Test and real-world optimisation problems

Petr Bujok

University of Ostrava Faculty of Science Department of Informatics and Computers Czech Republic

petr.bujok@osu.cz

Seminar of machine learning and modelling

Outline

- Test functions
- 3 Real optimisation problems
- 4 Real-world and artificial problems
- 5 Results of experiment

6 Conclusion

Introduction: topics of my research

- Evolutionary Algorithms: Adaptation of parameters
- Evolutionary Algorithms: Cooperation (parallel) models
- Applied statistics methods

Global optimisation problem

- objective function $f: \Omega \to \mathbb{R}, \Omega \subseteq \mathbb{R}^{D}, D$ is the dimension of the task
- global minimum is a point \boldsymbol{x}^* , which satisfies: $\forall \boldsymbol{x} \in \Omega$: $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$
- search space is usually bounded Ω : $\Omega = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_D, b_D], a_j < b_j, j = 1, 2, \ldots, D$
- goal of an optimisation process is to search for a solution *x**

Global and local extrema

Methods used in optimisation

Variants of objective functions

- differentiable objective function
- separable objective function
- multimodal objective function
- continuous objective function
- constrained objective function

Bound-constrained continuous test functions

- test functions enable to evaluate and compare various optimisation methods
- the goal is also to indicate **poor** optimisation methods
- the difficulty of test problems is given by their complexity, dimensionality and unbounded search space
- dimensionality of the **scalable** problems is not restricted (typically from D = 1 to D = 1000)
- known true solutions of the test problems enable to evaluate the success or reliability of methods

Example: function Bukin n.6

Bukin function n.6 - multimodal, non-separable, non-scalable: $f(\mathbf{x}) = 100\sqrt{|x_2 - 0.01x_1^2|} + 0.01|x_1 + 10|,$ $x_1 \in [-15, -5], x_2 \in [-3, 3].$ Plot of Bukin function n.6

Test functions from competitions

- there are many sets of functions for **competitions**:
- bound-constrained, unconstrained, feasible conditioned (constrained), multi-objective, etc.
- some sets are overlapped
- beside 'artificial' test functions, there is a set of 22 selected real-world problems (CEC 2011)
- true solutions of CEC 2011 functions (minimisation) are not known
- Q: 'Which set is the best to evaluate new methods?'

Congress on evolutionary competitions (CEC)

CEC'05 - Real parameter single objective CEC'06 - Constrained real parameter single objective CEC'07 - Real-parameter MOEAs CEC'08 - Large scale single objective with bound constraints CEC'09 - Dynamic optimisation (composition functions) CEC'09 - Real-parameter MOEAs CEC'10 - Large-scale single objective with bound constraints CEC'10 - Constrained real parameter single objective CEC'10 - Niching scalable test problems CEC'11 - Real-world numerical problems CEC'13 - Real parameter single objective CEC'14 - Real parameter single objective (2 scenarios) CEC'14 - Dynamic MOEA benchmark problems CEC'15 - Real parameter single objective (3 scenarios) CEC'16 - Real parameter single objective (4 scenarios) CEC'17 - Real parameter single objective (3 scenarios) CEC'18 - Real parameter single objective (3 scenarios) CEC'19 - 100-digit challenge on single objective

Black-box optimisation competition: BBComp

benchmark	D	problems	maxFES
BBComp2015: CEC	2 - 64	1000	100 D ²
GECCO	2 - 64	1000	10 D - 100 D
BBComp2016: 1OBJ	2 - 64	1000	100 D ²
10BJ-expensive	2 - 64	1000	10 D - 100 D
2OBJ	2 - 64	1000	1000 D
2OBJ-expensive	2 - 64	1000	10 D - 100 D
3OBJ	2 - 64	1000	1000 D
BBComp2017: 1OBJ	2 - 64	1000	100 D ²
10BJ-expensive	2 - 64	1000	10 D - 100 D
2OBJ	2 - 64	1000	1000 D
2OBJ-expensive	2 - 64	1000	10 D - 100 D
3OBJ	2 - 64	1000	1000 D
BBComp2018: 1OBJ	2 - 64	1000	100 D ²
10BJ-expensive	2 - 64	1000	10 D - 100 D
2OBJ	2 - 64	1000	1000 D
2OBJ-expensive	2 - 64	1000	10 D - 100 D
3OBJ	2 - 64	1000	1000 D
BBComp2019: 1OBJ	2 - 64	1000	100 D ²
10BJ-expensive	2 - 64	1000	10 D - 100 D
2OBJ	2 - 64	1000	1000 D
2OBJ-expensive	2 - 64	1000	10 D - 100 D
30BJ	2 - 64	1000	1000 D

