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Outline

• My home university and me

• Automatic Parameter Tuning

I. OverviewI. Overview

II. Default, Robust Parameter Settings

III. Proposed Methodology to Model-Based 

Optimization.
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My University…

• Mid Sweden University (2005-)

• Information Technology and Media 

Department ( ca. 100 employees)

• International Masters
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• International Masters

• Ca. 1.000 employees

• Ca. 16.000 students

• Multi-campus

• Distance education



Mid Sweden University: Östersund, Sundsvall, Härnösand
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Östersund
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Me

• 2005-2009 Software developer for IBM partner

• Java, Plug-in, Portal, Database tooling

• March 2007 BSc in Informatics (University of Hamburg)

• Broad Introduction

• Thesis: Architecture for Information Retrieval Software

• April 2009 MSc in Computer Science (Mid Sweden University)

6

• April 2009 MSc in Computer Science (Mid Sweden University)

• Specialized: Distributed Systems

• Thesis: An Extendable Context Model for Distributed Sensor Networks

• June 2009-201? Phd studies (Mid Sweden University)

• Focus on Automated Parameter Tuning



How I keep myself busy

• Research (80%):

• Swarm Intelligence

• Parameter Tuning

• Learning:

• Pedagogics(AI course)

• Integer Programming

• Sports:

• Swimming

• Jogging

• Fitness

• Leisure:

• Nature
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• Integer Programming

• Context Modeling

• Teaching (20%):

• AI Introduction

• XML Introduction

• AI advanced labs

• Thesis supervision

• Nature

• Seeing friends

• Board games

• Traveling

• Social Entrepeneurship…



Why am I here?

• Got in touch with Martin Holena

• Surrogate Modeling via Neural Networks

• Getting to know

• researchers, research students

• another working environment

• research approach(?)
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• research approach(?)

• If possible, initiate cooperation.

• Talk here today!

• Present my work at the ”week of doctoral students 2010”.

• I will be here the whole next week. Looking forward to discussions!



Publications so far

A Parameter Tuning Framework for Metaheuristics Based on 

Design of Experiments and Artificial Neural Networks, Felix 

Dobslaw at ICCMN 2010: Rom, 27-30.04.2010

An Object-Oriented Model in Support of Context-Aware Mobile 
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An Object-Oriented Model in Support of Context-Aware Mobile 

Applications, Felix Dobslaw, Aron Larsson, Theo Kanter, Jamie 

Walters at Mobilware Chicago, 29.06-02.07.2010

An Experimental Study on Robust Parameter Settings,

Felix Dobslaw at GECCO 2010 Graduate Student Workshop, 

Portland, 07.07.2010-11.07.2010



I.Parameter Tuning: Overview

I. Parameter Tuning

I. Model-free vs. Model-based

II. Sequential vs. Parallel
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II. Sequential vs. Parallel

III. Parameter Types

II. State of the art methods

I. Sequential

II. Parallel



I.I Parameter Tuning

Definition by Eiben et. al. (1999): 

Parameter Tuning is the finding of good 

values for Parameters before the run of 
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values for Parameters before the run of 

the algorithm.



I.I The Problem in Theory

• NP-hard combinatorial problems. (state-space 

explosion)

• Not trivial:

• Near-optimal settings are problem (and of 
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• Near-optimal settings are problem (and of 

course algorithm) specific

AND

-> There is no free lunch!
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I.I What kinds of Algorithms?

• Metaheuristics

• Particle Swarm Optimization, Ant Colony 

Optimization, EA, Simulated Annealing 
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Optimization, EA, Simulated Annealing 

Tabu Search, CPLEX

One objective: fairer comparison of 

algorithms!



I.I Parameter Tuning
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From Hutter et. Al. (2009)



I.I.I Model-free vs. Model-based Parameter Tuning

Model-free:

- Simple algorithms without a ”memory”.

Model-based:
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- Response Surface Model for

- Deciding upon new regions to assess

- Recommending settings for unseen 

problem instances



I.I.II Sequential vs. Parallel Model-Based Parameter Tuning

• Sequential tuning:

• One refinement at a time

• Parallel tuning:
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• Parallel tuning:

• Multiple refinements at a time

• E.g. Population based algorithms



I.I.III.Parameter Types

• Continuous (real numbers)

• Discrete (Integer Programming: e.g. TSP)

• Cagetorial (e.g. Selection mechanism in 
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• Cagetorial (e.g. Selection mechanism in 

EA)



I.IV.State of the Art Methods (paper 3)
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I.IV.Design and Analysis of Computer Experiments
DACE

• Model on deterministic computer 

simulations

• Regression model with random process Z
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• Regression model with random process Z
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I.III Black Box optimization and EGO
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I.III Black Box optimization and EGO
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I.III Black Box optimization and EGO

1. Fit a DACE model (n=10k rule)

2. Maximize estimated improvement e 

(branch and bound) until e<1%.
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(branch and bound) until e<1%.

a) If not converts: re-estimate DACE 

model and go to 2.



