

Outline

- Graphs as a Data Structure
- Introduction to Graph Neural Networks
 - How to represent structure
 - GNNs are local operations
- ConvNets are specialized grid GNNs
- Aggregation can lead to Oversmoothing
- Case Study: Water Distribution Networks
 Multi-agent reinforcement learning
 large language model
 optimal transport
- My current project: Sampling-based GNNs
- Benchmarking GNNs A topic often overlooked

reinforcement learning deep learning representation learning graph neural network transformer federate learning self-supervised learning contrastive learning robustnesš generative model continual learning neural network transfer learning diffusion model generalization language model computer vision knowledge distillation vision transformer offline reinforcement learning optimization fairness differential privacy semi-supervised learning unsupervised learning deep reinforcement learning machine learning interpretability meta-learning adversarial robustness data augmentation few-shot learning domain generalization nlp adversarial attack domain adaptation time series model compression natural language processing distribution shift neural architecture search attention image classification adversarial training active learning sparsity deep neural network

50

100

150

200

50 MOST APPEARED KEYWORDS (2023)

A Graph G consists of a set of nodes V and edges E
 G = (V, E)

- A Graph G consists of a set of nodes V and edges E
 G = (V, E)
- Nodes V are specified by feature vectors $\mathbf{v} \in \mathbb{R}^{d_v}$
- An edge connects, or *relates*, two nodes

- A Graph G consists of a set of nodes V and edges E
 G = (V, E)
- Nodes V are specified by feature vectors $\mathbf{v} \in \mathbb{R}^{d_v}$
- An edge connects, or *relates*, two nodes
- Edges E may be specified by feature vectors $\mathbf{e} \in \mathbb{R}^{d_e}$

- A Graph G consists of a set of nodes V and edges E
 G = (V, E)
- Nodes V are specified by feature vectors $\mathbf{v} \in \mathbb{R}^{d_v}$
- An edge connects, or *relates*, two nodes
- Edges E may be specified by feature vectors $\mathbf{e} \in \mathbb{R}^{d_e}$

When the data contains multiple manifestations of similar things and these things are relatable, then it is a graph:

	Thing		Relation
Images	Pixels	-	Proximity
Text	Words	-	Context/Proximity
Molecules	Atoms	-	Bonds
Ontologies	Subject/Object	-	Predicate
Social	User	_	Relationship
Point Cloud	3D-Point	-	Proximity
Research	Paper		Citation

What are Graph Neural Networks?

- Functions that embeds nodes based on structure and node features
- Two nodes in a similar structural context should be mapped to similar locations

- Canonically represents structure
- Algorithm:

Initialization: Color every node similarly $\mathbf{c} \leftarrow \mathbf{1}$ for *i* iterations :

```
for each node n \in N:
Hash the multiset u \in \mathcal{N}_n
of neighboring nodes
```

 $c_n \leftarrow \text{HASH} \left(u \in \mathcal{N}_n \right)$

- Canonically represents structure
- Algorithm:

Initialization: Color every node similarly

 $\mathbf{c} \gets \mathbf{1}$

for i iterations :

for each node $n \in N$: Hash the multiset $u \in \mathcal{N}_n$ of neighboring nodes $c_n \leftarrow \text{HASH} (u \in \mathcal{N}_n)$

#2628ba

#614825

- Canonically represents structure
- Algorithm:

Initialization: Color every node similarly $\mathbf{c} \leftarrow \mathbf{1}$

for i iterations :

```
for each node n \in N:
```

Hash the multiset $u \in \mathcal{N}_n$ of neighboring nodes

 $c_n \leftarrow \operatorname{HASH}\left(u \in \mathcal{N}_n\right)$

- Canonically represents structure
- Algorithm:

Initialization: Color every node similarly $\mathbf{c} \leftarrow \mathbf{1}$ for *i* iterations :

for each node $n \in N$:

Hash the multiset $u \in \mathcal{N}_n$ of neighboring nodes

 $c_n \leftarrow \operatorname{HASH}\left(u \in \mathcal{N}_n\right)$

- Two nodes in a similar structural context should be mapped to similar locations
 - → This is equivalent to discriminating subgraphs
- Node 20 and 18 have a similar subgraph, they should be close in the latent space
 - → How to compare these subgraphs?

WL-Test

WL-Test - Graph Convolution

- A Graph Convolution (GCN) is a differentiable version of the WL-Algorithm
- Instead of a hash function, a GCN applies set aggregation and a consecutive MLP

WL node update:

 $\bullet = HASH(\{\bullet \bullet \bullet \bullet \})$

GCN node update: $n' = MLP_{\Phi}(\sum_{u \in \mathcal{N}_n} u)$

#0cd66a

Color

#614825

#b5cc16

Kipf et al.: Semi-Supervised Classification with Graph Convolutional Networks

From Set-Hash to Set-MLP

• How to replace the Hash function with an MLP

• Node neighborhoods remain the same under permutation

• Node neighborhoods remain the same under permutation

How are we encoding these neighborhoods?

