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Computational Robotics Laboratory – Artificial Intelligence Center
� Robotic information gathering – build phenomena model using measurements collected by mobile robots
� Quality guarantee of the found solution (tight lower bound) and computationally efficient solutions
� Machine learning in online and lifelong learning scenarios (improving estimations/computational performance)

Computational Robotics
Laboratory (CRL)
https://comrob.fel.cvut.cz

� 10 phd students
� 2 technicians
� 15+ undergraduates
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Overview of the Lecture

� Multi-goal planning with curvature-constrained trajectories
� Dubins Vehicle Model
� Dubins Touring Problem (DTP)
� Dubins Traveling Salesman Problem (DTSP)
� Dubins Traveling Salesman Problem with Neighborhoods (DTSPN)
� Generalizations of the Dubins Vehicle Model

� Variable speed trajectories
� 3D Trajectories
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Motivation – Surveillance Missions with Aerial Vehicles
� Find curvature-constrained path/trajectory to collect the most valuable measurements with

shortest possible path/time or under limited travel budget.

� We need curvature-constrained trajectory to fit motion constraints of the vehicles.
� Limited turning radius needs to reason on how the vehicle approaches the goal locations.
� For routing problems limited travel budget, we need realistic estimation of the travel cost.
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Challenges of Multi-goal Curvature-constrained Path/Trajectory Planning
� The problem of visiting a set of targets is multi-goal planning problem that includes
combinatorial optimization to find the best sequence of visits to the targets.

� Routing problem formulated as the Traveling Salesman Problem (TSP).
� The quality of the sequence needs to be evaluted as a cost of the multi-goal path/trajectory.
� The multi-goal path/trajectory needs to respect motion constraints, such as limited turning radius.

� A high number of possible sequences is expected to be examined in route planning, therefore, the evaluation of
the sequence quality should be computationally efficient (the multi-goal trajectory planning).

� We can also ask for tight lower bounds on the optimal solution value of the multi-goal trajectory.
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Dubins Vehicle
� Non-holonomic vehicle such as car-like or aircraft can be modeled as the Dubins vehicle:

� Constant forward velocity;
� Limited minimal turning radius ρ;
� Vehicle state is represented by a triplet q = (x , y , θ), where
� Position is (x , y) ∈ R2, vehicle heading is θ ∈ S2, and thus q ∈ SE (2).

The vehicle motion can be described by the
equation ẋ

ẏ

θ̇

 = v

 cos θ
sin θ

u
ρ

 , |u| ≤ 1,

where u is the control input.

x0

θ(x, y,    )

θ

y
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Optimal (Point-to-Point) Maneuvers for Dubins Vehicle
� For two states q1 ∈ SE (2) and q2 ∈ SE (2) in the environment without obstacles W = R2, the

optimal path connecting q1 with q2 can be characterized as one of two main types
� CCC type: LRL, RLR;

� CSC type: LSL, LSR, RSL, RSR;

where S – straight line arc, C – circular arc
oriented to left (L) or right (R).
L. E. Dubins (1957) – American Journal of Mathematics

Markov-Dubins Path – A.A.Markov (1887) optimal path problem solved by Dubins using a number of con-
structive geometric arguments. It can also be solved by the Pontryagin’s maximum principle.

� The optimal paths are called Dubins maneuvers.
� Constant velocity: v(t) = v and turning radius ρ (path vs. trajectory).
� Six types of trajectories connecting any configuration in SE (2). (Without obstacles)
� The control u is according to C and S type one of three possible values u ∈ {−1, 0, 1}.

� Headings are not prescribed and the routing problems are formulated as
� Dubins Traveling Salesman Problem (with Neighborhoods) (DTSP(N));
� Dubins Orienteering Problem (with Neighborhoods).
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Challenges of Dubins Vehicle in Solving Dubins Routing Problems
� For the minimal turning radius ρ, the optimal path connecting

q1 ∈ SE (2) and q2 ∈ SE (2) can be found analytically.
L. E. Dubins (1957) – American Journal of Mathematics

� Two types of optimal Dubins maneuvers: CSC and CCC.
� The length of the optimal maneuver L has a closed-form solution.

