

Challenges in Graph Advanced Learning

ChaGAL

Luca Hermes

Outline

● Graphs as a Data Structure
● Introduction to Graph Neural Networks

– How to represent structure

– GNNs are local operations

● ConvNets are specialized grid GNNs
● Aggregation can lead to Oversmoothing
● Case Study: Water Distribution Networks
● My current project: Sampling-based GNNs
● Benchmarking GNNs

A topic often overlooked

What are Graphs?

● A Graph G consists of a set of nodes V and edges E
G = (V, E)

What are Graphs?

● A Graph G consists of a set of nodes V and edges E
G = (V, E)

● Nodes V are specified by feature vectors
● An edge connects, or relates, two nodes

What are Graphs?

● A Graph G consists of a set of nodes V and edges E
G = (V, E)

● Nodes V are specified by feature vectors
● An edge connects, or relates, two nodes

● Edges E may be specified by feature vectors

What are Graphs?

● A Graph G consists of a set of nodes V and edges E
G = (V, E)

● Nodes V are specified by feature vectors
● An edge connects, or relates, two nodes

● Edges E may be specified by feature vectors

Graphs are Everywhere

Graphs are Everywhere

When the data contains multiple manifestations of similar
things and these things are relatable, then it is a graph:

 Thing Relation

Images Pixels – Proximity

Text Words – Context/Proximity

Molecules Atoms – Bonds

Ontologies Subject/Object – Predicate

Social User – Relationship

Point Cloud 3D-Point – Proximity

Research Paper – Citation

What are Graph Neural Networks?

● Functions that embeds nodes
based on structure and node
features

● Two nodes in a similar structural
context should be mapped to
similar locations

Node Embedding Space

● Two nodes in a similar structural context
should be mapped to similar locations
→ This is equivalent to discriminating
 subgraphs

● Node 20 and 18 have a similar subgraph,
they should be close in the latent space

→ How to compare these subgraphs?

d-dimensional Latent space

● Canonically represents structure
● Algorithm:

The Weisfeiler-Lehman Test

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)

● Canonically represents structure
● Algorithm:

The Weisfeiler-Lehman Test

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)

● Canonically represents structure
● Algorithm:

The Weisfeiler-Lehman Test

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)

● Canonically represents structure
● Algorithm:

The Weisfeiler-Lehman Test

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)

● Two nodes in a similar structural context
should be mapped to similar locations
→ This is equivalent to discriminating
 subgraphs

● Node 20 and 18 have a similar subgraph,
they should be close in the latent space

→ How to compare these subgraphs?

d-dimensional Latent space

● A Graph Convolution (GCN) is a
differentiable version of the WL-Algorithm

● Instead of a hash function, a GCN applies
set aggregation and a consecutive MLP

WL node update:

GCN node update:

WL-Test - Graph Convolution

Kipf et al.: Semi-Supervised Classification with Graph Convolutional Networks

https://arxiv.org/abs/1609.02907

From Set-Hash to Set-MLP

Seed: 442 Seed: 442

● How to replace the Hash function with an MLP

What happens locally in a GNN?

Seed: 442 Seed: 442

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of
nodes in a neighborhood

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of
nodes in a neighborhood

How are we encoding these
neighborhoods?

With a permutation invariant function,
i.e. a function that satisfies:

Permutation
Matrix

Neighborhood Node Set

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of
nodes in a neighborhood

Possible Perm. Invariant Functions that
map a Set onto a vector:

Sum - Perm. Invariant
Mean - Perm. Invariant
Attention - Perm. Invariant
Concat? - Perm. Sensitive

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

A function parameterized
by theta, e.g. an MLP

Permutation invariant
aggregation function
(sum/mean/...)

[1] Zaheer et al. NeurIPS 2017 Deep Sets

Message Passing Principle

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

A function parameterized
by theta, e.g. an MLP

Permutation invariant
aggregation function
(sum/mean/...)

[1] Zaheer et al. NeurIPS 2017 Deep Sets

Message Passing Principle

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

2. Message aggregation

[1] Zaheer et al. NeurIPS 2017 Deep Sets

1. Message Generation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

Message Passing Principle

● Node neighborhoods remain the same under permutation

.

.

.

[1] Zaheer et al. NeurIPS 2017 Deep Sets

2. Message aggregation

1. Message Generation

Replicate across the space of
the graph (weights shared)

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

Message Passing Principle

● Node neighborhoods remain the same under permutation

.

.

.

[1] Zaheer et al. NeurIPS 2017 Deep Sets

2. Message aggregation

The expressivity of a GNN is tied to
the injectivity of this aggregation
function.

1. Message Generation

Expressivity of the Aggregation Function

[1] Xu et al. (2018) How Powerful are Graph Neural Networks?

Message Passing Principle

Message Passing Principle

Computing Graph → Structural Sensitivity!