With a permutation invariant function, i.e. a function that satisfies:

$$f: \mathbb{R}^{N \times d} \to \mathbb{R}^{d} \qquad f(X) = f(PX)$$

$$f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$$
Neighborhood Node Set

• Node neighborhoods remain the same under permutation

Possible Perm. Invariant Functions that map a Set onto a vector:

- Sum
 Mean
 Attention
 Concat?
 - Perm. Invariant
 - Mean Perm. Invariant
 - Attention Perm. Invariant
- Concat? Perm. Sensitive

f(X) = f(PX) $f(X) = \sum_{\mathbf{x} \in X} \mathbf{x}$

• Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

 $f(\mathbf{v}_i) = \phi_\theta \left(\sum_{\mathbf{u} \in \mathcal{N}(\mathbf{v}_i)} \mathbf{u} \right)$

A function parameterized by theta, e.g. an MLP

Permutation invariant aggregation function (sum/mean/...)

• Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

 $f(\mathbf{v}_i) = \phi_\theta \left(\sum_{\mathbf{u} \in \mathcal{N}(\mathbf{v}_i)} \mathbf{u} \right)$

A function parameterized by theta, e.g. an MLP

Permutation invariant aggregation function (sum/mean/...)

• Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

2. Message aggregation

[1] Zaheer et al. NeurIPS 2017 Deep Sets

• Node neighborhoods remain the same under permutation

• Node neighborhoods remain the same under permutation

(a) Mean and Max both fail

(b) Max fails

(c) Mean and Max both fail

[1] Xu et al. (2018) How Powerful are Graph Neural Networks?

Computing Graph → Structural Sensitivity!

Graph Neural Networks

Graph Prediction Graph Neural Networks \mathbf{h}_i ϕ_{θ} $\mathbf{h}_i \in V$ **Node Predictions** Step 0 Step 1 Step 2 Nodes GNN₂ **GNN**₁

Graph Prediction

Graph Neural Networks

Latent Space of a GCN [1.1]

[1.1] Blog-Post (Video) https://tkipf.github.io/graph-convolutional-networks/[1.2] Kipf et al. (2017) https://arxiv.org/abs/1609.02907

Example: Graph Attention Network [1]

- This is the GAT Graph Attention Network
- A parameterized attention function scales neighbors prior to aggregation
- This attending to node neighbors helps focusing on discriminative nodes

Image

Image Graph

1-Hop Subgraph

1-Hop Subgraph

Pixel 5 is connected to Pixel 1

1-Hop Subgraph

Pixel 5 is connected to Pixel 6

1-Hop Subgraph

Image

Convolution Priors

• Locality:

Applies a local kernel operation onto a neighborhood of pixels

*

- **Translational Symmetry:** A pattern is recognized independent of it's location
- Cannonical Orientation:

Allows us to impose an ordering on the pixels

Cannonical Pixel Ordering

FUNCTIONAL GROUPS IN ORGANIC CHEMIS

FUNCTIONAL GROUPS ARE GROUPS OF ATOMS IN ORGANIC MOLECULES THAT ARE RESPONSIBLE FOR THE CHARACTERISTIC CHEMICAL REACTIONS OF THOSE IN THE GENERAL FORMULAE BELOW, 'R' REPRESENTS A HYDROCARBON GROUP OR HYDROGEN, AND 'X' REPRESENTS ANY HALOGEN ATOM. HALOGEN HETEROATOMICS HYDROCARBONS SIMPLE OXYGEN HETEROATOMICS CARBONYL COMPOUNDS NITROGEN BASED SULFUR BASED -OH ALKANE ALKENE ALKYNE ALCOHOL FTHFR **FPOXIDE** HAI Naming: -ene oxide Naming: -ol Naming: -oxy -ane Nai Naming: -ane Naming: -ene Naming: -vne e.g. ethene oxide e.g. ethane e.g. ethene e.g. ethyne e.g. ethanol e.g. methoxyethane e.g. c 'OH D. **AI DFHYDF** KETONE CARBOXYLIC ACID ACID ANHYDRIDF **FSTFR** AMIDE Naming: -a Naming: -one Naming: -oic acid Naming: -oic anhvdride Naming: -vl -oate Naming: -amide Nam e.g. ethana e.g. ethanoic acid e.g. ethanoic anhydride e.g. ethyl ethanoate e.g. ethanamide e.g. propanone e.g. eth R-NH₂ $R - C \equiv N$.c 🎤 Local Motivs / Primitives that can be learned by **Local Functions** AMINE NITRILE IMINE **ISOCYANATE** Naming: -amine Naming: -nitrile Naming: -imine Naming: -yl isocyanate e.g. ethyl isocyanate e.g. ethanamine e.g. ethanenitrile e.g. ethanimine

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence. Image Source: https://chemistry.com.pk/infographics/functional-groups-in-organic-chemistry/

Questions so far?