Can be computed in less than 0.5µs.
� It is piecewise-continuous function;
� (continuous for ‖(p1, p2)‖ > 4ρ).

p2 θ2

p1

θ1
RSR maneuver

d
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Dubins Traveling Salesman Problem (DTSP)
� Determine (closed) shortest Dubins path visiting each pi ∈ R2

of the given set of n locations P = {p1, . . . ,pn}.
1. Permutation Σ = (σ1, . . . , σn) of visits (sequencing).

Combinatorial optimization
2. Headings Θ = {θσ1 , θσ2 , . . . , θσn}, θi ∈ [0, 2π), for pσi ∈ P.

Continuous optimization

� DTSP is an optimization problem over all possible sequences
Σ and headings Θ at the states (qσ1

,qσ2
, . . . ,qσn

) such that
qσi

= (pσi
, θσi ), pσi

∈ P

minimize Σ,Θ

n−1∑
i=1

L(qσi
,qσi+1

) + L(qσn
,qσ1

)

subject to q i = (pi , θi ) i = 1, . . . , n,

where L(qσi
,qσj

) is the length of Dubins path between qσi

and qσj
.

The continuous domain of the heading angles is similar to the regions in the TSPN-like problem formulations.
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Approaches to the Dubins Traveling Salesman Problem

� The key difficulty of the DTSP is that the trajectory
cost depends on

� Order of the visits to the locations;
� Headings at the goal locations.

We need the sequence to determine headings, but
headings may influence the sequence.

� The Dubins TSP is sequence-dependent problem.
� Two fundamental approaches can be used.

� Decoupled approach
1. Find sequence, e.g., using the Euclidean TSP.
2. Solve the continuous n-variables optimization for determining optimal headings, e.g., using discretization.

The problem is called Dubins Touring Problem (DTP).

� Transformation approach (sampling-based) approach – sampling headings into discrete sets
of values and transforming the problem to a variant of the Generalized TSP.

Purely combinatorial optimization.
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Existing Approaches to the DTSP(N)
� Heuristic (decoupled & evolutionary) approaches

� Savla et al., 2005
� Ma and Castanon, 2006
� Macharet et al., 2011
� Macharet et al., 2012
� Ny et al., 2012
� Yu and Hang, 2012
� Macharet et al., 2013
� Zhant et al., 2014
� Macharet and Campost, 2014
� Váňa and Faigl, 2015
� Isaiah and Shima, 2015
� ...

� Sampling-based approaches
� Obermeyer, 2009
� Oberlin et al., 2010
� Macharet et al., 2016

� Decoupled approaches For a given sequence

� Convex optimization
� (Only if the locations are far

enough)
� Goac et al., 2013

� Lower bound for the DTSP
� Dubins Interval Problem (DIP)
� Manyam et al., 2016

� DIP-based inform sampling
� Váňa and Faigl, 2017

� Lower bound for the DTSPN
� Using Generalized DIP (GDIP)
� Váňa and Faigl, 2018, 2020
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Dubins Touring Problem – DTP

� For a sequence of the n waypoint locations P = (p1, . . . pn), pi ∈ R2, the Dubins Touring
Problem (DTP) stands to determine the optimal headings T = {θ1, . . . , θn} at the waypoints
qi such that

minimize T L(T ,P) =
n−1∑
i=1

L(qi , qi+1) + L(qn, q1)

subject to qi = (pi , θi ), θi ∈ [0, 2π), pi ∈ P,

where L(qi , qj) is the length of the Dubins
maneuver connecting qi with qj . 1

3

2

4

5

6

78

9

10

� The DTP is a continuous optimization problem.
� The term L(qn, q1) is for the closed tour, e.g., for the Dubins TSP.

The DTP can also be utilized for open paths such as the OP with Dubins vehicle.
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Sampling-based Solution of the DTP
� For a closed sequence of the waypoint locations

P = (p1, . . . , pn).

� We can sample possible heading values at each location i
into a discrete set of k headings, i.e., Θi = {θi1, . . . , θik}
and create a graph of all possible Dubins maneuvers.

p1

θ11

θ12

...
θ1k

p2

θ21

θ22

...
θ2k

p3

θ31

θ32

...
θ3k

pn

θn1

θn2

...
θnk

. . .

for all combinations

� For a set of heading samples, the optimal solution can
be found by a forward search of the graph in O(nk3).
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For open sequence we do not need to evalute all pos-
sible initial headings, and the complexity is O(nk2).

