Automatic Parameter Tuning for Metaheuristics

Felix Dobslaw, Information Technology and Media (ITM) Department Östersund, Sweden

MID SWEDEN UNIVERSITY

Outline

- My home university and me
- Automatic Parameter Tuning
 - I. Overview
 - II. Default, Robust Parameter Settings
 - III. Proposed Methodology to Model-Based Optimization.

My University...

- Mid Sweden University (2005-)
 - Information Technology and Media Department (ca. 100 employees)
- International Masters
- Ca. 1.000 employees
- Ca. 16.000 students
- Multi-campus
- Distance education

Mid Sweden University: Östersund, Sundsvall, Härnösand

- 2005-2009 Software developer for IBM partner
 - Java, Plug-in, Portal, Database tooling
- March 2007 BSc in Informatics (University of Hamburg)
 - Broad Introduction
 - Thesis: Architecture for Information Retrieval Software
- April 2009 MSc in Computer Science (Mid Sweden University)
 - Specialized: Distributed Systems
 - Thesis: An Extendable Context Model for Distributed Sensor Networks
- June 2009-201? Phd studies (Mid Sweden University)
 - Focus on Automated Parameter Tuning

How I keep myself busy

- Research (80%):
 - Swarm Intelligence
 - Parameter Tuning
 - Learning:
 - Pedagogics(AI course)
 - Integer Programming
 - Context Modeling
- Teaching (20%):
 - Al Introduction
 - XML Introduction
 - Al advanced labs
 - Thesis supervision

- Sports:
 - Swimming
 - Jogging
 - Fitness
- Leisure:
 - Nature
 - Seeing friends
 - Board games
 - Traveling
 - Social Entrepeneurship...

Why am I here?

- Got in touch with Martin Holena
 - Surrogate Modeling via Neural Networks
- Getting to know
 - researchers, research students
 - another working environment
 - research approach(?)
- If possible, initiate cooperation.
- Talk here today!
- Present my work at the "week of doctoral students 2010".
- I will be here the whole next week. Looking forward to discussions!

A Parameter Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks, Felix Dobslaw at ICCMN 2010: Rom, 27-30.04.2010

An Object-Oriented Model in Support of Context-Aware Mobile Applications, Felix Dobslaw, Aron Larsson, Theo Kanter, Jamie Walters at Mobilware Chicago, 29.06-02.07.2010

An Experimental Study on Robust Parameter Settings, Felix Dobslaw at GECCO 2010 Graduate Student Workshop, Portland, 07.07.2010-11.07.2010

I.Parameter Tuning: Overview

- I. Parameter Tuning
 - . Model-free vs. Model-based
 - II. Sequential vs. Parallel
 - III. Parameter Types
- II. State of the art methods
 - I. Sequential
 - II. Parallel

Definition by Eiben et. al. (1999):

Parameter Tuning is the finding of good values for Parameters *before* the run of the algorithm.

I.I The Problem in Theory

- NP-hard combinatorial problems. (state-space explosion)
- Not trivial:
 - Near-optimal settings are problem (and of course algorithm) specific

AND

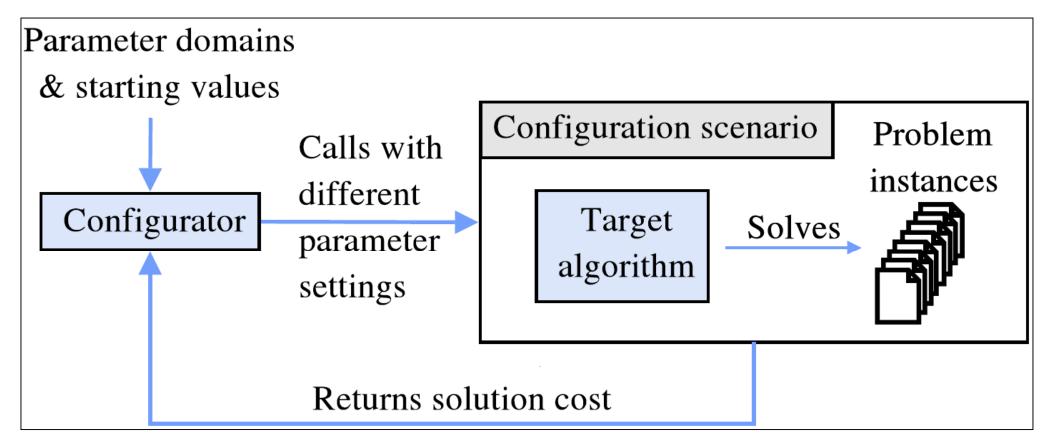
-> There is no free lunch!