Deep Graph Neural Networks?

Deep Graph Neural Networks?

[1] Oono et al. (2020) https://arxiv.org/abs/1905.10947

[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59

(Over-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

(Over-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

Table 4.	Mean	errors	across	nodes	and	samples	on	L-Town.	
----------	------	--------	--------	-------	-----	---------	----	---------	--

	Model	Error $(\times 10^{-3})$						
	Model	All	Sensor	Non-sensor				
		Smooth Data						
baseline	ChebNet	2.55 ± 2.87	2.38 ± 3.55	2.55 ± 2.83				
OULS	m-GCN (45 x 1)	$\textbf{0.39} \pm 0.37$	0.43 ± 0.52	$\textbf{0.39} \pm 0.36$				
OULS	m-GCN (10 x 5)	0.83 ± 0.68	0.74 ± 0.59	0.83 ± 0.69				
		Noisy Data						
baseline	ChebNet	2.92 ± 3.35	2.78 ± 4.02	2.93 ± 3.32				
OULS	m-GCN (45×1)	0.54 ± 0.75	$\textbf{0.64} \pm 1.06$	0.53 ± 0.73				
OULS	m-GCN (10 x 5)	0.90 ± 0.82	0.81 ± 0.74	0.90 ± 0.83				

Inference Task:

- Only few installed pressure sensors
- Infer the pressure at all other nodes

(Over-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

- Architecture: 45 Layers Very deep GNN
- Empirically: Less Layers results in Performance drop
- Intuition: Water in a WDS smoothes out perturbations over the space of the graph → GCN-smoothing might be beneficial here.

Inference Task:

- Only few installed pressure sensors
- Infer the pressure at all other nodes

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

Beyond Aggregation-Based Methods

- In other applications **oversmoothing** can prevent learning
- Real-world graphs can be noisy, aggregating **noise can prevent learning**
- Information probably not uniformly distributed on a graph
- Graph sampling can **focus computational resources** to specific subgraphs
- My current project: Sampling-based GNNs!

Sampling-Based GNN

• Idea: Instead of aggregating neighborhoods, sample the neighborhood intelligently

– Aggregation helps with encoding structure, but causes problems

Motivation:

•

- Sampling individual neighbors reduces over-squashing and over-smoothing
- Information on a graph is not necessarily dense, but may be sparse (e.g. Molecules)

Conceptualizing the Idea

- Differentiable Exploration of Graphs by Independent 'Samplers', here Ants
- This allows multiple extensions that GCNs cannot apply
 - Communication between samplers visiting the same node (Doubles the receptive field)
 - Update of nodes on the sampling trajectory
 - Out-of-the-box explainability by observing information flow (?)

1. Compute edge logits of neighborhood (similar to a GAT)

 $\alpha_v = MLP(h_u|h_v)$

Sampling-Based GNN

- We can use neighborhood attention just like a GAT to *score* nodes
 - For each node $u \in \mathcal{N}_v$

$$\alpha_v = MLP(h_v|h_u)$$

Sampling-Based GNN

• We can use neighborhood attention to *score* nodes

– For each node $u \in \mathcal{N}_v$

 $\alpha_v = MLP(h_v|h_u)$

 $\alpha_v = MLP(h_u|h_v)$

(similar to a GAT)

 $\alpha_v = MLP(h_u|h_v)$

Sampling-Based GNN

- We can use neighborhood attention to *score* nodes
 - For each node $u \in \mathcal{N}_v$

$$\alpha_v = MLP(h_v|h_u)$$

• We can use a relaxation of argmax: Softmax with temperature

$$p_t = \operatorname{softmax}\left(\frac{\vec{lpha}_{t,e_v}}{\tau}\right)$$

Figure From: https://fabianfuchsml.github.io/gumbel/

1. Compute edge logits of neighborhood (similar to a GAT)

 $\alpha_v = MLP(h_u|h_v)$

Sampling-Based GNN

- We can use neighborhood attention to *score* nodes
 - For each node $u \in \mathcal{N}_v$

$$\alpha_v = MLP(h_v|h_u)$$

• We can use a relaxation of argmax: Softmax with temperature

$$p_t = \operatorname{softmax}\left(\frac{\vec{\alpha}_{t,e_v}}{\tau}\right)$$

• This is the still a relaxation, but we want only a single node to be sampled from this distribution

- The Gumbel-Softmax is a reparameterizable . categorical probability function
- We use the Gumbel-Softmax Trick to sample . one node from the edge distribution

$$\mathbf{p}_{t} = \operatorname{softmax}\left(\frac{z_{t,e_{v}} + \vec{\alpha}_{t,e_{v}}}{\tau}\right)$$
$$\mathbf{s}^{t+1} = \operatorname{one-hot}\left(\operatorname{argmax}_{\forall e_{v} \in \mathcal{N}} \mathbf{p}_{t}\right)$$