Example: CEC 2014 test problems

- 30 functions of four kinds of difficulty:
 - unimodal simple functions with one extremum
 - multimodal functions contain many extrema
 - hybrid functions approximate of real problems
 - composed complex functions composed of several functions
- the search space is **bounded** (box-constrained), $\Omega = [-100, \ 100]^D$
- the functions are **scalable** for D = 2, 10, 30, 50, 100 (restricted by rotation matrices)
- the search process is **limited**: $FES \le 10000 \times D$
- the **accuracy** of found solution is evaluated by $error = f_{\min} - f^*$, $error < 1 \times 10^{-8}$ is a **good** solution

CEC 2014 multimodal test problem

shifted and rotated Ackley function - multimodal, non-separable:

CEC 2014 multimodal test problem

shifted and rotated Weierstrass function - multimodal, non-separable, differentiable only on a set of points:

CEC 2014 multimodal test problem

shifted and rotated Katsuura function - multimodal, non-separable, non-differentiable:

CEC 2014 composition test problem

composed of five functions - multimodal, non-separable, asymmetrical:

Discrete (combinatorial) problems

- search space Ω is not continuous
- values of variables (x) are from a finite set
- popular combinatorial problems are:
 - searching of the path in a graph
 - travelling salesman problem
 - time scheduling
 - knapsack problem, etc.

TSP problem solved by GA, n = 500 and n = 1000

Constrained (continuous) optimisation problems

objective function f : Ω → ℝ^D is constrained into feasible area(s):

a)
$$g_i(\mathbf{x}) \leq 0, \ i = 1, \ 2, \dots p$$

•

b)
$$h_j(\mathbf{x}) = 0, \ j = p + 1, \ p + 2, \dots m$$

- global minimum (maximum) of the objective function, *x**, is located in a *feasible* area defined by *constraints*
- possible criterion is average violation of constraints:

$$\begin{split} \bar{\boldsymbol{v}} &= \frac{\sum_{i=1}^{p} G_i(\boldsymbol{x}) + \sum_{j=p+1}^{m} H_j(\boldsymbol{x})}{m} \\ G_i(\boldsymbol{x}) &= g_i(\boldsymbol{x}), \quad \text{for} \quad g_i(\boldsymbol{x}) > 0, \quad \text{otherwise} \quad G_i(\boldsymbol{x}) = 0 \\ H_j(\boldsymbol{x}) &= |h_j(\boldsymbol{x})|, \quad \text{for} \quad |h_j(\boldsymbol{x})| - \varepsilon > 0, \\ \text{otherwise} \quad H_j(\boldsymbol{x}) &= 0 \end{split}$$

Constrained optimisation problems: example

Possible ways to solve constraints problems:

- only information about acceptance of the solution is provided (located in feasible area)
- **combination** of the objective function value f and penalty criterion \bar{v} (multi-objective approach)
- penalty criterion \bar{v} and objective function value f are used independently
- **penalty** criterion \bar{v} is used as an **objective** function

Multi-objective optimisation problems

- called 'multicriteria decision making' or Pareto front
- more than one objective function that are to be minimized (or maximized)
- the solution is a set of results that define the best compromise between problem objectives
- for *M* objective functions:

$$f_m(\mathbf{x}), \quad m = 1, 2, ..., M$$

 Pareto front is defined by non-dominated (Pareto efficient) points

Pareto front: example

Real-world optimisation problems

- the main goal of the development of optimisation methods is their application on a real problem
- each real problem is represented by an objective function (with restricted conditions)
- a set of 22 real-world problems of CEC 2011 competition enables to identify a good optimisation method
- the set includes:
 - 9 bound-constrained problems
 - 12 constrained problems (equality, inequality)
 - 1 unconstrained problem