I.I What kinds of Algorithms?

- <u>Metaheuristics</u>
 - Particle Swarm Optimization, Ant Colony Optimization, EA, Simulated Annealing Tabu Search, CPLEX

One objective: fairer comparison of algorithms!

I.I Parameter Tuning



From Hutter et. Al. (2009)

I.I.I Model-free vs. Model-based Parameter Tuning

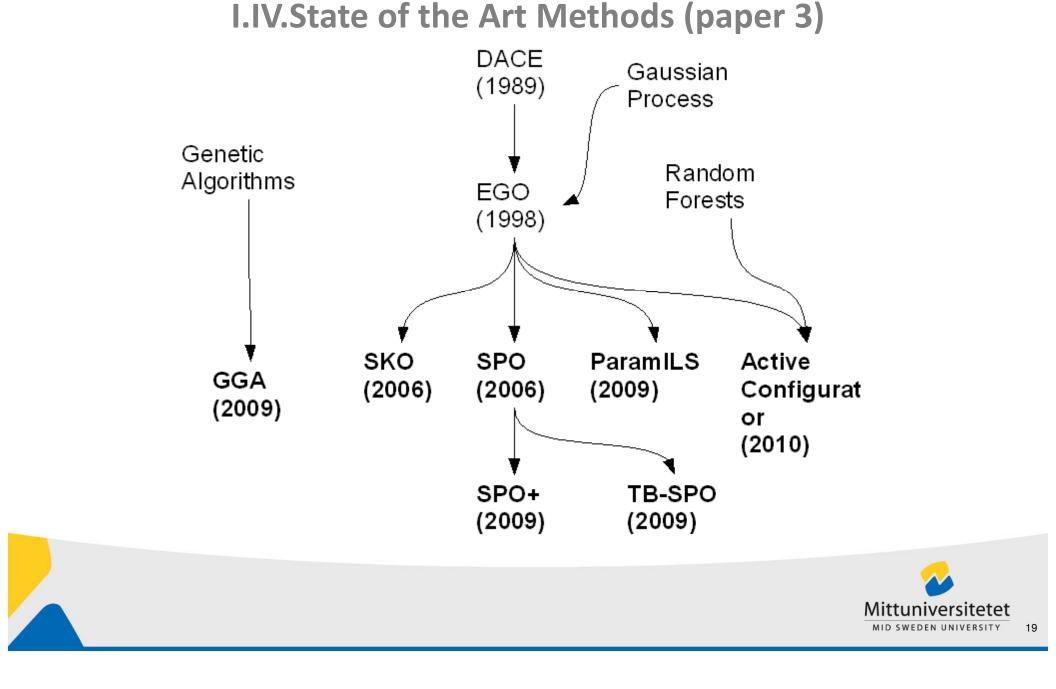
Model-free:

- Simple algorithms without a "memory".
 Model-based:
- Response Surface Model for
 - Deciding upon new regions to assess
 - Recommending settings for unseen problem instances

I.I.II Sequential vs. Parallel Model-Based Parameter Tuning

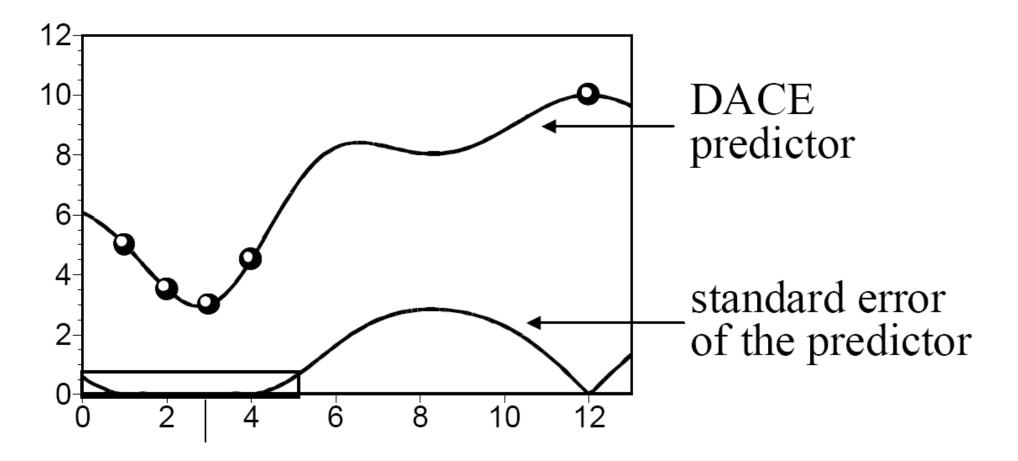
- Sequential tuning:
 - One refinement at a time
- Parallel tuning:
 - Multiple refinements at a time
 - E.g. Population based algorithms