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

- This way we can generate walks along the . graph that are trainable
- Integrating the walk with a sequential model yields the node embedding

$$\mathbf{p}_{t} = \operatorname{softmax}\left(\frac{z_{t,e_{v}} + \vec{\alpha}_{t,e_{v}}}{\tau}\right)$$
$$\mathbf{s}^{t+1} = \operatorname{one-hot}\left(\operatorname{argmax}_{\forall e_{v} \in \mathcal{N}} \mathbf{p}_{t}\right)$$
$$\mathbf{h}_{v}' = \sum_{v \in \mathcal{N}(u)} s_{v}^{t+1} \mathbf{h}_{v}$$
$$\mathbf{\bar{s}}^{t+1} = \operatorname{MLP}(\mathbf{\bar{s}}^{t} + \mathbf{h}_{v}')$$

 $\alpha_v = MLP(h_u|h_v)$

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

3. Result: winner-takes-all

neighborhood sample.

- This way we can generate walks along the . graph that are trainable
- Integrating the walk with a sequential model yields the node embedding

$$\begin{aligned} \mathbf{p}_t &= \operatorname{softmax} \left(\frac{z_{t,e_v} + \vec{\alpha}_{t,e_v}}{\tau} \right) \\ \mathbf{s}^{t+1} &= \operatorname{one-hot} \left(\operatorname{argmax}_{\forall e_v \in \mathcal{N}} \mathbf{p}_t \right) \\ \mathbf{h}'_v &= \sum_{v \in \mathcal{N}(u)} s_v^{t+1} \mathbf{h}_v \\ \mathbf{\bar{s}}^{t+1} &= \operatorname{MLP}(\mathbf{\bar{s}}^t + \mathbf{h}'_v) \end{aligned}$$

 $\alpha_v = MLP(h_u|h_v)$

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Sampling-Based GNN

- 1. Part: Sampling the neighborhood intelligently
 - We can now sample the neighborhood and optimize the predicted distribution (ST-Gumbel-Softmax)
- 2. Part: Integrating the Node Features from the path
 - Using a Sequential Model
- Potential 3. Part: Sampler Communication
 - When two samplers are on the same node exchanging state features would double the receptive field
- Potential 4. Part: Trail Information
 - Comparable to Ant colony optimization, the samplers can leave information at the nodes before they leave

Sampling Trajectories – MolHIV Dataset

Preliminary Results – Experiments Still Running

Open Question: What's the best way to generate explanations from the sampling trajectories?

CSSINGING

gestylittemationa

Open Society rear Dation

The Aspen Institute

er Sands en Glober Alfoirs Inestate

Anthew Stroenlain

BAR INNO F

Brookings**

The Wilson Center

spentBernacracy

The Mean Institute

Human Rights Watch

The Century Foundation

Broken Call Manarkar

Balat-Crisis Group CSIS Surrol Contra Data

never to stand several and the setting of the second several s

S. Institu

Kenneth Roth

This section focuses on node-level tasks

ternation

Human Rights Watch

0000000 00 ۵ 0 9 9 Q

ImageNet: https://paperswithcode.com/dataset/imagenet

CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a MNIST: https://en.wikipedia.org/wiki/MNIST_database

NN

Image Benchmarks

A Model that performs well on ImageNet is likely to also perform well on your own photos, but maybe not suited for dash-cam footage.

→ Different Domains / Sizes / Tasks

Image Sources

Kitti: https://github.com/topics/kitti-dataset?l=c ImageNet: https://paperswithcode.com/dataset/imagenet CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a MNIST: https://en.wikipedia.org/wiki/MNIST_database

- Variable Structure greatly increases the number of Attributes of a Benchmark
- It is less intuitive what model suits which need

- Variable Structure greatly increases the number of Attributes of a Benchmark
- It is less intuitive what model suits which need
 - \rightarrow Still an open question and not well understood

• A typical table header at the end of a paper:

Model	Cora	Pubmed	Citeseer	-	The MNISTs of Graphs:
Some baselines					Citation Networks
Some Related Work					
Presented Work					

Table 1: Average node classification test accuracy results over X seeds.

• What do these benchmarks tell us about a model?

Pitfalls of Relying on Cora and Co.

- In this benchmark, GCN performance seems to correlate with *homophily*
 - The tendency that edges connect similar nodes
- This aligns well with the smoothing property which might explain the difference in performance

Table 1: Results on node classification datasets sorted by their homophily level. Top three models are coloured by **First**, **Second**, **Third**. Our models are marked **NSD**.

