

Distributed Bayesian Modelling

Kamil Dedecius

ÚTIA AV ČR, v.v.i. \& FIT ČVUT v Praze
14.10.2021

Motto 1\&2 instead of intro

Communication strategies

Diffusion strategy in some detail Adaptation and combination

Partially compatible knowledge

Features of Bayesian setting

Open problems

Examples

Further reading

Motto 1: Bayesianism is natural

Bayesian modelling is principally very similar to our thinking
prior opinion \& new observations \rightarrow posterior opinion

- opinion $=$ knowledge $=$ expectation $=\ldots$
- real life examples
- learning to bike
- learning to behave correctly
- problem solving in maths
- searching lost keys
- even learning to cheat

Motto 2: Two heads are better than one

American Psychological Association: Two (or More) Heads Are Better Than One for Reasoning and Perceptual Decision-Making. (Dec. 18, 2014)

However, because accuracy is often correlated with confidence, it may be that the most confident group member exerts the strongest influence regardless of whether their answer is right or wrong, and it just so happens that the most confident person is usually right.

... but we're not that far (yet)

Communication strategies

Fusion center

- oriented graph (tree)
- nodes gather observations
- FC responsible for info processing
- ... and may send results back
+ effective information processing
+ node malfunction can be detected
+ relatively flexible (node addition/removal)
+ simple COMM protocol

- SPoF at FC
- high COMM requirements at FC

Communication strategies

Incremental strategy

- oriented graph - Hamiltonian cycle
- nodes are equivalent
+ easy information processing
+ simple COMM protocol
- SPoF at each node (recovery is NP hard)
- info poisoning propagates further

Communication strategies

Consensus and diffusion

- more complex graph with higher node degrees
- no dedicated nodes, no FC
- COMM among neighbors within 1 edge distance
+ COMM requirements relatively OK
+ excellent redundancy (no SPoF)
+ excellent flexibility (node addition/removal)
+ node malfunctions (poisoning) detectable

- more complicated info processing

Communication strategies

Consensus

- multiple time scales
\rightarrow sensing step
\rightarrow information processing step
\rightarrow consensus iterations
- higher COMM reqs.
- higher processing reqs.
+ consensus reached

Diffusion

- single time scale
\rightarrow adaptation step
\rightarrow combination step
+ lower COMM reqs.
+ lower processing reqs.
- no consensus

Diffusion strategy

1. Adaptation step: observations are shared and incorporated into local knowledge.

Bayesian update @ node

prior opinion \& new observations \rightarrow posterior opinion
2. Combination step: posterior opinions are shared among neighbors.

> Information fusion @ node
several posterior opinions \rightarrow one opinion

Diffusion strategy

- Adaptation step: observations are shared and incorporated into local knowledge.

Bayesian update @ node

prior opinion \& new observations \rightarrow posterior opinion

$$
p(\theta \mid \text { observations }) \propto \mathcal{M}(\text { observations } \mid \theta) \times p(\theta)
$$

Diffusion strategy

- Combination step: posterior opinions are shared among neighbors.

Information fusion @ node

several posterior opinions \rightarrow one opinion

$$
\tilde{p}(\theta \mid \cdot)=\bigoplus_{i} p_{i}(\theta \mid \text { observations })
$$

Diffusion strategy - possible settings

Two possible protocols:

- ATC - Adapt-then-Combine
- CTA - Combine-then-Adapt
- + isolated A and C

Information weighting

- Equality of neighboring nodes
- Discrimination and preferences of nodes

Combination of opinions (knowledge)

Assume that we have two (prior, posterior...) opinions:

How to merge them correctly???

Combination of opinions (knowledge)

Assume that we have two (prior, posterior...) opinions:

How to merge them correctly???

Combination of opinions (knowledge)

Assume that we have two (prior, posterior...) opinions:

How to merge them correctly???

Combination of opinions (knowledge)

Kullback-Leibler divergence

Assume 2 pdfs p, q s.t. $q(x) \ll p(x)$. Then

$$
\mathcal{D}(p \| q)=\mathbb{E}_{p(x)}\left[\log \frac{p(x)}{q(x)}\right] d x=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

\mathcal{D} is a premetric (nonnegative, asymmetric, does not fulfill \triangle inequality).
Criterion to find the best approximating \tilde{p} :

$$
\min \frac{1}{n} \sum_{i} \mathcal{D}\left(p_{i} \| \tilde{p}\right) \Rightarrow \tilde{p}=\frac{1}{n} \sum_{i} p_{i} \quad \min \frac{1}{n} \sum_{i} \mathcal{D}\left(\tilde{p} \| p_{i}\right) \Rightarrow \tilde{p} \propto \prod_{i} p_{i}^{\frac{1}{n}}
$$

Partially compatible knowledge

How to detect that our nodes refer about the same process?

Partially compatible knowledge

How to detect that our nodes refer about the same process?

Measure dissimilarity

- distance (Euclidean)
- divergence (prob. manifold)

Common parameters?

- factorize posteriors (VB)
- marginalize (submodels in KF)

Features of Bayesian setting

+ Excellent explainability
+ Natural interpretation, works similarly to human thinking
+ "Absolute" generality: no special assumptions or concrete models
+ Many existing solutions are only special cases
- Perceived as "too complex/complicated"
- Single-problem-oriented solutions may be superior

Open problems

- Combination of predictions
- Partially compatible models
- ... and submodels
- ... and models of (generally) correlated processes
- Information weighting
- etc.

Example: Logistic regression

Bhatt and Dhall's skin-nonskin dataset:

- classes: skin, non-skin
- regressors: [1, B, G, R]
- 10,000 observations
- sequential classification \& learning

Example: Poisson process rate estimation

Simulated data, TV parameter:

- observations: Poisson variable
- 500 observations
- sequential estimation of time-varying rate

Example: Mixture estimation

Simulated data:

- observations from mix
- 1500 observations
- sequential estimation
- floating window: 50 obs.

Example: VBKF w/ unknown noise covs.

Simulated data:

- 2D trajectories, CVM
- sequential estimation
- est. of states and TV MNCM

$\log \operatorname{RMSE}\left(\left[x_{1}, t, x_{2, t}\right]\right)$

Further reading

- Collaborative sequential state estimation under unknown heterogeneous noise covariance matrices, IEEE Trans. Signal Process. 68(10), 2020.
- Sequential Poisson Regression in Diffusion Networks, IEEE Signal Process. Lett., 27(1), 2020.
- Factorized Estimation of Partially Shared Parameters in Diffusion Networks, IEEE Trans. Signal Process., 65(19), 2017.
- Sequential estimation and diffusion of information over networks: A Bayesian approach with exponential family of distributions, IEEE Trans. Signal Process., 65(7), 2017.

Collaboration is not a sin! :)