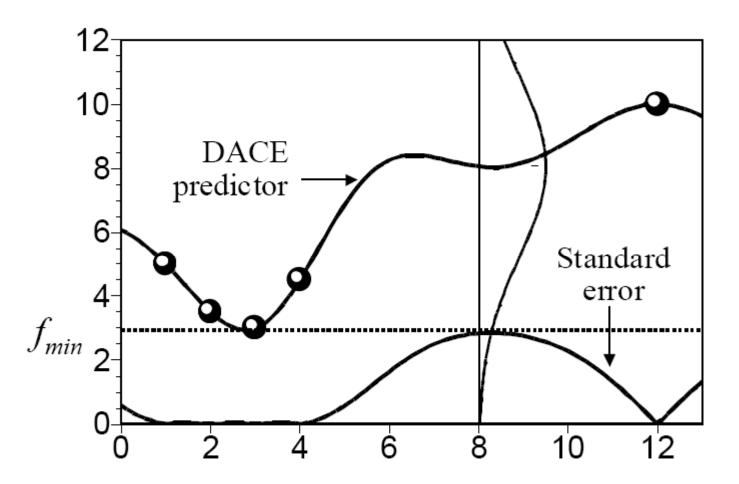
- Continuous (real numbers)
- Discrete (Integer Programming: e.g. TSP)
- Cagetorial (e.g. Selection mechanism in EA)



I.IV.Design and Analysis of Computer Experiments DACE

- Model on deterministic computer simulations
- Regression model with random process Z $Y(x) = \sum_{j=1}^{k} \beta_j f_j(x) + Z(x)$





- 1. Fit a DACE model (n=10k rule)
- Maximize estimated improvement e (branch and bound) until e<1%.
 - a) If not converts: re-estimate DACE model and go to 2.

I.III Black Box optimization and EGO

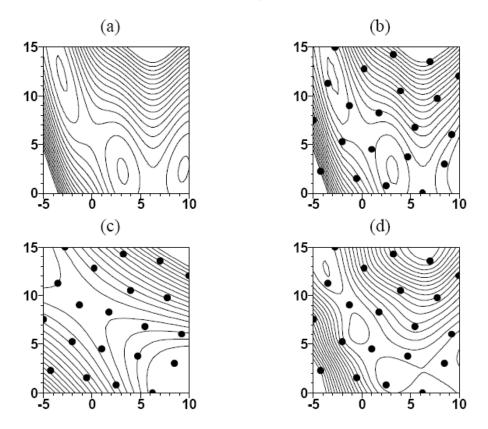


Figure 3. (a) Contours of the Branin test function; (b) contours of a DACE response surface based on the 21 sampled points shown as dots; (c) a quadratic surface fit to the 21 points; (d) a thin-plate spline fit to the 21 points.

- Sequential Parameter Optimization (SPO)
- 7 step process, rather than an automatic algorithm.
- Suggests use of DoE and DACE models.
- Focus on Standardization
- Restrictions
 - Continuous variables
 - Single problem instances

- Based on EGO
- Integrates time bounds
- Incumbent
- Can deal with all parameter types
 - Random forests for categorial parameters

- Both techniques to boost performance
- Racing does it by direct competition of parameter settings (as in Tournament Selection)
- Sharpening increases amount of sample points for promising regions.

- Gender based Genetic Algorithm
- 2 genders: only one assessed (win ½ time)
- Based on the idea that mating choice has a higher impact on evolution than natural selection.
- Continous, discrete and categorial variables.