	Hom level	Texas 0.11	Wisconsin 0.21	Film 0.22	Squirrel 0.22	Chameleon 0.23	Cornell 0.30	Citeseer 0.74	Pubmed 0.80	Cora 0.81
	#Nodes	183	251	7,600	5,201	2,277	183	3,327	18,717	2,708
	#Edges	295	466	26,752	198,493	31,421	280	4,676	44,327	5,278
	#Classes	5	5	5	5	5	5	7	3	6
T C C 1	GraphSAGE	$82.43{\pm}6.14$	$81.18 {\pm} 5.56$	$34.23 {\pm} 0.99$	$41.61 {\pm} 0.74$	$58.73 {\pm} 1.68$	$75.95{\scriptstyle \pm 5.01}$	76.04 ± 1.30	$88.45 {\pm} 0.50$	$86.90{\scriptstyle\pm1.04}$
I wo Spatial	GCN	55.14 ± 5.16	51.76 ± 3.06	$27.32{\pm}1.10$	$53.43{\pm}2.01$	$64.82 {\pm} 2.24$	60.54 ± 5.30	76.50 ± 1.36	88.42 ± 0.50	86.98 ± 1.27
Graph Models	GAT	$52.16 {\pm} 6.63$	49.41 ± 4.09	27.44 ± 0.89	40.72 ± 1.55	$60.26{\scriptstyle \pm 2.50}$	$61.89{\pm}5.05$	76.55 ± 1.23	$87.30 {\pm} 1.10$	$86.33{\scriptstyle \pm 0.48}$
	MLP	$80.81 {\pm} 4.75$	85.29 ± 3.31	36.53 ± 0.70	28.77 ± 1.56	46.21 ± 2.99	$81.89{\scriptstyle \pm 6.40}$	74.02 ± 1.90	$87.16 {\pm} 0.37$	$75.69 {\pm} 2.00$

Tabel derived from Bodnar et al. (2022) Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

Homophily - Heterophily

- Tendency that edges connect similar nodes
- Not formalized, different ways to compute this
- A simple formulation:

Pitfalls of Benchmarking GNNs [1]

	Relative	Avg.				
	accuracy	rank	Planetoid split	CORA	CiteSeer	PubMed
GCN	99.4	2.3	GCN	81.9 ± 0.8	69.5 ± 0.9	79.0 ± 0.5
MoNet	99.0	2.7	GAT	82.8 ± 0.5	71.0 ± 0.6	77.0 ± 1.3
GS-mean	98.3	2.7	MoNet	82.2 ± 0.7	70.0 ± 0.6	77.7 ± 0.6
GAT	95.9	3.6	GS-maxpool	77.4 ± 1.0	67.0 ± 1.0	76.6 ± 0.8
GS-meanpool	l 93.0	5.2	· ·			
GS-maxpool	91.1	6.4	Another split	CORA	CiteSeer	PubMed
LabelProp NI	L 89.3	7.4		700107	(0 (1 1 1)	CO F + 1 0
LabelProp	86.6	7.7	GUN	79.0 ± 0.7	68.6 ± 1.1	69.5 ± 1.0
LogReg	80.6	8.8	GAT	77.9 ± 0.7	67.7 ± 1.2	69.5 ± 0.6
MLP	77.8	8.8	MoNet	77.9 ± 0.7	66.8 ± 1.3	70.7 ± 0.5
			GS-maxpool	74.5 ± 0.6	63.1 ± 1.2	70.3 ± 0.8

(a) Relative accuracy and average rank.

(b) Different split leads to a completely different ranking of models.

Table 2: (a) Relative accuracy scores and ranks averaged over all datasets. See text for the definition. (b) Model accuracy on the Planetoid split from <u>Yang et al</u> [2016] and another split on the same datasets. Different splits lead to a completely different ranking of models.

Different Data-Splits can lead to significantly different results

- \rightarrow Simpler Architectures even outperform more sophisticated ones
 - \rightarrow Usually the data splits are the same across papers

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation

Pitfalls of Benchmarking GNNs [1]

- Another finding:
 Different weight initialization methods can produce vastly different results as well
- A complete hyperparameter search with cross validation for each configuration?

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation
Google's ETA Prediction

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps

Figure 3: Validation RMSE during training, with and without MetaGradients and EMA decay, aggregated across five seeds. Both methods contribute to variance reduction. Results shown for two metro/horizon setups – same trends hold elsewhere.

Applying stabilising techniques such as **MetaGradients and EMA** [(Exponential Moving Average)] was a necessary addition to make the GNNs production-ready.

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps

I asked ChatGPT

What aspects of benchmarking graph neural networks are important?

