mostly simple variants are used in applications

the difference in mean ranks of Firefly algorithm is
surprising

the worst performing Bat algorithm is used in real
applications

published nature-inspired methods are often ‘recycled’
versions of existing algorithms

good results of a new method on artificial problems do not
guarantee good results in real application
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Separable functions

Feoktistov, V.: Differential Evolution In Search of Solutions
(2006)

function f of D variables is separable when:

∂f (X )

∂xi
= g(xi) · h(X ), X = (x1, x2, . . . , xD),

function f (X ) = (x2
1 + x2

2 )2 is not separable

first derivation of f (X ) is
∂f (X )

∂x1
= 4x1 · (x2

1 + x2
2 ), x1 = 0
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