Graph Neural Networks

GNN1 GNN2

Node Predictions

Graph Neural Networks

GNN1 GNN2

Node Predictions

Graph Prediction

Graph Neural Networks

GNN1 GNN2

Graph Prediction

Node PredictionsEdge Predictions

[1.1] Blog-Post (Video) https://tkipf.github.io/graph-convolutional-networks/
[1.2] Kipf et al. (2017) https://arxiv.org/abs/1609.02907

Latent Space of a GCN [1.1]
D

im
en

si
on

 1

Model: GCN [1.2]
Time: Training Epochs
Embedding Size: 2

Dimension 0

● This is the GAT - Graph Attention Network
● A parameterized attention function scales neighbors prior to aggregation
● This attending to node neighbors helps focusing on discriminative nodes

Example: Graph Attention Network [1]

2. Message aggregation

Attention Function
weights each neighbor

[1] Veličković et al. (2017) Graph Attention Networks

Example: Images are Graphs

Image Image Graph 1-Hop Subgraph

Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph

10 2 4

5

3

6

Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph

Pixel 5 is connected to Pixel 1

10 2 4

5

3

6

Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph

10 2 4

5

3

6

Pixel 5 is connected to Pixel 6

Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph

This this the circulant
matrix used in ConvNets
implementations,
(different color denotes
different kernel weight)

Convolution Priors
● Locality:

Applies a local kernel operation onto a neighborhood of pixels
● Translational Symmetry:

A pattern is recognized independent of it’s location
● Cannonical Orientation:

Allows us to impose an ordering on the pixels

Cannonical

Pixel Ordering

Image Source: https://chemistry.com.pk/infographics/functional-groups-in-organic-chemistry/

Local Motivs / Primitives that can be learned by
Local Functions

Questions so far?

2. Message aggregation

1. Message Generation

Deep Graph Neural Networks?

● Repetitive Aggregations are smoothing out the signal!

● This is the Oversmoothing Problem [1]

● Oversmoothing happens proportional to graph diameter and node degree [2]

The signal looses it’s details!
Nodes become indistinguishable

[1] Oono et al. (2020) https://arxiv.org/abs/1905.10947
[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59

Deep Graph Neural Networks?

● Repetitive Aggregations are smoothing out the signal!

● This is the Oversmoothing Problem [1]

● Oversmoothing happens proportional to graph diameter and node degree [2]

The signal looses it’s details!
Nodes become indistinguishable

[1] Oono et al. (2020) https://arxiv.org/abs/1905.10947
[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59

(Over-)Smoothing is good sometimes!

Pressure Sensors
(~ 5% of nodes)

Inference Task:
● Only few installed pressure sensors
● Infer the pressure at all other nodes

Case-Study: Water Distribution Systems (WDS) [1]

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

(Over-)Smoothing is good sometimes!

Pressure Sensors
(~ 5% of nodes)

Inference Task:
● Only few installed pressure sensors
● Infer the pressure at all other nodes

Case-Study: Water Distribution Systems (WDS) [1]

45 Message Passing Layers

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

baseline
ours
ours

baseline
ours
ours

(Over-)Smoothing is good sometimes!

Pressure Sensors
(~ 5% of nodes)

Inference Task:
● Only few installed pressure sensors
● Infer the pressure at all other nodes

Case-Study: Water Distribution Systems (WDS) [1]

45 Message Passing Layers

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

● Architecture: 45 Layers - Very deep GNN
● Empirically: Less Layers results in Performance drop
● Intuition: Water in a WDS smoothes out perturbations

over the space of the graph → GCN-smoothing might
be beneficial here.

Beyond Aggregation-Based Methods

● In other applications oversmoothing can prevent learning
● Real-world graphs can be noisy, aggregating noise can prevent learning
● Information probably not uniformly distributed on a graph
● Graph sampling can focus computational resources to specific subgraphs
● My current project: Sampling-based GNNs!

GCNSampling-Based GNN

Sampling-Based GNN

● Idea: Instead of aggregating neighborhoods, sample the neighborhood intelligently

● Motivation:

– Aggregation helps with encoding structure, but causes problems

– Sampling individual neighbors reduces over-squashing and over-smoothing

– Information on a graph is not necessarily dense, but may be sparse (e.g. Molecules)

Conceptualizing the Idea

● Differentiable Exploration of Graphs by Independent ‘Samplers’, here Ants
● This allows multiple extensions that GCNs cannot apply

– Communication between samplers visiting the same node (Doubles the receptive field)

– Update of nodes on the sampling trajectory

– Out-of-the-box explainability by observing information flow (?)

Sampling-Based GNN

● We can use neighborhood attention just like a GAT to score nodes

– For each node

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

Selecting the highest alpha,
would yield a gradient for
ONLY that neighbor.