Benchmarking graph neural networks is an important part of evaluating their performance and comparing different models. Some of the key aspects to consider when benchmarking graph neural networks include the quality of the graph data used for training and evaluation, the specific tasks and metrics used to evaluate the performance of the model, and the computational resources required to train and evaluate the model. Additionally, it is important to consider the scalability of the model and its ability to generalize to new, unseen data. G

Ľ

There are several potential pitfalls to be aware of when evaluating the performance of a \Box \Box \Box graph neural network (GNN). Some of the most common pitfalls include the following:

- Using the wrong evaluation metric: It is important to use evaluation metrics that are appropriate for the specific task and type of data being considered. For example, accuracy may be a good metric for evaluating a GNN that is used for node classification, but it may not be appropriate for evaluating a GNN that is used for link prediction.
- Failing to account for the underlying structure of the graph: GNNs are designed to take advantage of the structure of the graph data they operate on, so it is important to carefully consider how this structure affects the performance of the GNN. For example, a GNN may perform well on a particular type of graph, but poorly on a different type of graph with a different structure.
- 3. Failing to account for the diversity of the data: The performance of a GNN may vary depending on the diversity of the data it is applied to. It is important to evaluate a GNN on a diverse set of data to ensure that it can generalize to different types of graphs.
- 4. Failing to account for the size of the graph: The performance of a GNN may vary depending on the size of the graph it is applied to. It is important to evaluate a GNN on a range of graph sizes to ensure that it can handle graphs of different sizes.

Overall, it is important to carefully consider these and other potential pitfalls when evaluating the performance of a GNN, in order to accurately assess its capabilities and limitations.

What are the pitfalls on GNN evaluation?

There are several potential pitfalls to be aware of whe graph neural network (GNN). Some of the most comm

- Using the wrong evaluation metric: It is important to appropriate for the specific task and type of data being conaccuracy may be a good metric for evaluating a GNN that is classification, but it may not be appropriate for evaluating prediction.
- 2. Failing to account for the underlying structure of the paph: GNNs are designed to take advantage of the structure of the graph data they operate on, so it is important to carefully consider how this structure affects the performance of the GNN. For example, a GNN may perform well on a particular type of graph, but poorly on a different type of graph with a different structure.
- 3. Failing to account for the diversity of the data: The performance of a GNN may vary depending on the diversity of the data it is applied to. It is important to evaluate a GNN on a diverse set of data to ensure that it can generalize to different types of graphs.
- 4. Failing to account for the size of the graph: The performance of a GNN may vary depending on the size of the graph it is applied to. It is important to evaluate a GNN on a range of graph sizes to ensure that it can handle graphs of different sizes.

Overall, it is important to carefully consider these and other potential pitfalls when evaluating the performance of a GNN, in order to accurately assess its capabilities and limitations.

There is not really a good way to quantify this. Also, we have features AND structure.

> ample, ode that is used for link

G

Jointly Benchmarking Datasets and Models

Taxonomy of Benchmarks in Graph Representation Learning

Renming Liu*Semih Cantürk*Frederik WenkelMichigan State UniversityMila, Université de MontréalMila, Université de Montréal

Sarah McGuire Michigan State University Elena Wang Anna Little Michigan State University University of Utah

e Leslie O'Bray Jtah ETH Zürich

Michael Perlmutter University of California, Los Angeles Bastian Rieck Helmholtz Zentrum München

Matthew HirnGuy WolfMichigan State UniversityMila, Université de Montréal

Ladislav Rampášek Mila, Université de Montréal

15 Jun 2022

Graph Perturbations

• Perturb datasets by several means and look at the performance

Graph Perturbations

• Perturb datasets by several means and look at the performance

			- WebKB-Cor	65%	57%	77%	81%	85%	109%	103%	100%	99%	0.8
	-		WebKB-Wis	59%	73%	83%	89%	96%	101%	99%	99%	99%	0.88
	4	Г	DzEu	72%	74%	95%	97%	97%	99%	99%	99%	99%	0.71
	T-1		Actor	76%	76%	90%	97%	96%	103%	98%	99%	98%	0.66
		Г	WikiNet-cham	73%	97%	105%	100%	103%	99%	100%	100%	100%	0.79
		Г	CF-CiteSr	72%	94%	100%	97%	99%	95%	98%	99%	99%	0.99
	Г		WikiCS	77%	89%	100%	97%	97%	98%	99%	99%	100%	0.96
		- LL	CF-PubMed	76%	93%	99%	97%	98%	99%	99%	100%	99%	0.98
		L	Coau-CS	80%	97%	100%	99%	99%	99%	100%	100%	100%	1
		Г	Coau-Phy	88%	99%	100%	99%	100%	99%	100%	100%	100%	1
		Ы	FBPP	87%	99%	100%	100%	100%	94%	97%	98%	98%	0.99
		-	LFMA	87%	98%	99%	98%	97%	93%	97%	97%	97%	0.96
	L	- I г	CF-Cora	83%	96%	100%	90%	93%	94%	97%	98%	98%	0.95
		hl	CF-CoraML	83%	98%	99%	94%	97%	95%	99%	99%	99%	0.98
		4.	CF-DBLP	85%	96%	100%	94%	97%	93%	97%	98%	98%	0.96
L	T-2	L	Flickr	85%	95%	102%	95%	97%	92%	93%	94%	94%	0.72
	T-3		- WikiNet-squir	96%	111%	112%	99%	102%	101%	101%	102%	102%	0.64
	1 3		Github	94%	100%	101%	99%	99%	97%	98%	98%	99%	0.9
	Г	┥┌	Am-Phot	96%	99%	100%	99%	100%	99%	100%	100%	100%	0.99
			Am-Comp	97%	100%	100%	100%	100%	98%	99%	99%	100%	0.99
		Ч	Twitch-PT	100%	95%	102%	96%	96%	98%	96%	95%	102%	0.64
l			Twitch-DE	100%	98%	101%	98%	98%	96%	96%	96%	100%	0.71
			Twitch-ES	96%	92%	101%	98%	97%	95%	96%	97%	98%	0.69
			Twitch-EN	93%	92%	100%	97%	97%	98%	99%	97%	98%	0.65
	L		WebKB-Tex	98%	101%	84%	88%	114%	105%	98%	97%	101%	0.78
				LYS	aeg	2255	an55	2355	1005	×	x	ž	inalc
				Noder	Noder	owl	MidPe	Jight	NOFOS	F120	F139	41209	ofighto
				701	4	\mathbf{v}	•	χ.					P