� The problem is to determine the
most suitable heading samples.
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Example of Heading Sampling – Uniform vs. Informed
Uniform sampling

1

4
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6 5

N = 224, Tcpu = 128 ms
L = 19.8, LU = 13.8

Informed sampling

1

4

3

2

7

6 5

N = 128, Tcpu = 76 ms
L = 14.4, LU = 14.2.

� N is the total number of samples, i.e., 32 samples per waypoint for uniform sampling.
� L is the length of the tour (blue) and LU is the lower bound (red) determined as a solution of

the Dubins Interval Problem (DIP).
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Dubins Interval Problem (DIP)
� Dubins Interval Problem (DIP) is a generalization of Dubins maneuvers to the shortest path

connecting two points pi and pj .
� In the DIP, the leaving interval Θi at pi and the arrival interval Θj at pj are consider (not a

single heading value).
� The optimal solution can be found analytically. Manyam et al. (2015)

RSR maneuver

� Solution of the DIP is a tight lower bound for the DTP.
� Solution of the DIP is not a feasible solution of the DTP.

Notice, for Θi = Θj = 〈0, 2π) the optimal maneuver for DIP is a straight line segment.
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Lower Bound of the DTP

� For a discrete set of heading intervals H = {H1, . . . ,Hn}, where
Hi = {Θ1

i ,Θ
2
i , . . . ,Θ

ki
i }, a similar graph as for the DTP can be

constructed with the edge cost determined by the solution of the
associated DIP.
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1

Θ2
1

...
Θk1

1

H2

Θ1
2

Θ2
2

...
Θk2

2

H3

Θ1
3
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3

Hn

Θ1
n

Θ2
n

...

Θkn
n

. . .

for all combinations

� The forward search of the graph with dense samples provides a
tight lower bound of the DTP. Manyam and Rathinam, 2015
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Lower Bound and Feasible Solution of the DTP

� The arrival and departure angles may not be the same.
The lower bound solution is not a feasible solution of the DTP.

Feasible path

Lower bound

� DTP solution – use any particular heading of each interval in the lower bound solution.
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The DIP-based Sampling of Headings in the DTP
� Using heading intervals for a sequence of waypoints and a solution of the DIP, we can determine
lower bound of the DTP using the forward search graph as for the DTP.

� Relative optimality gap – the ratio of the lower bound and feasible solution of the DTP.
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Iteratively-Refined Informed Sampling (IRIS) of Headings in the DTP
� Iterative refinement of the heading intervals H

up to the angular resolution εreq.
� The angular resolution is gradually decreased

for the most promising intervals.
� refineDTP – divide the intervals of the lower

bound solution.
� solveDTP – solve DTP using the heading from

the refined intervals.

� It simultaneously provides feasible and lower
bound solutions of the DTP.

The lower bound provides a tight estimation of the
solution quality.

� The first solution is provided very quickly – any-time algorithm.

Algorithm 1: Iteratively-Refined Informed Sampling for the DTP
Input: P – Target locations to be visited
Input: εreq – Requested angular resolution
Input: αreq – Requested quality of the solution
Output: T – A tour visiting the targets
ε← 2π // initial angular resolution;
H ← createIntervals(P, ε) // initial intervals;
LL ← 0 // init lower bound;
LU ←∞ // init upper bound;
while ε > εreq and LU/LL > αreq do

ε← ε/2;
(H,LL)← refineDTP(P, ε,H);
(T ,LU)← solveDTP(P,H);

end
return T ;

Faigl, J., Váňa, P., Saska, M., Báča, T., and Spurný, V.: On solution of the Dubins touring problem, ECMR, 2017.
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Uniform vs Informed Sampling

ε = 2π/4, N = 28, TCPU= 8 ms
L = 27.9, LU = 13.2

ε = 2π/4, N = 21, TCPU= 8 ms
L = 29.9, LU = 13.2
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Uniform vs Informed Sampling

ε = 2π/8, N = 56, TCPU= 16 ms
L = 20.8, LU = 13.2

ε = 2π/8, N = 28, TCPU= 20 ms
L = 21.0, LU = 13.2
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Uniform vs Informed Sampling

ε = 2π/16, N = 112, TCPU= 40 ms
L = 20.3, LU = 13.5

ε = 2π/16, N = 35, TCPU= 24 ms
L = 20.1, LU = 13.5
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Uniform vs Informed Sampling