• all problems are minimisation, true solution is not known

Estimation of parameters in nonlinear regression

- Tvrdík, J., Křivý, I., Mišík, L.: Adaptive population-based search: Application to estimation of nonlinear regression parameters, *Computational Statistics & Data Analysis* 52 (2007) 713-724
- additive nonlinear regression:

$$Y_i = g(\mathbf{x}_i, \ \boldsymbol{\beta}) + \varepsilon_i, \quad i = 1, .2, ..., n$$

estimation of parameters β by minimisation (least squares):

$$Q(eta) = \sum_{i=1}^{n} [Y_i - g(\mathbf{x}_i, \ eta)]^2$$

• $Q(\beta)$ could be a **multimodal** optimisation problem

Estimation of parameters in nonlinear regression

Estimation of parameters in nonlinear regression

- 27 non-linear regression data sets (NIST)
- standard gradient-based methods are compared with proposed competitive CRS
- two proposed competitive CRS variants use four various strategies
- both CRS algorithms are more reliable compared with deterministic approach in all of 27 problems
- no CRS method needs tuning and they are not dependent on starting positions

Differential Evolution and optimal clustering

- Tvrdík, J., Křivý, I.: Hybrid differential evolution algorithm for optimal clustering, *Applied Soft Computing* 35 (2015) 502-512
- **optimal partitioning** of *n* data objects (defined by *p* variables) to *k* clusters is solved:

i	<i>V</i> 1	<i>V</i> 2		Vp	class
1	Z ₁₁	Z ₁₂		Z _{1p}	2
2	Z ₂₁	Z ₂₂		Z _{2p}	5
÷	:	÷	÷	:	÷
n	<i>Z</i> _{<i>n</i>1}	Z _{n2}		Z _{np}	2

Differential Evolution and optimal clustering

o count of possible partitions:

$$S(n, k) = \frac{1}{k!} \sum_{l=1}^{k} (-1)^{k-l} {\binom{k}{l}} l^{n}$$
$$\frac{n \quad k \quad S(n, k)}{10 \quad 2 \quad 511}$$
$$20 \quad 4 \quad 4.52E+010$$
$$100 \quad 5 \quad 7.89E+069$$
$$200 \quad 20 \quad 6.60E+241$$

• criterion to be **minimized** is TRW = tr(W):

$$\boldsymbol{W} = \sum_{l=1}^{k} \boldsymbol{W}_{l}$$

• where W_l is variance matrix of attributes for the objects belonging to cluster C_l , l = 1, 2, ..., k

Differential Evolution and optimal clustering

- three variants of **DE** algorithm (DE, jDE, b6e6rl) were applied and compared with *k*-means, (*N* = 30)
- eight various real-world data sets are used as a benchmark
- *n*: 150 871, *p*: 3 34, *k*: 2 6
- k-means algorithm is more efficient than DE-based methods in some easier problems of the benchmark
- the proposed approach is **applicable** in any arbitrary DE-based algorithm

Comparison of nature-inspired algorithms

- Bujok, P., Tvrdík, J., Poláková, R.: Comparison of nature-inspired population-based algorithms on continuous optimisation problems, *Swarm and Evolutionary Computation* **50** (2019) DOI:10.1016/j.swevo.2019.01.006
- many 'new' optimisation methods are proposed each year (especially nature-based ones)
- often, poor existing methods and simple test problems are used in the comparison
- advanced adaptive methods are developed to perform well on various optimisation problems
- the main goal of the study is to answer the question: 'How do very often applied Nature-inspired methods perform in comparison with advanced DE variants?'

