Indirect Encodings of Artificial Neural Networks

Jan Drchal
drchajan@fel.cvut.cz

Overview

- Large-scale Artificial Neural Networks.
- Computational Development.
- Indirect Encodings of ANNs.
- Hyper-cube based encoding.
- Base algorithms.

Note: additional material including implementation details, sources, exact parameter settings and detailed results can be found here: http://neuron.felk.cvut.cz/~drchaj1

Evolving Large-scale ANNs

- 1000+ neurons (\& corresponding \# of links).
- Why to do that?
- Complex models,
- ability to process huge amount of inputs/ outputs without hand-coding features (i.e. pattern recognition)...

Direct Encoding

- Direct encoding \rightarrow each structural part (neuron/link) is represented by a dedicated gene.
phenotype
- Not suitable for Large-scale ANN's:

Direct optimization methods fail
\rightarrow the curse of dimensionality.

Indirect Encoding: the Way it Works in Nature

- Human genome $\rightarrow 20000$ - 25000 genes describing almost 100 billion neurons each linked to as many as 7000 others (plus the rest of organism!).
- We need some kind of compression:
\rightarrow indirect encoding.
- But we also need a regularity in data being compressed.
- Q: What are the regularities found in living organisms?

Symmetry

Imperfect Symmetry

Repetition with Variation

- Note that all these regularities
 happen at all scales of an organism.

How Are Organisms Built?

- Development from a single cell (zygote).
- Evolutionary Development "Evo-Devo".

The Cell

Genome:A Closer Look

- TATA box - marks the start of a gene
- (cis-)regulatory region - composed of binding sites.
- binding site - binds regulatory proteins \rightarrow gene activation/ inhibition
- product region - when gene is active a protein is produced:
- special: cell division, differentiation,
- regulatory: can bind to binding sites of other genes,
- structural.

Cell Divisions

- Program same for all cells.
- What differs?
- Regulatory

protein concentrations.
- Receptors - selectively pass regulatory proteins from inter-cellular space.
- Diffusion, decay, cell differentiation.
- Gene Regulatory Networks (GRNs).

How to Simulate Development?

- Cell program - ANN, FSM or other controller:
- inputs: binding sites,
- outputs: one for each gene \rightarrow gene activity.
- Physical simulation: diffusion, decay, receptors...
- Cell division:
- copy cell program from mother \rightarrow daughter cell,
- different concentrations for mother/daughter.
- This is called: Computational Development.

"French Flag" Organism

- Cell program evolved using Cartesian Genetic Programming (CGP).

CGP encoded adder

Fig. 4. Growth of fittest cell program from a white seed cell to a mature French flag (two chemicals)

Julian Francis Miller (2004):
Evolving a Self-Repairing, Self-Regulating, French Flag Organism

"French Flag" Organism II

Fig. 7. Autonomous recovery of badly damaged French flag organism conditions (blue and red regions killed at iteration 8 - see Fig. 4). There is no further change after iteration 20

Fig. 8. Autonomous recovery of French flag from randomly rearranged cells (French flag at iteration 8 - see Fig. 4). There is no further change after iteration 24

Indirect encodings of ANNs

- GRN-based
- Cellular Encoding
- Hypercube-based
- Other: rewriting rules, L-systems, ...

GRN-based

Peter Eggenberger-Hotz (1997):
Creation of Neural Networks Based on
Developmental and Evolutionary Principles
Peter Eggenberger-Hotz (2003):

Cellular Encoding (CE)

- I993, Fréderic Gruau: indirect encoding example.
- Inspiration in embryo-genesis (cell division and differentiation). Cells \rightarrow neurons.
- Program to "grow" ANN is represented by a tree (Genetic Programming).
- Operations: parallel/sequential divisions, connections change, change of weights/bias...

Cellular Encoding II

Cellular Encoding III

- May use operation which reads a sub-tree repeatedly \rightarrow evolved a network representing parity of arbitrary number of inputs.
- Allows ANNs of arbitrary size: neural module reuse.

Compositional Pattern Producing Networks (CPPNs)

- Stanley 2006.
- Can we create such regular patterns without development in time?
- We can ask a special function called CPPN, where the cells are, using absolute coordinates.

Regularities by CPPN

- Nature uses concentration gradients of regulatory proteins to determine position.
- CPPN is a composition of symmetric, periodic and other functions.