ε = 2π/32, N = 224, TCPU= 140 ms
L = 19.8, LU = 13.8

ε = 2π/32, N = 44, TCPU= 32 ms
L = 19.9, LU = 13.8
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Uniform vs Informed Sampling

ε = 2π/64, N = 448, TCPU= 456 ms
L = 14.5, LU = 14.5

ε = 2π/64, N = 51, TCPU= 48 ms
L = 19.9, LU = 13.9
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Uniform vs Informed Sampling

ε = 2π/128, N = 896, TCPU= 1620 ms
L = 14.5, LU = 14.5

ε = 2π/128, N = 70, TCPU= 60 ms
L = 14.8, LU = 14.1
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Uniform vs Informed Sampling

ε = 2π/256, N = 1792, TCPU= 6784 ms
L = 14.4, LU = 14.3

ε = 2π/256, N = 100, TCPU= 88 ms
L = 14.4, LU = 14.3
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Dubins Traveling Salesman Problem (DTSP)

� An optimization over all possible sequences Σ and headings Θ.

minimize Σ,Θ

n−1∑
i=1

L(qσi
,qσi+1

) + L(qσn
,qσ1

)

subject to q i = (pi , θi ) i = 1, . . . , n,

� Decoupled approaches – determining a sequence (e.g., using the Euclidean TSP) and headings.
� Heuristic solution such as Alternating Algorithm (AA).
� High-quality solution of the Dubins Touring Problem (DTP) using lower bounds.

� Transformation (sampling-based) approaches – transform the DTSP to the Generalized TSP.
� Direct methods – solve both optimization problems together:

� Evolutionary (memetic) algorithms, unsupervised learning;
� combinatorial metaheuristic with continuous optimization of the underlying DTP.
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Alternating Algorithm (AA) – Decoupled Solution of the DTSP

Alternating Algorithm (AA) provides a solution of the DTSP for an even number of
targets n. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for Dubins’vehicle,

IEE American Control Conference, 2005.

1. Solve the related Euclidean TSP.
Relaxed motion constraints

2. Establish headings for even edges us-
ing straight line segments.

3. Determine optimal maneuvers for odd
edges using the analytical form for
Dubins maneuvers.

Headings are known.
Solution of the ETSP

p2

p3

p5

p1

p4

p6
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Example of Solution Quality of the DTSP
� Decoupled approaches use a single sequence found as a solution of the Euclidean TSP (ETSP):

� AA – Alternating Algorithm (Savla et al., 2005);
� LIO – Local Iterative Optimization (a variant of hill-climbing) (Váňa & Faigl, 2015); , Memetic – Zhang et al., 2014).

� Direct optimization of the sequence and headings
� Memetic – Evolutionary method with continuous optimization (Zhang et al., 2014).
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� Decoupled approach with high-quality solution of the DTP (based on lower bounds) provides
competitive solutions to the direct method that also optimizes possible sequences.
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Exploiting High-Quality Solution of the DTP for Solving the DTSP
� Motivation: Can we learn a surrogate model for quick assessment of sequence quality?

� Training data based on high-quality solutions of the
DTP enabled by the DIP (lower bounds).

� Learn a surrogate model (e.g., multi-layer perceptron).
� Generalization for arbitrary long sequences using sub-

sequences of the defined size.
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� A lower bound value of the optimal solution cost of the sequences Σ is estimated using estimates
of the overlapping sub-sequences with the window of the size w : C̃w (Σ) = 1

w

∑n
i=1 C (Σw ,i ).

� Learned Windowing Surrogate Model (WiSM) can quickly assess any sequence of
points as a solution cost of the corresponding Dubins Touring Problem.
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WiSM: Windowing Surrogate Model for Solving the DTSP
� Use standard genetic operators with tournament selection and OX1 crossover method.
� The population is evaluated using learned surrogate model based on multi-layer perceptron.
� The surrogate model estimates solution cost of candidate sequences (instances of the DTP).
� Massive speedup of the evaluation yields improved solutions and scalability.
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Drchal, J., Váňa, P., and Faigl, J.: WiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours with
Dubins vehicle, IEEE Transactions on Cybernetics, 2020.
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Dubins Traveling Salesman Problem with Neighborhoods
� In surveillance planning, we can save the travel cost by ex-

ploiting non-zero sensing range.
� The problem is to visit a set of regions G = {R1, . . . ,Rn},

where for each region Ri , we have to determine a particular
point of the visit pi ∈ Ri and the DTSP becomes the Du-
bins Traveling Salesman Problem with Neighborhoods
(DTSPN).

