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Anomaly detection

Credit: http://www.tatvic.com/blog/wp-content/uploads/2017/01/fetured.jpg

techopedia.com

Anomaly detection is the identification of data points, items,
observations or events that do not conform to the expected pattern
of a given group. These anomalies occur very infrequently but may
signify a large and significant threat such as cyber intrusions or
fraud.
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Toy example - Credit card fraud detection

Credit: https://docs.microsoft.com/en-us/azure/machine-learning/media/machine-learning-algorithm-
choice/image8.png

Figure: Example of data representation in a feature space for a credit
card fraud problem
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Motivation

In network security, the anomaly detection operates on data that
are:

• Large

• High dimensional

• Unevenly distributed

• Noisy and corrupted
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Prior art

• Autoencoders (neural networks)

• Density-based techniques (k-nearest neighbor, local outlier
factor,...)

• One class support vector machines

• Subspace and correlation-based outlier detection for
high-dimensional data.

• Isolation Forest

• Ensemble Gaussian Mixture Model
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One class kNN

• Set of regular observations X = {x(1),x(2), ...,x(n)}
• t – tested sample, k – parameter of the method

1 Find k nearest neighbors of t from X

2 Obtain the anomaly score as a mean distance to these
neighbors
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Autoencoder

‘The more regularities there are in the data the more it can be
compressed. The more we are able to compress the data the more
we have learned about the data.’ (Peter Grünwald, 1998)

1 the input vector x ∈ Rd is encoded to y ∈ Rd′

2 y is decoded to x′ ∈ Rd.
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Figure: Structure of the autoencoder
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Autoencoder
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The encoding is performed as:

y = fθ(x) = a(Wx+ b)

where f is parameterized by θ = {W,b}, a is an activation
function, W is a d′ × d weight matrix and b is a bias vector.
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Autoencoder - training

Training set X = {x(1),x(2), ...,x(n)}, projections x′(i)

Reconstruction error is minimized:

θ∗, θ′∗ = argmin
θ′,θ

1

n

n∑
i=1

L
(
x(i),x′

(i)
)
=

argmin
θ′,θ

1

n

n∑
i=1

L
(
x(i), gθ′

(
fθ(x

(i))
))

where L represents a loss function. For example:
L(x, x′) = ||x− x′||2.
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Denoising autoencoder

• Noise robust

• Samples are noised for each training iteration

Credit: sciencedirect.com/science/article/pii/S0263224116300641

Figure: Salt and pepper noise
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Principal component analysis

• Dimensionality reduction
• Frequently compared with autoencoders
• Similar principle

Credit: https://i.stack.imgur.com/1j5X1.png

Figure: PCA
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Nearest Neighbor Based Models in Anomaly Detection

Campos et al. (2016): No classical anomaly detection algorithm
provides a comprehensive improvement over kNN. 1

• Nearest neighbor based models

• + Accuracy
• – Computational complexity

• Neural based models (auto-encoders)
• + Computational complexity
• ? Accuracy

• Density-approximating neural network models for
anomaly detection

• + Computational complexity
• + Accuracy

1Campos, Guilherme O., et al. ”On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study.” Data Mining and
Knowledge Discovery 30.4 (2016): 891-927.
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Density-Approximating Neural Network Models for
Anomaly Detection (DANNMAD) 2

• Neural network anomaly detector with anomaly score as
output

• Accurate as kNN (density imposed by kNN)
• Fast (NN)

• Trained in two logical steps

1 Auxiliary set is constructed and its corresponding scores are
computed.

2 The neural network is trained

2M. Flusser, T. Pevný, and P. Somol. Density-approximating neural network
models for anomaly detection. ACM SIGKDD workshop on outlier detection
de-constructed (8 2018). London, United Kingdom.
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Computing the auxiliary data set

The auxiliary set A = {a1, ..., am} is computed from the training
set X = {x1, ..., xn}:

1 Bounding hyper-block of X is observed

2 The hyper-block is filled with randomly generated and
uniformly distributed samples {a1, ..., am}

3 For each ai, the score yi is computed as k-Nearest Neighbor
mean distance G(·)

yi = G(ai) =
1

k

k∑
j=1

Dj(ai)

where Dj(ai) represents the j-th smallest distance of ai to
samples from X.
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Structure of the NN
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Figure: Structure of density-approximating neural network
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Definition

Input vector ai ∈ Rd is projected to y′i ∈ R as:

y′i = fθ(ai) = f
(4)

θ(4)
(f

(3)

θ(3)
(f

(2)

θ(2)
(f

(1)

θ(1)
(ai))))

where f
(j)

θ(j)
represents the j-th layer:

f
(j)

θ(j)
(ai) = c(W(j)ai + b(j))

thus f (j) is parameterized by θ(j) = {W(j),b(j)}, c is an activation
function, W(j) is a weight matrix and b(j) is a bias vector of the
j-th layer. The parameters of the model are optimized as follows:

θ∗ = argmin
θ

1

m

m∑
i=1

L
(
yi, y

′
i

)
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Comparison of anomaly score heatmaps

Left: obtained by kNN. Right: obtained by DANNMAD

Figure: Iris data set

Figure: Waveform data set
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Thresholding

• Various applications require different thresholds

• ROC evaluates performance for all thresholds

Credit: https://en.wikipedia.org/wiki/Receiver operating characteristic

Figure: Receiver operating characteristic
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Evaluation criteria

• Receiver operating characteristics (area under curve)

• Precision-Recall (area under curve)