I.IV.Conclusion

- Model-Based approaches take over.
- Very few comparisons so far!
- GGA and ActiveComparator perform competitive on SAT problem.
 - Improve default values significantly!
 - With an advantage for ActiveComparator so far.
 - GGA parallel execution would boost it.
- Much left to do:
 - Standard Toolkit (simple to apply)
 - Decimal, Categorial parameters

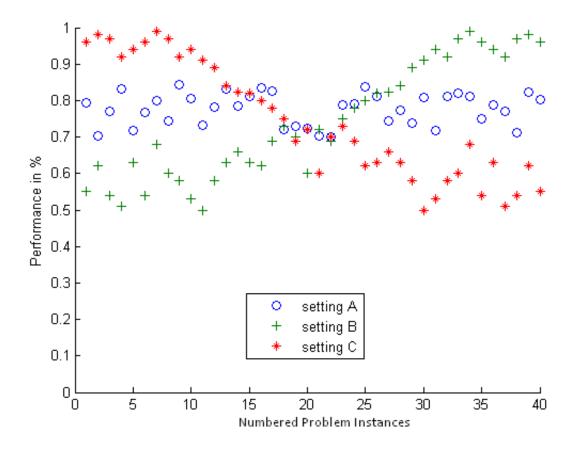
Questions so far!?

Any comments!?!

II.IV. Robust Parameter Settings: Overview

- I. Robust Parameters
- II. Experiments
- III. Results
- IV. Consequences

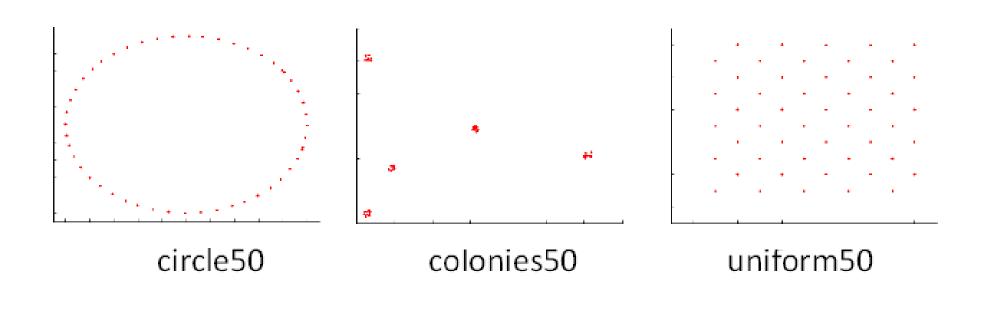
II.I. Robust Parameter Values: The Problem



"Optimization is actually just the opposite of robustness." (Marczyk, 2000)

32

II.II TSP: Problem Instances



II.II. Binary PSO: Parameters to be tuned

factor	data type	\min	\max
iterations	integer	100	500
population size	$\operatorname{integer}$	50	150
α	$\operatorname{decimal}$	$0,\!50$	$0,\!99$
eta	$\operatorname{decimal}$	$0,\!50$	$0,\!99$

Robust setting used for comparison by Cunkas and Ozsaglam, 2009:

setting	population	iterations	α	β	
	size				
robust	150	10.000	0,99	0,99	

34

- Full Factorial Design with 3 center points (2⁴ + 3 = 19)
- 5 repetitions (19 * 5 = 95)
- Results compared based by average values
- Matlab implementation of Binary PSO.

II.III. EXPERIMENTAL RESULTS								_		
map	category	parameter setting			$\operatorname{solution}$	exec.	qdtb	etdtb		
		pop	iter	α	β	quality	time (s)	(%)	(%)	
circle50	best found	150	500	0.50	0.99	437.33	511	0.0	0.0]
	robust	150	500	0.99	0.99	468.65	607	-6.7	-15.8	
	fastest	50	100	0.50	0.99	481.47	35	-9.2	1460.0	
	center	100	300	0.75	0.75	465.43	239	-6.0	213.8	
	best qual/time	50	100	0.50	0.99	481.47	35	-9.2	1460.0	
colonies50	best found	150	500	0.50	0.50	498.04	523	0.0	0.0	1
	robust	150	500	0.99	0.99	541.71	654	-8.1	-20.0	
	fastest	50	100	0.50	0.99	580.72	36	-16.3	1452.8	
	center	100	300	0.75	0.75	533.88	235	-6.7	222.6	
	best qual/time	50	100	0.50	0.99	580.72	36	-14.2	1452.8	
uniform50	best found	150	500	0.99	0.99	194.77	634	0.0	0.0	\mathbb{N}
	robust	150	500	0.99	0.99	194.77	634	0.0	0.0	
	fastest	50	100	0.99	0.50	214.71	36	-9.3	1761.1	
	center	100	300	0.75	0.75	203.86	238	-4.5	266.4	
	best qual/time	50	100	0.99	0.50	214.71	36	-9.3	1761.1	