� DTSPN is an optimization problem over all permutations Σ, headings Θ = {θσ1 , . . . , θσn} and
points P = (pσ1 , . . . , pσn) for the states (qσ1 , . . . , qσn) such that qσi = (pσi , θσi ) and pσi ∈ Rσi :

minimize Σ,Θ,P

n−1∑
i=1

L(qσi , qσi+1) + L(qσn , qσ1)

subject to qi = (pi , θi ), pi ∈ Ri i = 1, . . . , n.

� L(qσi , qσj ) is the length of the Dubins maneuver connecting qσi and qσj .
In addition to Σ and headings Θ, waypoint locations P have to be determined.
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Existing Approaches to the DTSPN

� Decoupled approaches using the sequence of visits to the regions
found as a solution of the Euclidean TSP(N);

� Sampling-based transformation to the GTSP.
� Sampled locations, each sample with sampled possible headings.

� Decoupled sampling-based – for a given sequence, construct the
search graph.
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� Soft-computing techniques such as memetic algorithms.
� Unsupervised learning techniques.
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Decoupled Approach to the DTSPN using Local Iterative Optimization
� For a given sequence, the solution of the DTSPN is

continuous optimization of 2n variables, each from
the interval [0, 2π).

� pi can be parametrized as a point on the bounday of
the region Ri as a parameter α ∈ [0, 1) measuring a
normalized distance on the boundary of Ri .

� Hill-climbing local optimization on heading value θi
and waypoint pi of visits to the region Ri .

� The multi-variable optimization is treated indepen-
denly for each particular variable θi and αi .

� Performs “relatively good” but without any solution
quality estimates.

Algorithm 2: Local Iterative Optimization (LIO) for
the DTSPN
Data: Input sequence of the goal regions

G = (Rσ1 , . . . ,Rσn), for the permutation Σ
Result: Waypoints (qσ1 , . . . , qn), qi = (pi , θi ),

pi ∈ δRi

initialization() // random assignment of qi ∈ δRi ;
while global solution is improving do

for every Ri ∈ G do
θi := optimizeHeadingLocally(θi );
αi := optimizePositionLocally(αi );
qi := checkLocalMinima(αi , θi );

end
end

Váňa, P. and Faigl, J.: On the Dubins Traveling Salesman Problem with Neighborhoods, IROS, 2015, pp. 4029–4034.

� Can we assess the solution quality based on the lower bound estimates?
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Lower Bound for the DTSP with Neighborhoods
Generalized Dubins Interval Problem

� In the DTSPN, we need to determine the headings and also the waypoint locations.
� The Dubins Interval Problem (DIP) is not sufficient to provide tight lower-bound.

� Generalized Dubins Interval Problem (GDIP) can be utilized for the DTSPN
similarly as the DIP for the DTSP.

Váňa and Faigl: Optimal Solution of the Generalized Dubins Interval Problem, RSS 2018, best student paper finalist.
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Generalized Dubins Interval Problem (GDIP)
� Determine the shortest Dubins maneuver connecting Pi and Pj given the angle intervals θi ∈

[θmin
i , θmax

i ] and θj ∈ [θmin
j , θmax

j ].
Full problem (GDIP)

RSR maneuver

⇒

One-side version (OS-GDIP)

RSR maneuver

� Optimal solution – Closed-form expressions for (1–6) and convex optimization (7).

1) S type 2) CS type 3) Cψ type

7) CCψ type

4) CSC type 5) CSC type 6) CCψC type

Average computational time

Problem Time [µs] Ratio

Dubins maneuver 0.4 1.0
DIP 1.1 3.0
GDIP 5.4 14.5

https://github.com/comrob/gdip

Váňa, P. and Faigl, J.: Optimal Solution of the Generalized Dubins Interval Problem Finding the Shortest
Curvature-constrained Path Through a Set of Regions, Autonomous Robots, 44(7):1359-1376, 2020.
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GDIP-based Informed Sampling for the DTSPN
� Iterative refinement of the neighborhood samples and heading samples.