• F-score

• Others...
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Benchmark

• Number of different sets makes comparison hard

• Frequently used sets are obsolete:
• KDD-99
• MNIST
• 99 DARPA IDEVAL

• 2013 Emmott: Systematic Construction of Anomaly Detection
Benchmarks from Real Data

• Data set consisting of many various sets
• Tested performance of 6 popular methods
• Neural networks were not included
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Evaluation over multiple data sets

Existing methods:

• Averages over the data sets

• Pairwise Wilcoxon signed-ranks test (or t-test)
• one vs. others
• each vs. each

• Counts of wins/ties/losses

• Counts of significant wins/ties/losses

• Friedman score (and test)
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Issues connected with usage multiple data sets

There is no general method to find out optimal setting of

• Structure of the neural network (size of the bottleneck for AE,
nr. of layers and neurons,...)

• Type and intensity of noise for AE

• Nr. of neurons for DANNMAD

The prior works on auto-encoders usually evaluate on few data sets
and tune parameters empirically
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Experiment

The aim is to compare the performance of the anomaly detection
methods below with the most advanced methodology.

• Accuracy:
• DANNMAD vs kNN
• DANNMAD vs Autoencoder

• Computational complexity of DANNMAD vs kNN with
respect to:

• Number of samples
• Dimension

• Metric: AUC ROC



Anomaly detection Prior art DANNMAD Evaluation and benchmarks Experimental evaluation Outlook and conclusion

Experiment - Data

Most advanced Emmott’s methodology (2013)

• 18 various real-data sets

• 4 levels of anomalies

• 64 data sets used
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Experiment - Parameters

• kNN
• Supporting structures: kd-tree, ball-tree
• k=5 (empirically)

• AE
• Denoising (4 levels of Gaussian noise)
• Three layers
• 6 setups for bottleneck
• 24 various models trained for each set

• DANNMAD
• kNN k=5
• Number of hidden layers: 3 and 2
• Hidden layer size: 3d and 5d
• 4 models trained for each set
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Accuracy results: DANNMAD vs kNN

Table: Counts of wins of DANNMAD versus kNN, grouped by problem
difficulty. Wilcoxon signed rank test at 0.05 level is used to verify
statistical significance of wins for each level

Easy Medium Hard V. Hard Sum

DANNMAD 10 8 9 9 36
kNN 8 10 7 3 28

Significance no no no no –
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Accuracy results: DANNMAD vs Auto-encoder

Table: Counts of wins of the DANNMAD versus auto-encoder, grouped
by problem difficulty. Wilcoxon signed rank test at 0.05 level is used to
verify statistical significance of wins for each level

Easy Medium Hard V. Hard Sum

DANNMAD 12 13 9 9 43
Auto-encoder 6 5 7 3 21

Significance no yes no yes –
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Time complexity - dimensionality
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Figure: Anomaly detectors’ prediction time dependence on dimensionality
in application phase. Tested on magic telescope and Isolet data sets
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Time complexity - nr. of samples
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Figure: Anomaly detectors’ prediction time dependence on training data
size in application phase. Tested on magic telescope and Isolet data sets.
Neural model prediction speed does not depend on training data size
(note the close-to-zero time in magic telescope case)
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Discussion

• Accuracy comparable to kNN based models

• Computational complexity lower by orders of magnitude in
comparison to kNN

• Outperforming auto-encoders often

• Validated with the most advanced methodology for anomaly
detection

• Beneficial especially for
• Industry (large-scale data)
• Embedded systems (low memory and computational demands)
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Outlook - Multiple Instance Learning

• Many real-world problems have structured representation
• Operates on (labeled) bags
• Bag X consists of vectors {x1,x2, ...,xN} where xi ∈ Rd

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: Example of MIL
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Outlook - Multiple Instance Learning

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: Example of MIL

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: Instance space vs bag space
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MIL - paradigms

1 Instance space paradigm

2 Embedded space paradigm

3 Bag space paradigm
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Instance space paradigm

• F (X) = 1
|X|

∑
x∈X

f(x)

• F (X) = max
x∈X

f(x)

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: Instance space paradigm
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Embedded space paradigm

• ”Simple MI” M(X) = 1
|X|

∑
x∈X

x

• Min-max vectorM(X) = (a1, a2, ..., ad, b1, b2, ..., bd) where
aj = min

x∈X
xj , for j = 1, ..., d

• Vocabulary methods

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: ES paradigm, training (a), test(b)
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Bag space paradigm

• Defines pairwise comparison on bags

• Minimal Hausdorff distance: D(X,Y) = min
x∈X,y∈Y

||x− y||

Credit: http://158.109.8.37/files/Amo2013.pdf

Figure: BS paradigm, training (a), test(b)
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Outlook

• kNN is a direct way of utilizing BS paradigm
• For AD only a few metrics has been utilized yet
• Too high complexity to be utilized in practice

• We plan to utilize DANNMAD base method for MIL AD
• DANNMAD is defined for vector representation only
• How to construct auxiliary set?

• Alternatively observe conditions for utilizing ES paradigm
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Outlook

• Only about 1O relevant papers of AD for MIL

• Evaluation not standardized yet
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Conclusion

• DANNMAD
• Reducing complexity of k-NN
• Often outperforming auto-encoders

• Multiple instance learning
• Direct approach is k-NN
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Thank you

Questions?

Credit: http://www.incimages.com/uploaded files/image/1940x900/rotten-apple-1725x810 12112.jpg
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