				WebKB-Cor	65%	57%	77%	81%	85%	109%	103%	100%	99%	0.8
	-			WebKB-Wis	59%	73%	83%	89%	96%	101%	99%	99%	99%	0.88
		1		DzEu	72%	74%	95%	97%	97%	99%	99%	99%	99%	0.71
	T-1			Actor	76%	76%	90%	97%	96%	103%	98%	99%	98%	0.66
				WikiNet-cham	73%	97%	105%	100%	103%	99%	100%	100%	100%	0.79
			ГЦ	CF-CiteSr	72%	94%	100%	97%	99%	95%	98%	99%	99%	0.99
		\square		WikiCS	77%	89%	100%	97%	97%	98%	99%	99%	100%	0.96
			ΓЧ	CF-PubMed	76%	93%	99%	97%	98%	99%	99%	100%	99%	0.98
				Coau-CS	80%	97%	100%	99%	99%	99%	100%	100%	100%	1
1	_			Coau-Phy	88%	99%	100%	99%	100%	99%	100%	100%	100%	1
		Ιr	┨┍	FBPP	87%	99%	100%	100%	100%	94%	97%	98%	98%	0.99
			٦	LFMA	87%	98%	99%	98%	97%	93%	97%	97%	97%	0.96
		Ч	Н	CF-Cora	83%	96%	100%	90%	93%	94%	97%	98%	98%	0.95
			ſГ	CF-CoraML	83%	98%	99%	94%	97%	95%	99%	99%	99%	0.98
		L	1^{l}	CF-DBLP	85%	96%	100%	94%	97%	93%	97%	98%	98%	0.96
	T-2			Flickr	85%	95%	102%	95%	97%	92%	93%	94%	94%	0.72
	m_3			WikiNet-squir	96%	111%	112%	99%	102%	101%	101%	102%	102%	0.64
	1 3		Г	Github	94%	100%	101%	99%	99%	97%	98%	98%	99%	0.9
	Г	-l (Am-Phot	96%	99%	100%	99%	100%	99%	100%	100%	100%	0.99
			٦	Am-Comp	97%	100%	100%	100%	100%	98%	99%	99%	100%	0.99
		Ч		Twitch-PT	100%	95%	102%	96%	96%	98%	96%	95%	102%	0.64
l			Γ	Twitch-DE	100%	98%	101%	98%	98%	96%	96%	96%	100%	0.71
			Г	Twitch-ES	96%	92%	101%	98%	97%	95%	96%	97%	98%	0.69
				Twitch-EN	93%	92%	100%	97%	97%	98%	99%	97%	98%	0.65
	L			WebKB-Tex	98%	101%	84%	88%	114%	105%	98%	97%	101%	0.78
					Feat		igmen v	tation	S High Pass	Strue Augr	cture nental	tions	Fraget	original