Computational complexity of the solutions grows approximately as O(nk1.8).
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Optimal Solutions of the DTSP and DTSPN
� Lower bounds based on the DIP and GDIP provide lower bounds on the DTSP and DTSPN

with a given sequence of visits to the target locations (regions).
� Lower bounds on the Dubins Touring Problem improve the solutions of the original problems,

the space of possible sequences is not searched.
� Denser sampling in sampling-based methods would yield a better solution, but it is demanding.
� A quick assessment of the sequence quality can speed up finding the optimal sequence.
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Faigl, J., Váňa, P., and Drchal, J.: Fast Sequence Rejection for Multi-Goal Planning with Dubins Vehicle,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 6773–6780.

� Lower bounds can be used for bounding in the Branch-and-Bound to the DTSP(N).
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Multi-radius Dubins Path
� Dubins vehicle with different initial and final radii.
� Closed-form expression exists.

Computational requirements are competitive to the Dubins path

� Time-optimal trajectory is determined as optimization
of the turning radii (speed). Larger radius → faster speed.

Speed up ratio compared to the regular Dubins path (yellow faster).

Dubins path (RSR type)

q1 q2

Multi-radius Dubins path (RSR type)

q1
q2

Kučerová, K., Váňa, P., and Faigl, J.: On Finding Time-efficient Trajectories for Fixed-wing Aircraft Using
Dubins Paths with Multiple Radii, 35th Annual ACM Symposium on Applied Computing, 2020, pp. 829–831.
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Multi-point Path and the Variable-Speed TSP (VS-TSP)
� Determine the fastest tour visiting a given se-

quence of locations by exploiting variable turn-
ing radii using multi-radius Dubins path.

� Accelerate on the straight segments.
� Connection speed discretized at the end-

points to allow feasible solution.

vmin vmax VS-TSP

q1
q2

q3

� Variable-Speed TSP with multi-radius
path as evaluation of possible sequences.

� Improving an initial solution found by the
cheapest insertion.

� Sequence search based on the Variable
Neighborhood Search (VNS) with fast
sequence rejection (IROS 2020).
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Influence of the Multi-radius Dubins path to the Variable-Speed TSP

� Sampling-based solution using the number of head-
ing samples k and the number of speed samples l .

� More samples lead to cost improvement despite
increasing computational difficulty.

� Depending on the density of locations, the vehicle
speed ranges from slowest to fastest.
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Kučerová, K., Váňa, P., and Faigl, J.: Variable-Speed Traveling Salesman Problem for Vehicles with Curvature
Constrained Trajectories, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

Jan Faigl, 2021 SUI, 2021-11-11: Curvature-constrained multi-goal trajectory planning 47 / 63



Motivation Dubins Vehicle Model and Routing Dubins Touring Problem (DTP) DTSP DTSPN VS-TSP 3D Trajectories Unsupervised Learning

Outline

Motivation

Dubins Vehicle Model and Routing

Dubins Touring Problem (DTP)

Dubins Traveling Salesman Problem (DTSP)

Dubins Traveling Salesman Problem with Neighborhoods (DTSPN)

Variable-speed TSP

3D Trajectories

Unsupervised Learning

Jan Faigl, 2021 SUI, 2021-11-11: Curvature-constrained multi-goal trajectory planning 48 / 63



Motivation Dubins Vehicle Model and Routing Dubins Touring Problem (DTP) DTSP DTSPN VS-TSP 3D Trajectories Unsupervised Learning

3D Dubins Path
� Determine the shortest 3D Dubins path for the

vehicle with the state q = (p, θ, ψ), p ∈ R3, and
heading θ and pitch ψ angles, θ, ψ ∈ S1

� The position of the vehicle can be described as

r =

ẋẏ
ż

 = v

cos θ cosψsin θ cosψ
sinψ

 .
� The vehicle path r : [0, 1]→ R3 is a curve from the class C1.
� Motion constraints are defined by the limited curvature κ(t) given by the minimum turning

radius ρmin and limited pitch angle ψ(t) ∈ [ψmin, ψmax].

κ(t) =
|ṙ(t)× r̈(t)|
|ṙ(t)|3 , κ(t) ≤ ρ−1

min

� A closed-form solution is not known and the generation of 3D trajectory is based on heuristic
and optimization methods using 2D Dubins maneuvers.
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Existing Approaches to 3D Trajectory Planning

� Geometrical approach (Hota et al., 2010)
Do not consider pitch angle constraint.

� Dubins Airplane model (Chitsaz et al., 2007)
Allows abrupt changes of pitch angle.