II.III. Experimental Results

qdtb: Quality difference to best found edtb: Execution time difference to best found

Mittuniversitetet

36

A parameter-tuning framework for metaheuristics

- The robust setting was outperformed in 2/3 cases.
- Best settings were different for all the three maps.
- Considering quality/time trade-off, robust setting shown to be very bad.
- Just a DoE screeing process: Much space for improvement on robust setting!

II. Conclusion

- Robust parameter settings
 - Are not necessarily the best choice
 - Can imply weaknesses in quality/time trade-off
- But is a meta model worth the effort? (Expensive experimental preprocessing)
 - Depends on problem complexity and its generalization features.

Now, a question!?

or a Comment?

39

III. Proposed Methodology: Overview

Introduction

Design of Experiments (DoE)

- The Framework
- Conclusions
- Future Work

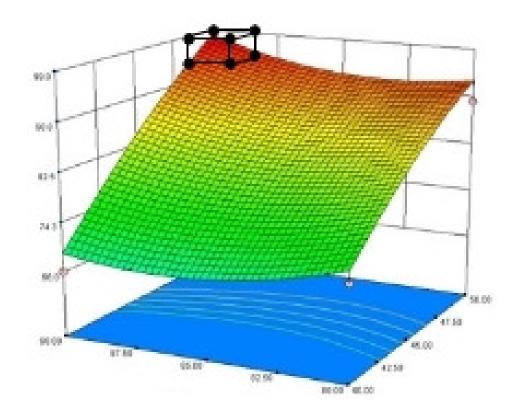
Design of Experiments 1.5 Z center point 175/300/1.0 0.5400 200 Х