				WebKB-Cor	65%	57%	77%	81%	85%	109%	103%	100%	99%	0.8
	-			WebKB-Wis	59%	73%	83%	89%	96%	101%	99%	99%	99%	0.88
		-		DzEu	72%	74%	95%	97%	97%	99%	99%	99%	99%	0.71
	T =3	1		Actor	76%	76%	90%	97%	96%	103%	98%	99%	98%	0.66
				WikiNet-cham	73%	97%	105%	100%	103%	99%	100%	100%	100%	0.79
			┎∟	CF-CiteSr	72%	94%	100%	97%	99%	95%	98%	99%	99%	0.99
			╎┍	WikiCS	77%	89%	100%	97%	97%	98%	99%	99%	100%	0.96
			լռ	CF-PubMed	76%	93%	99%	97%	98%	99%	99%	100%	99%	0.98
				Coau-CS	80%	97%	100%	99%	99%	99%	100%	100%	100%	1
		-		Coau-Phy	88%	99%	100%	99%	100%	99%	100%	100%	100%	1
		l r	┨┍	FBPP	87%	99%	100%	100%	100%	94%	97%	98%	98%	0.99
			٦	LFMA	87%	98%	99%	98%	97%	93%	97%	97%	97%	0.96
		Ч	L L	CF-Cora	83%	96%	100%	90%	93%	94%	97%	98%	98%	0.95
				CF-CoraML	83%	98%	99%	94%	97%	95%	99%	99%	99%	0.98
		L	ł٤	CF-DBLP	85%	96%	100%	94%	97%	93%	97%	98%	98%	0.96
	T =3	2		Flickr	85%	95%	102%	95%	97%	92%	93%	94%	94%	0.72
		~		WikiNet-squir	96%	111%	112%	99%	102%	101%	101%	102%	102%	0.64
	т	³	Г	Github	94%	100%	101%	99%	99%	97%	98%	98%	99%	0.9
		Ы	Ч	Am-Phot	96%	99%	100%	99%	100%	99%	100%	100%	100%	0.99
			ן א	Am-Comp	97%	100%	100%	100%	100%	98%	99%	99%	100%	0.99
				Twitch-PT	100%	95%	102%	96%	96%	98%	96%	95%	102%	0.64
l				Twitch-DE	100%	98%	101%	98%	98%	96%	96%	96%	100%	0.71
			۲_	Twitch ES	06%	02%	101%	0.90/	07%	05%	06%	07%	08%	0.60

- Some benchmarks heavily rely on informative node features
- Many Benchmarks don't actually focus heavily on structure.
- Authors Propose to benchmark on Datasets from each of these clusters T-1, T-2, T-3

	I-	-1 r	ENZYMES	58%	71%	97%	78%	84%	101%	97%	97%	98%	99%	96%	0.91
		᠆┟	MNIST	66%	66%	99%	82%	86%	100%	100%	100%	100%	100%	100%	1
		ι	CIFAR10	62%	62%	98%	85%	88%	99%	98%	99%	99%	99%	99%	0.92
	I-	-2 Г	Scale-Free	78%	100%	98%	97%	99%	101%	99%	97%	99%	101%	99%	0.94
 	-	-h	D&D	72%	92%	98%	97%	93%	100%	99%	97%	99%	98%	98%	0.79
		յւ	PROTEINS	79%	93%	98%	90%	90%	101%	96%	98%	101%	99%	101%	0.79
		Π.	ogbg-moltox21	85%	89%	99%	93%	94%	97%	99%	97%	98%	98%	99%	0.76
		၂ր	ogbg-molhiv	87%	89%	102%	95%	95%	97%	95%	97%	97%	99%	94%	0.75
		יר	MalNetTiny	91%	99%	98%	99%	99%	97%	99%	98%	98%	99%	99%	0.99
			MUTAG	87%	115%	99%	94%	103%	93%	100%	96%	99%	90%	105%	0.82
		L	Small-World	68%	113%	96%	94%	93%	105%	93%	98%	105%	102%	101%	0.86
т-3			Synthie	86%	85%	95%	94%	98%	85%	81%	98%	88%	90%	84%	0.97
	Г	ե	NCI1	88%	95%	97%	92%	93%	74%	84%	84%	87%	93%	86%	0.87
		٦	NCI109	86%	94%	96%	91%	93%	74%	83%	83%	86%	89%	82%	0.87
Г			IMDB-BINARY	99%	123%	101%	100%	99%	69%	75%	83%	99%	98%	99%	0.69
			COLLAB	102%	113%	108%	107%	109%	68%	68%	87%	101%	101%	91%	0.84
	L	╢┍	REDDIT-BINARY	101%	94%	102%	102%	103%	71%	67%	67%	88%	97%	81%	0.94
			REDDIT-MULTI-5K	100%	97%	101%	100%	101%	77%	68%	80%	95%	96%	77%	0.83
			PATTERN	99%	100%	100%	100%	100%	54%	55%	82%	100%	100%	69%	0.93
			SYNTHETICnew	71%	104%	66%	83%	84%	61%	56%	79%	60%	82%	64%	0.91
	1		CLUSTER	55%	55%	100%	95%	97%	60%	60%	70%	100%	100%	62%	0.91
				defte	deped	WR 355	NidP 255	thP255	Floges	in Court	L139141	E120122	61801K3	Netfrac	right Co
			7	10 ⁷ 0	40	\checkmark	h.	His	40	FUIL	`	`	` <	KeO'	~ ^{\$}),

Benchmarking Takeaways

- Cora, Pubmed, Citeseer the MNISTs of Graphs
 - Often demanded by reviewers
 - High variance depending on splits and hyperparameters
 - Testing only on these provides a narrow view of the performance of GNNs
- We don't have a solid understanding what aspects graph benchmarks evaluate
 - The Benchmark Taxonomy is a great start
 - → It is still not very clear what is the best and most fair method to evaluate GNNs

Thank You So Much!