Nature-inspired algorithms in comparison

1. **ABC** (artificial bee colony, 2009) is controlled by *limit* = N

 $y(j) = P(i,j) + (P(i,j) - P(k,j)) \cdot U(-1,1)$

- 2. Bat algorithm (2009), frequencies $f_{max} = 2$, $f_{max} = 0$, loudness $A_i = 1.2$ is reduced for unsuccessful individuals by $\alpha = 0.9$, emission rate $r_i = 0.1$ is for successful individuals increased by $\gamma = 0.9$
- 3. Cuckoo search (2009), probability to put a Cuckoo's egg into a host nest is pa = 0.25, Lévy flight parameter is $\lambda = 1.5$
- 4. **ACS-CS** (Adaptive Cuckoo Search, 2016) is an enhanced variant of CS with *pa* = 0.25

Nature-inspired algorithms in comparison

- 5. **DFO** (dispersive flies optimisation, 2014) is controlled by a disturbance threshold, $dt = 1 \times 10^{-3}$
- 6. **Firelfy** algorithm (2008), randomisation $\alpha = 0.5$, light absorption $\gamma = 1$, and attractiveness is updated between $\beta_0 = 1$ and $\beta_{min} = 0.2$
- 7. **Flower** Pollination Algorithm (2012) enables to switch between local and global optimisation (p = 0.8), Lé vy flight parameter is $\lambda = 1.5$
- MBO (Monarch Butterfly Optimisation, 2015), elitism parameter keep= 2, MaxStepSize= 1, seasonalPeriod= 1.2, and proportion of the first sub-population part= 5/12

Nature-inspired algorithms in comparison

- 9. **PSO** (Particle Swarm Optimisation, 1998), variation *w* is linearly interpolated from $w_{max} = 1$ to $w_{min} = 0.3$, local and global velocity weight is c = 1.05
- 10. **HFPSO** (Hybrid Firefly and PSO algorithm, 2018) uses parameters for both original methods - $\alpha = 0.2$, $\beta_0 = 2$, $\gamma = 1$, and $c_1 = c_2 = 1.49$
- 11. **SOMA** (Self-Organising Migration Algorithm, 2000) has parameters *strategy* (all-to-one), and parameters *PathLength*= 2, *Step*= 0.11, and *Prt*= 0.1
 - (blind) Random Search (RS, 1963) was incorporated in the comparison as a reference to indicated poor methods

Differential Evolution algorithm variants

- 1. classic DE (1997) DE/randrl/1/bin, F = 0.8, CR = 0.8
- 2. **CoBiDE** (2014) uses covariance-matrix-based crossover and bimodal distribution of $\{F, CR\}$, peig=0.4 and ps=0.5
- 3. **L-SHADE** (2014) uses current-to-*p*best mutation, archive *A* and linearly decreased population size
- SHADE4 (2016) is SHADE with competition of four DE strategies (current-to-*p*best - randrl/1, binomial exponential) based on their success
- 5. **jSO** (2017) is improved L-SHADE version with weighted mutation (second best algorithm in CEC 2017)

Experiments - CEC 2014

- test and real-world optimisation problems were used to indicate the difference between the efficiency of algorithms
- the set of artificial problems CEC 2014 contains 30 problems in four classes of difficulty: unimodal (3), multimodal (13), hybrid (6), and composition (8)
- three **dimensions** of the search space were used: D = 10, 30, 50
- for each algorithm and problem, 51 independent runs were carried out
- the error value of each run is computed, error = f(x*) - f_{min}

Experiments - CEC 2011

- 22 real-world optimisation problems from CEC 2011 competition were used as the second benchmark set
- **dimensionality** of the problems is $1 \le D \le 240$
- a true solution is **not known**, a lower function value is better
- for each method and problem, 25 independent runs were carried out
- the minimal function value is recorded in three stages of each run, FES =50,000, 100,000, 150,000

Mean ranks from the Friedman tests (CEC 2014)

D, Alg.	jSO	LSHA	CoBi	SHA4	Firefly	ACS-CS	Cuckoo	ABC
D=10	3	4.1	3.6	3.7	7.4	7.6	6.8	8.4
D=30	<u>2.1</u>	3	<u>3.9</u>	4.2	6.7	7	7.4	8.3
D=50	<u>2.3</u>	3.2	4.2	<u>4.1</u>	5.9	7.3	8.6	7.1
avg	2.5	3.5	3.9	4	6.7	7.3	7.6	7.9
Flower	HFPSO	SOMA	DE08	PSO	MBO	DFO	RS	Bat
7.9	9.5	8.9	9.5	11.3	14	15.1	15.2	16.9
9	8.6	9.1	10.3	11.9	13.9	15.3	15.6	16.9
9.1	8	8.9	10.8	11.8	14	15.3	15.5	16.9
8.7	8.7	9	10.2	11.7	14	15.2	15.4	16.9