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

● We can use a relaxation of argmax: Softmax with temperature

Figure From: https://fabianfuchsml.github.io/gumbel/

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

● We can use a relaxation of argmax: Softmax with temperature

● This is the still a relaxation, but we want only a single node to be sampled
from this distribution

Figure From: https://fabianfuchsml.github.io/gumbel/

Straight-Through Gumbel-Softmax

● The Gumbel-Softmax is a reparameterizable
categorical probability function

● We use the Gumbel-Softmax Trick to sample
one node from the edge distribution

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

https://arxiv.org/abs/1308.3432

Straight-Through Gumbel-Softmax

● This way we can generate walks along the
graph that are trainable

● Integrating the walk with a sequential model
yields the node embedding

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

https://arxiv.org/abs/1308.3432

Straight-Through Gumbel-Softmax

● This way we can generate walks along the
graph that are trainable

● Integrating the walk with a sequential model
yields the node embedding

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Argmax is non-differentiable,
in the backward pass, we
simply bypass it and use a
biased gradient

https://arxiv.org/abs/1308.3432

Sampling-Based GNN

● 1. Part: Sampling the neighborhood intelligently
– We can now sample the neighborhood and optimize the

predicted distribution (ST-Gumbel-Softmax)
● 2. Part: Integrating the Node Features from the path

– Using a Sequential Model
● Potential 3. Part: Sampler Communication

– When two samplers are on the same node – exchanging state features would
double the receptive field

● Potential 4. Part: Trail Information

– Comparable to Ant colony optimization, the samplers can leave information at the nodes before
they leave

Sampling Trajectories – MolHIV Dataset

Preliminary Results – Experiments Still Running
Open Question: What’s the best way to generate explanations from

the sampling trajectories?

Benchmarking GNNs

Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

Benchmarking GNNs

Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

This section focuses on node-level tasks

Image Benchmarks

Image Sources
Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database

Image Benchmarks

Image Sources
Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database

A Model that performs well on ImageNet is
likely to also perform well on your own photos,
but maybe not suited for dash-cam footage.

→ Different Domains / Sizes / Tasks

● Variable Structure greatly increases the number of Attributes of a
Benchmark

● It is less intuitive what model suits which need

Allow arbitrary

Structure

Benchmarking GNNs

Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

Size

Task

Domain
Image

Dataset

● Variable Structure greatly increases the number of Attributes of a
Benchmark

● It is less intuitive what model suits which need

→ Still an open question and not well understood

Allow arbitrary

Structure

Benchmarking GNNs

Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

Size

Task

Domain
Image

Dataset

Benchmarking GNNs

● A typical table header at the end of a paper:

● What do these benchmarks tell us about
a model?

Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

The MNISTs of Graphs:
Citation Networks

Pitfalls of Relying on Cora and Co.

● In this benchmark, GCN performance seems to correlate with homophily

– The tendency that edges connect similar nodes

● This aligns well with the smoothing property which might explain the difference in performance

Tabel derived from Bodnar et al. (2022) Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

Two Spatial
Graph Models

Homophily - Heterophily

● Tendency that edges connect similar nodes

● Not formalized, different ways to compute this

● A simple formulation:

Pitfalls of Benchmarking GNNs [1]

Different Data-Splits can lead to significantly different results
→ Simpler Architectures even outperform more sophisticated ones

→ Usually the data splits are the same across papers
[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation

Pitfalls of Benchmarking GNNs [1]

● Another finding:
Different weight initialization methods can
produce vastly different results as well

● A complete hyperparameter search with
cross validation for each configuration?

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation

Google’s ETA Prediction

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps

Google’s ETA Prediction

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps

 Applying stabilising techniques such as MetaGradients and EMA
 [(Exponential Moving Average)] was a necessary addition to make

 the GNNs production-ready.
“

I asked ChatGPT

There is not really a good
way to quantify this.

Also, we have features
AND structure.

Jointly Benchmarking Datasets and Models

Graph Perturbations

● Perturb datasets by several means and look at the performance

Graph Perturbations

● Perturb datasets by several means and look at the performance

Feature Augmentations

Structure Augmentations Structure and Feature Augmentations

Benchmarking the Benchmarks

Benchmarking the Benchmarks

Feature Augmentations Structure
Augmentations

Benchmarking the Benchmarks

Feature Augmentations Structure
Augmentations

● Some benchmarks heavily rely on informative node features
● Many Benchmarks don’t actually focus heavily on structure.
● Authors Propose to benchmark on Datasets from each of these clusters T-1, T-2, T-3

Benchmarking the Benchmarks

● Perturbe datasets by several means and look at the performance

Benchmarking Takeaways

● Cora, Pubmed, Citeseer – the MNISTs of Graphs
– Often demanded by reviewers

– High variance depending on splits and hyperparameters

– Testing only on these provides a narrow view of the performance of GNNs

● We don’t have a solid understanding what aspects graph benchmarks evaluate
– The Benchmark Taxonomy is a great start

→ It is still not very clear what is the best and most fair
method to evaluate GNNs

Thank You So Much!

Any Questions?Size

Homophily

Task

Domain

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 90