Regularities by CPPN II

- CPPN is a composition of symmetric, periodic and other functions.

output pattern

Name	Equation
Bipolar Sigmoid	$\frac{2}{1+e^{-4.9 x}}-1$
Linear	x
Gaussian	$e^{-2.5 x^{2}}$
Absolute value	$\|x\|$
Sine	$\sin (x)$
Cosine	$\cos (x)$

CPPNs in HyperNEAT

- Compositional and Pattern Producing Network (CPPN).
- CPPN is a composition of symmetric, periodic and other functions.
- In HyperNEAT it has a form of artificial neural network with heterogenous neuron types.

Picbreeder

- Interactive evolution of images.
- CPPN output: level of grey.
- CPPNs evolved using NEAT.
- http://picbreeder.org/

(a) Eye warped left

(b) Symmetric eye

(c) Eye warped right

Picbreeder II

arob
006010
$00-10$
00010
0000

Picbreeder:Space Ship

(a) 4 func., 17 conn. (b) 5 func., 24 conn. (c) 6 func., 25 conn. (d) 8 func., 28 conn.

(e) 8 func., 30 conn.
(f) 8 func., 31 conn.
(g) 8 func., 32 conn.
(h) 8 func., 34 conn.

(i) 8 func., 36 conn. (j) 9 func., 36 conn. (k) 9 func., 38 conn.

Endless Forms

- Similar approach in 3D.
- http://endlessforms.com

Hypercube-based Encoding

- Stanley 2007.
- Uses CPPNs in a similar way to Picbreeder: evolves connectivity patterns.
- Best known for HyperNEAT algorithm which evolves ANNs.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

> Substrate is a template for a possibly large-scale neural network.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.
All weights are
computed in a same
way...
substrate
decode weight values
(-1)
(1)

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

substrate

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

HyperNEAT

- Stanley et al. 2007: Hypercube-based encoding.

substrate

HyperNEAT vs. Standard Approaches

STANDARD

 APPROACH

HYPERNEAT

Types of Substrate?

- The list of neurons' coordinates along with possible connections between them.

Create or not Create a Link?

- Substrates are often fully connected \rightarrow lots of links \rightarrow computationally infeasible \rightarrow pruning is used.
- If CPPN outputs weights in range [-3;3] then
- links with weights <0.2 are not expressed,
- $>=0.2$ are scaled to magnitude between 0 and 3 .
\rightarrow when using this approach the final ANN is a sub-graph of a substrate.

Connectivity Patterns

- Patterns evolved using interactive evolution:

(a) Sym.
(b) Imperf.
(c) Repet.

(d) Var.

Spatial Representation

- HyperNEAT exploits spatial representation of a problem. The same happens in Nature:
- connection of eyes to brain hemispheres,
- similar things processed nearby.
- We have to assign coordinates.
- Does every problem have a reasonable spatial representation?
- It seams that most problems have. The others would not probably benefit from regularities in ANNs.

NEAT in HyperNEAT

- HyperNEAT uses a slightly modified NEAT (Stanley 200I) as a base algorithm to evolve CPPNs.
- NEAT is neuro-evolutionary algorithm able to evolve ANNs of arbitrary topologies.
- It is based on:

- complexification \rightarrow evolving gradually more complex ANNs,
- innovation numbers \rightarrow track structural innovations,
- niching \rightarrow allows simultaneous evolution of small and large ANNs in one population. Requires to define a distance measure for ANNs.

Visual Discrimination

- Visual targeting: distinguish the larger object.
- "Sandwich substrate".

(a) Sensor Field (object placement)

(b) 11×11 Target Field
(12,827 connections)

Source ($\mathrm{x}_{1}, \mathrm{y}_{1}$)

Jason J. Gauci and Kenneth O. Stanley (2007):

Visual Discrimination II: Scaling the Substrate

- The substrate density can be scaled using the same CPPN.
- The function of the final ANN is approximately preserved.
- We can train on small \rightarrow get large.

Visual Discrimination III: Scaling the Substrate

- An equivalent connectivity concept at different
- substrate resolutions.

Food Gathering Problem

- Range-finder sensors detect food.
- More food eaten \rightarrow higher fitness.
- Experiments with different sensor/effector placement exploiting geometric relationships with "outer world".

(a) Robot

(b) Parallel

(c) Concentric

David B. D'Ambrosio and Kenneth O. Stanley (2007)
A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry

Food Gathering Problem II

- Parallel worked better than Concentric because less computation is needed for CPPN.
- New CPPN inputs added: the distances
- ($x 1-x 2$) and ($y 1-y 2$)
- When CPPN is provided the distances, both work the same.

Checkers

- Comparison with classic NEAT.
- HyperNEAT is faster + generalizes.
- Single CPPN with multiple outputs.
- The output of the final net is a heuristic score for the minimax algorithm.