Counts of shared best positions from the Kruskal-Wallis tests (CEC 2014)

D	jSO	LSHA	CoBi	SHA4	Firefly	ACS-CS	Cuckoo	Flower
10	22	13	15	17	7	4	4	4
30	25	21	15	11	8	5	4	1
50	23	20	9	10	6	2	0	0
Σ	70	54	39	38	21	11	8	5
PSO	HFPSO	ABC	DE08	SOMA	MBO	DFO	RS	Bat
2	2	2	1	1	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0
4	4	3	2	1	0	0	0	0

Counts of shared worst positions from the Friedman tests (CEC 2014)

D	jSO	LSHA	CoBi	SHA4	Firefly	ACS-CS	Cuckoo	Flower
10	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0
Σ	0	0	0	0	0	0	0	0
PSO	HFPSO	ABC	DE08	SOMA	MBO	DFO	RS	Bat
0	0	1	3	0	4	23	25	30
0	0	0	2	0	4	20	24	30
0	0	0	1	0	4	15	26	30
0	0	1	6	0	12	58	75	90

Mean ranks from the Friedman tests (CEC 2011)

FES	jSO	LSHA	SHA4	CoBi	Cuckoo	HFPSO	Flower	SOMA
50,000	7.5	8.3	<u>2.3</u>	5.9	5.5	5.5	6.8	6.7
100,000	4.8	7.1	<u>2.8</u>	<u>5.9</u>	6.3	6.3	6.9	7.2
150,000	<u>2.8</u>	3.5	<u>3.8</u>	6.1	6.9	7.0	7.6	7.9
ACS-CS	ABC	DE08	PSO	MBO	DFO	RS	Firefly	Bat
7	8.9	10.6	8.7	11.9	13.9	14.6	14.1	14.7
7.6	8.9	9.8	8.8	12.6	13.8	14.5	14.7	15
8.3	9.1	9.6	9.7	12.7	13.9	14.1	14.9	15

Counts of shared best and worst positions from the Friedman tests (CEC 2011)

posit	jSO	SHA4	LSHA	CoBi	HFPSO	PSO	Cuckoo	DE08
best	18	16	15	6	5	5	3	2
worst	0	0	0	0	1	1	0	2
Flower	ABC	SOMA	ACS-CS	MBO	DFO	RS	Bat	Firefly
1	1	0	0	0	0	0	0	0
0	1	0	1	7	15	16	17	17

Differences of mean ranks from the Friedman tests

Alg	Firefly	CoBi	PSO	Bat	HFPSO	DFO	MBO	RS
diff	8.2	2.2	-2	-1.9	-1.7	-1.3	-1.3	-1.3
ABC	Flower	ACS-CS	SOMA	Cuckoo	DE08	jSO	SHA4	LSHA
1.2	-1.1	1	-1	-0.7	-0.6	0.3	-0.2	0

Conclusion

- different performance of 17 stochastic optimisation methods on artificial and real-world problems (No-Free-Lunch theorem)
- advanced nature-inspired methods achieved acceptable results, mostly simple variants are used in applications
- the difference in mean ranks of Firefly algorithm is surprising
- the worst performing Bat algorithm is used in real applications
- published nature-inspired methods are often 'recycled' versions of existing algorithms
- good results of a new method on artificial problems do not guarantee good results in real application

THANKS FOR YOUR ATTENTION

Separable functions

- Feoktistov, V.: Differential Evolution In Search of Solutions (2006)
- function *f* of *D* variables is separable when:

$$\frac{\partial f(X)}{\partial x_i} = g(x_i) \cdot h(X), \ X = (x_1, \ x_2, \ldots, \ x_D),$$

- function $f(X) = (x_1^2 + x_2^2)^2$ is not separable
- first derivation of f(X) is $\frac{\partial f(X)}{\partial x_1} = 4x_1 \cdot (x_1^2 + x_2^2), x_1 = 0$