I.III Black Box optimization and EGO
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I.IV.I Sequential Methods

• Sequential Parameter Optimization (SPO)

• 7 step process, rather than an automatic 

algorithm.

• Suggests use of DoE and DACE models.

25

• Suggests use of DoE and DACE models.

• Focus on Standardization

• Restrictions

• Continuous variables

• Single problem instances



I.IV.ActiveConfigurator

• Based on EGO

• Integrates time bounds

• Incumbent
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• Incumbent

• Can deal with all parameter types

• Random forests for categorial 

parameters



I.IV.Racing and Sharpening

• Both techniques to boost performance

• Racing does it by direct competition of 

parameter settings (as in Tournament 
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parameter settings (as in Tournament 

Selection)

• Sharpening increases amount of sample 

points for promising regions.



I.IV.Parallel Methods: GGA

• Gender based Genetic Algorithm

• 2 genders: only one assessed (win ½ time)

• Based on the idea that mating choice has 
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• Based on the idea that mating choice has 

a higher impact on evolution than natural 

selection.

• Continous, discrete and categorial 

variables.



I.IV.Conclusion

• Model-Based approaches take over.

• Very few comparisons so far!

• GGA and ActiveComparator perform 

competitive on SAT problem.
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• Improve default values significantly!

• With an advantage for ActiveComparator so far.

• GGA parallel execution would boost it.

• Much left to do:

• Standard Toolkit (simple to apply)

• Decimal, Categorial parameters



Questions so far!?

Any comments!?!
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II.IV. Robust Parameter Settings: Overview

I. Robust Parameters

II. Experiments

III. Results
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III. Results

IV. Consequences



II.I. Robust Parameter Values: The Problem
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"Optimization is actually just the opposite of 

robustness.“ (Marczyk, 2000)



II.II TSP: Problem Instances
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II.II. Binary PSO: Parameters to be tuned
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Robust setting used for comparison by Cunkas and Ozsaglam, 2009:



II.II. Experimental Design

• Full Factorial Design with 3 center points 

(2^4 + 3 = 19)

• 5 repetitions (19 * 5 = 95)

• Results compared based by average values
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• Results compared based by average values

• Matlab implementation of Binary PSO.



II.III. Experimental Results

A parameter-tuning 

framework for metaheuristics
36

qdtb: Quality difference to best found

edtb: Execution time difference to best found



II.IV Experimental Results

• The robust setting was outperformed in 

2/3 cases.

• Best settings were different for all the 

three maps.
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three maps.

• Considering quality/time trade-off, robust 

setting shown to be very bad.

• Just a DoE screeing process: Much space 

for improvement on robust setting!



II. Conclusion

• Robust parameter settings

• Are not necessarily the best choice

• Can imply weaknesses in quality/time 

trade-off
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trade-off

• But is a meta model worth the effort? 

(Expensive experimental preprocessing)

• Depends on problem complexity and its 

generalization features.



Now, a question!?
…

or a Comment?
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III. Proposed Methodology: Overview

• Introduction

Design of Experiments (DoE)

• The Framework
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• The Framework

• Conclusions

• Future Work



11-02-15A parameter-
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Design of Experiments

42

A Parameter Tuning 

Framework for Metaheuristics



Design of Experiments
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The Framework: Overview
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The Framework, phase 1: Problem Design
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The Framework, phase 2: Training
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The Framework, phases 3+4
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Final Conclusions

• A case for Automatic Parameter Tuning was made.

• DoE might not be the best solution:

• Models suffer from predictive power

• Rather DACE for random algorithms for the framework?

• To be improved:
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• To be improved:

• Understanding of parameter interactions

• Optimizing categorial parameter tuning

• Practical use: common toolkit

• Take advantage of real Parellelism

o Evolutionary Algorithms, PSO

o Parallel statistical learning models



Future Work

• Case studies with ActiveConfigurator

• extend for parallellism?

• Assess ANNs applicability. Tweaking…

• initial weighting,
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• cost function…

• Investigating Swarm-based algorithms

� such as PSO

� fast execution times, good convergence

� Parallel by default



Thank you for the attention! 

Now, a question!?

A comment maybe?
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