300

A Parameter Tuning Framework for Metaheuristics

50

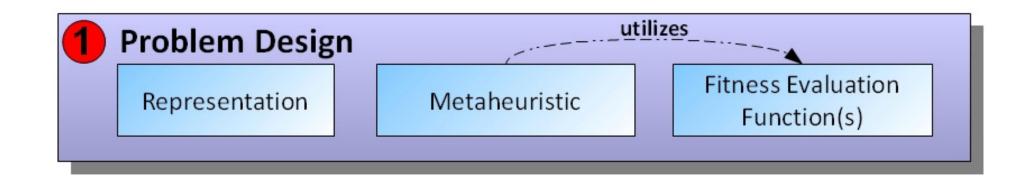
Design of Experiments

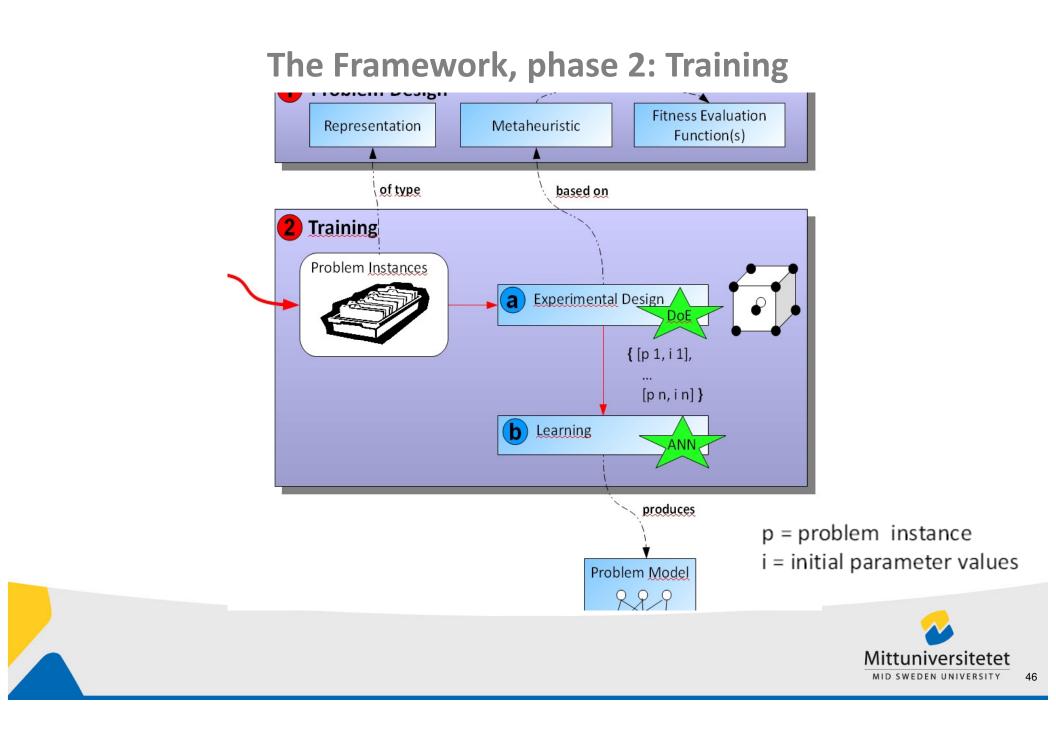


The Framework: Overview

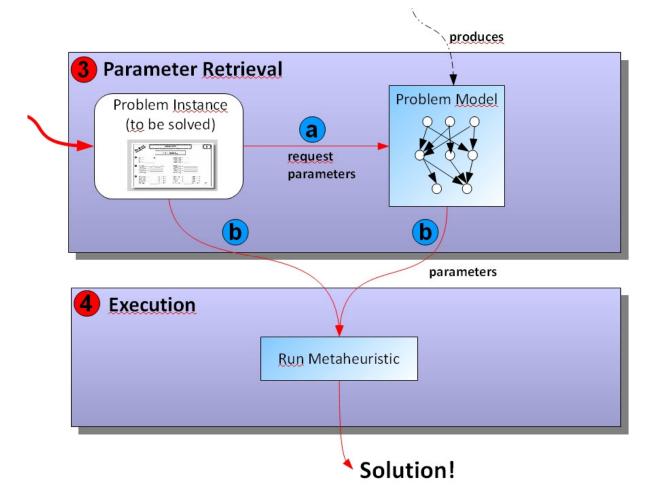
1 Problem Design	
2 Training	
3 Parameter <u>Retrieval</u>	
4 Execution	

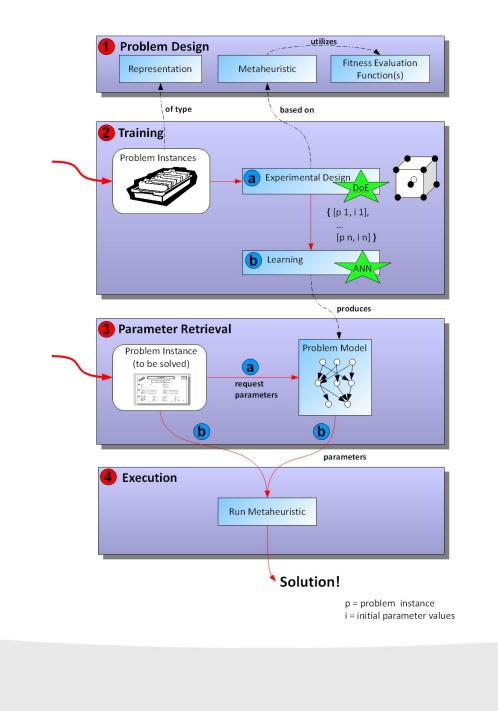
The Framework, phase 1: Problem Design





The Framework, phases 3+4





Final Conclusions

- A case for Automatic Parameter Tuning was made.
- DoE might not be the best solution:
 - Models suffer from predictive power
 - Rather DACE for random algorithms for the framework?
- To be improved:
 - Understanding of parameter interactions
 - Optimizing categorial parameter tuning
 - Practical use: common toolkit
 - Take advantage of real Parellelism
 - Evolutionary Algorithms, PSO
 - Parallel statistical learning models

Future Work

- Case studies with ActiveConfigurator
 - extend for parallellism?
- Assess ANNs applicability. Tweaking...
 - initial weighting,
 - cost function...
- Investigating Swarm-based algorithms
 - such as PSO
 - fast execution times, good convergence
 - Parallel by default

Thank you for the attention!

Now, a question!?

A comment maybe?