� Real-Time Dynamic Dubins-Helix (RDDH)
Dubins-helix part is utilized for large altitude differences.

(Wang et al., 2015)

� Decoupled approach using horizontal and
vertical 2D Dubins paths (Váňa et al., 2020)
Relatively fast computation (around 0.2ms).
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Decoupled Approach for 3D Trajectory Planning
� Computing horizontal and vertical parts separately using 2D Dubins paths, optimizing turning

radii to meet the curvature constraint, then combined into the final 3D Dubins path.
� Lower and upper bounds using vertical and horizontal radii. Upper bound found in units of µs.

� Less turns than the RDDH.
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Váňa, P., Neto, A., Faigl, J., and Macharet, D.: Minimal 3D Dubins Path with Bounded Curvature and Pitch Angle,
IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 8497-8503.
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Improving Decoupled Approach using Non-linear Optimization

� Decoupled approach is used to initialize non-linear optimization.
� The encoding of the solution using direction vectors improved per-

formance of the solver.

qI

qF

w1

w2

w3

w4

w5w6

X

0
5

10
15

20
25

30

Y

0

5

10

15

20

25

30

Z

5

10

15

20

25

30

35

Reference Solution

Optimization Result

Sampling

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0.85

0.90

0.95

1.00

1.05

1.10

R
el

at
iv

e
L
en

gt
h

s=20 s=60 s=100

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0

10

20

30

40

50

F
ai

l
R

at
e

[%
]

Decoupled
2D Dubins
Best

Herynek, J., Váňa, P., and Faigl, J.: Finding 3D Dubins Paths with Pitch Angle Constraint Using Non-linear
Optimization, European Conference on Mobile Robots (ECMR), 2021.

� Cost improvement is relatively small (about up to 5%).
� Proposed combined initialization decrease fail rate, but still not usable for multi-goal trajectory.
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3D Data Collection Planning with Dubins Airplane Model
� Dubins Airplane model with the vehicle state q =

(p, θ, ψ), p ∈ R3 and θ, ψ ∈ S1, with the forward
velocity v and control of the vehicle heading |uθ| ≤ 1.

ẋ
ẏ
ż

θ̇

 = v


cos θ cos ψ
sin θ cos ψ

sin ψ
uθρ

−1

 .
(Chitsaz et al., 2007)

� Pitch angle is not continuous (fast to compute).
� Waypoints can be parametrized as points on the 3D object boundary; we can employ LIO.
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Solutions of the 3D-DTSPN
Algorithm 4: LIO-based Solver for 3D-DTSPN

Data: Regions R
Result: Solution represented by Q and Σ
Σ ← getInitialSequence(R);
Q ← getInitialSolution(R,Σ);
while terminal condition do
Q ← optimizeHeadings(Q,R,Σ);
Q ← optimizeAlpha(Q,R,Σ);
Q ← optimizeBeta(Q,R,Σ);

end
return Q,Σ;

� Solutions based on LIO (ETSP+LIO), TSP with the travel cost according to Dubins Airplane Model (DAM-TSP+LIO), and sampling-based
approach with transformation of the GTSP to the ATSP solved by LKH.
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Váňa, P., Faigl, J., Sláma, J., and Pěnička, R.: Data collection planning with Dubins airplane model and limited travel budget
European Conference on Mobile Robots (ECMR), 2017.
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Growing Self-Organizing Array (GSOA)
� Growing Self-Organizing Array (GSOA) is generalization of the Self-Organizing Maps to

routing problems motivated by data collection planning, i.e., routing with neighborhoods.
� The GSOA is an array of nodes N = {ν1, . . . , νM} that evolves in the problem space using

unsupervised learning. The array adapts to each target s ∈ S (in a random order).
� For each target s a new winner node ν∗ can be determined together with the corresponding

sp, such that ‖(sp, s)‖ ≤ δ(s). It adaptively adjusts the number of nodes.

� The winner and its neighborhoods are adapted (moved) towards sp.
� N encodes the sequence of visits Σ to the targets together with the corresponding waypoints.
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GSOA – Winner Selection and Its Adaptation

� Selecting winner node ν∗ for s and its waypoint sp

νi

νi+1

s
ps

δ

*ν sp

� Winner adaptation

δ

ν*.spν*

νd=1
ν'd=1

δ

ν*.spν*

� For each s ∈ S , we create new node ν∗, and therefore, all not winning nodes are removed after
processing all locations in S (one learning epoch) to balance the number of nodes in the GSOA.