Jason Gauci and Kenneth O. Stanley (2008):
A Case Study on the Critical Role of Geometric Regularity in Machine Learning

COMPUTATIONAL
INTELLIGENCE

GROUP

HyperNEAT Coordinated Quadruped Gaits

- Simulation of four legged walker robot.
- Comparison with classic NEAT.
- Other experiments show that HyperNEAT can deal with random substrates.

Mobile Robot Navigation

- HyperNEAT/HyperGP for robot control.
- ViVAE Simulated 2D environment with rigid body physics.

Mobile Robot Navigation II

- Substrate uses polar coordinates.
- Input + I fully recurrent layer
- See VIDEO...

Mobile Robot Navigation III

- Obstacle avoidance.
- Object sensors added (two input layers)

$$
f=\frac{\text { distanceTravelled }}{\text { simulationSteps }+1}\left(1-\frac{\text { targetDistance }}{\text { initialDistance }}\right)
$$

Mobile Robot Navigation IV

Drchal, Koutník and Šnorek (2009):
HyperNEAT Controlled Robots Learn How to Drive on Roads in Simulated Environment

Buk, Koutnik and Šnorek (2009): NEAT in HyperNEAT Substituted with Genetic Programming

Drchal, Kapral', Koutnik and Šnorek (2009):
Combining Multiple Inputs in HyperNEAT Mobile Agent Controller

Base Algorithms for Hypercube-based Encoding

- The large-scale networks produced by HyperNEAT can be very slow to simulate...
- We need to reduce the number of fitness function evaluations as much as possible.
- Can we do better when NEAT is replaced by a different base algorithm?

What about Genetic Programming (GP)?

- Zdenek Buk and Jan Koutnik replaced NEAT in HyperNEAT by GP (2009).
- Experiments on a single domain shown that HyperGP outperforms HyperNEAT.
- Can we do even better?

Niching EA

- Originally methods to search all optima in multimodal domain.
- Used to propose diversity in population in order to avoid premature convergence.
- Population split into separate subpopulations of similar individuals.
- Distance measure is required.
niching EA

2012

GPEFS Overview

- Genetic Programming with Explicit Fitness Sharing (GPEFS).
- GPEFS is basically NEAT which evolves forests of trees using standard GP genetic operators.
- There is no complexification in GPEFS but niching is essential part which preserves diversity and prevents premature convergence.
- We do not employ crossover.
- The idea to combine GP and niching is not new but:
- the version of fitness sharing used in NEAT was not employed,
- we experiment with six distance measures (both our and already published),
- we focus on Hypercube-based indirectly encoded problems.

GPAT Overview

- We propose Genetic Programming of Augmenting Topologies (GPAT).
- GPAT is basically NEAT which evolves forests of trees.
- Uses complexification and niching (Explicit Fitness Sharing).
- We do not employ crossover.
- It is much simpler to design an efficient distance measure for trees than for neural networks: there is no need for innovation numbers.
- GPAT is general algorithm, here we focus on Hypercubebased indirectly encoded problems.

GPAT Genotypes

- GPAT evolves trees (forests) but:
- nodes have a variable arity,
- constants are stored in links (similar to synaptic weights of ANN).

GPEFS \& GPAT Results

- GPEFS and GPAT have similar performance.
- Significant improvement to GP and NEAT.

Q\&A

Additional Slides

GPEFS

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.
population to assign

start with the first individual

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Now continue with the second.

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Compute d(ㅇ,(2). If $d<\delta$ like here, make him a member.

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Because d(1),(3) $\geq \delta$ here,

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.

Assign Species

- Explicit Fitness Sharing as in NEAT.
- Species assigned according to distance d and threshold δ.
 so assign to niche 2.

NICHE 3

Search niche from the first to the last until sufficiently similar is found. If

GP, GPEFS \& NEAT Compared

GP, GPEFS \& NEAT Compared

GP, GPEFS \& NEAT Compared

COMPUTATIONAL
INTELLIGENCE
GROUP

GPEFS: Distance Measures

GPEFS: Distance Measures

GPEFS: Distance Measures

GPEFS: Distance Measures

Generalized Measure Parameters

Generalized Measure Parameters

GPAT

NEAT, GP \& GPAT Compared

COMPUTATIONAL
INTELLIGENCE
GROUP

NEAT, GP \& GPAT Compared

NEAT, GP \& GPAT Compared

NEAT,GP \& GPAT Compared

Bit Reverse
COMPUTATIONAL
INTELLIGENCE
GROUP

NEAT,GP \& GPAT Compared