� After each learning epoch, the GSOA encodes a feasible solution of the CETSP.
� The power of adaptation is decreasing using a cooling schedule after each learning epoch.
� The GSOA converges to a stable solution in tens of epochs. Number of epochs can be set.

Faigl, J. (2018): GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem
and other routing problems. Neurocomputing 312: 120-134 (2018).
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GSOA Evolution in solving the 3D CETSP
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GSOA in Solution of Routing Problems (with Neighborhoods)

� The flexiblity of the GSOA allows solving various routing problems, e.g., Generalized TSP
with Neighborhoods and non-Euclidean variant such as the TSPN on Sphere.

Faigl, J., Deckerová, J., and Váňa, P.: Fast Heuristics for the 3D Multi-Goal Path Planning based on the Generalized
Traveling Salesman Problem with Neighborhoods, IEEE Robotics and Automation Letters, 4(3):2439–2446, 2019.

� Because N directly encodes the solution, the GDOA can address the OP with Neighborhoods.
Faigl, J.: On self-organizing maps for orienteering problems, International Joint Conference on Neural Networks (IJCNN),
2017, pp. 2611–2620.

� GSOA also allows solving problems with multiple vehicles.
Best, G., Faigl, J., and Fitch, R.: Online planning for multi-robot active perception with self-organising maps, Autonomous
Robots, 42(4):715–738, 2018.
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GSOA in Solution of Dubins Routing Problems
� A solution of the multi-vehicles Dubins Traveling Salesman Problem with Neighborhoods

in less than 0.2 s, for m vehicles and sensing range δ.
Faigl, J., Váňa, P., Pěnička, R., and Saska, M.: Unsupervised learning-based flexible framework for surveillance planning
with aerial vehicles, Journal of Field Robotics, 36(1):270–301, 2019.

� Solution of the Dubins Orienteering Problem with Neighborhoods in tens of seconds that
is about several magnitudes faster than using the VNS combinatorial metaheuristic.

Faigl, J. and Pěnička, R.: On close enough orienteering problem with Dubins vehicle, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 5646–5652.
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� Unsupervised learning can be considered as fast construction heuristic without formal solution
quality guarantee, yet flexible enough to solve complex practical problems.
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GSOA based Multi-goal Planning for Multi-rotor Aerial Vehicles
� Multi-rotor aerial vehicles can generally move in arbitrary direction.

� They are not limited by the minimal turning radius ρ, they can
accelerate on straight segments and decelerate before turning.

� Find a 3D smooth trajectory visiting a given set of 3D regions.
� Minimizes the Travel Time Estimation (TTE).
� Satisfies limited velocity and acceleration of the vehicle.

Velocity and acceleration profiles
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High altitudes changes saturate vertical velocity

Faigl, J. and Váňa, P.: Surveillance Planning with Bézier Curves. IEEE Robotics and Automation Letters, 3(2):750–757, 2018.
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Multi-Vehicle Multi-Goal Planning with Limited Travel Budget –
Curvature-Constrained Team Orienteering Problem (with Neighborhoods)

� Operational time of multi-rotor aerial vehicles is lim-
ited and only a subset of locations can be visited.

� Planning multi-goal trajectories as a sequence of
Bézier curves.
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� Targets are mised in a case of colliding trajectories, because of local
collision avoidance and optimal trajectory following.

� There is a practical need to include coordination in multi-vehicle
multi-goal trajectory planning.
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Faigl, J., Váňa, P., and Pěnička, R.: Multi-Vehicle Close Enough Orienteering Problem with Bézier Curves
for Multi-Rotor Aerial Vehicles. ICRA 2019, pp. 3039–3044.
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Summary

� Dubins vehicle model and Dubins routing problems
� Dubins Touring Problem (DTP)
� Dubins Interval Problem (DIP) (lower bound estimation to the DTP, DTSP)

� Generalized Dubins Interval Problem (GDIP) (lower bound estimation to the DTSPN)

� Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling Salesman with
Neighborhoods (DTSPN)

� Multi-radius Dubins path and Variable-Speed TSP (VS-TSP)
� 3D Dubins Path
� Unsupervised Learning in Dubins Routing Problems and 3D Surveillance Planning
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