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Complex Systems: neither random nor fully ordered



Brain: complex function, structure, dynamics



Characterizing brain state: Functional Connectivity

Functional connectivity (FC): statistical dependence
between activity of remote brain areas
Typically measured by correlation of time series
Can be measured both during resting state or a task
In fMRI, FC is supported by LFF
Resting networks correspond to functional brain networks
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Dependence: how to measure?

Pearson’s correlation ρX ,Y = cov(X ,Y )
σXσY

= E [(X−µX )(Y−µY )]
σXσY

Independence(X ,Y independent): p(X ,Y ) = p(X )p(Y )

Mutual information: I(X ; Y ) =
∑

y∈Y
∑

x∈X p(x , y) log
(

p(x ,y)
p(x) p(y)

)
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Practical problem

linear correlation
widely used, simple concept
generally effective

BUT ... neuronal and hemodynamic processes nonlinear!
⇒ nonlinear methods proposed for FC
HOWEVER ... nonlinear methods also have problems!

robustness
implementation
interpretation

⇒ Is linear correlation sufficient for fMRI FC?
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Assumption: Gaussianity

for bivariately normal distributions (“linear dependence”):
linear correlation ρX ,Y fully captures the dependence
mutual information between variables is
I(X ,Y ) = IGauss(ρX ,Y ) = − 1

2 log(1− ρ2
X ,Y )

for general bivariate distribution (under marginal
normality):

linear correlation is not sufficient to capture the dependence
mutual information between variables is
I(X ,Y ) ≥ − 1

2 log(1− ρ2
X ,Y )

⇒ we can quantify the extra dependence (mutual
information) that is not captured by linear correlation:
Iextra = I(X ,Y )− IGauss(ρX ,Y )
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Strategy vizualization
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Example: brain activity dependence network (fMRI)

24 fMRI sessions (3T, TR=2000 ms, 3× 3× 3.5 mm3, 300
volumes), standard data preprocessing
AAL based parcellation to 90 regions
each region represented by average activity time series
90-by-90 matrices of linear and nonlinear connectivity
difference between linear and nonlinear connectivity

quantified
tested

mutual information estimated using the equiquantal method

IGauss(rX ,Y ) is estimated by computing mutual information on linearized
version of the data (Fast Fourier Transform surrogates) as finite sample
estimates of linear correlation and mutual information have different
properties (such as bias and variance)



Results
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[JH et al., Neuroimage, 2011]



Nonlinear coupling in climate recordings

Nonlinear interactions in (monthly) temperature data?
nonlinear interaction: deviation from linear interaction

existence
strength
localization
sources/form/origin
relevance for specific analysis
treatment
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Data and methods

Data: NCEP/NCAR reanalysis dataset
surface air temperatures
monthly data (years 1948 - 2007; 720 timepoints)
global grid 73× 144 points (2.5 deg×2.5 deg sampling)
yearly cycle removed (anomalies)



Results: Existence
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Eyeball method: not much nonlinearity
Statistical testing: 15% links above 95th percentile
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Localization of nonlinear contributions

mean MI of a node
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Statistical testing against surrogates: 8% links above 95th
percentile
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Temperature anomalies:

mean MI of a node
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What about remaining ‘non-linearities’?
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Nonstationarity ... and detecting brain states
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Detecting brain states: [Betzel et al,’12],[JH et al., ’15]
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The network theory bet for real systems
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The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):
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The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):



Small-world property

[Watts and Strogatz, 1998]

Graph: G = (V , E); V set of nodes; V = 1, ..., n ;E ⊂ V 2 set of edges. di,j shortest path between i a j .
Reprezentation by matrix A: Ai,j = 1⇔ (i, j) ∈ E ; ki =
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Small-world in the brain

The brain correlation matrix is a small world:
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Why is this interesting?



The brain is a small world...

and randomly connected system also...

Xt = AXt−1 + et

LS = 2.157,LF = 2.308,CS = 0.1081,CF = 0.2355, λ =
1.07, γ = 2.1778, σ = 2.0353. [JH et al., 2012, Chaos]
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Is this the explanation for small-world in real data?

Problem: choice of the null hypotheses?

Solution: a size and coupling-distribution-matched linear vector
autoregressive process

Small-world indices were computed in the same way for
data and for ’scrambled interaction’ time series. This was
modeled by fitting an vector autoregressive (VAR) process
of order 1 to the BOLD time series:

Xt = c + AXt−1 + et , (1)

(where c is a N × 1 vector of constants, A is a N × N
matrix and et is a N × 1 vector of error terms) and
subsequently randomly scrambling A.
To control for the effects of approximation by a VAR
process, a realization of the fitted VAR model with
scrambling omitted was also analyzed.
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Data

10 minutes, 240 volumes of resting state fMRI (BOLD)
84 (48 males, mean age ± SD: 30.83 ± 8.48) healthy
volunteers
3T Siemens Trio scanner (GE-EPI, TR/TE=2500/30 ms,
voxel=3x3x3mm)
A 3D high-resolution T1-weighted image was used for
anatomical reference.
slice-timing correction, motion correction, spatial
normalization to MNI
90 parcels from the Automated Anatomical Labeling (AAL)
atlas
orthogonalized wrt motion parameters, white matter and
CSF signal
linear detrending, band-pass filtering (Butterworth filter
0.01 - 0.08 Hz)
FC matrix computed by correlation and binarized to 20
percent density



Result: Brain is as ’small-world’ as if randomly rewired

Brain is as ’small-world’ as ...
a size&density-matched randomly coupled linear AR(1) system.
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And what about the climate?
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Detecting causality and measuring information flow

Granger causality - a variable is considered causal with
respect to some target variable, if its inclusion in a model
improves the prediction of the target
Bivariate Granger causality model

X i
t =

+∞∑
τ=1

aτX i
t−τ + ηt X i

t =
+∞∑
τ=1

bτX i
t−τ +

+∞∑
τ=1

cτX j
t−τ + φt

Granger causality index

FX j→X i = ln
var (ηt )

var (φt )



Causality - linear and nonlinear

Granger causality: X ‘Granger causes’ Y iff including the
past of Y in a (linear) model of X improves the model fit

FX j→X i = ln
var (ηt )

var (φt )
6= 0

Transfer entropy: the difference of entropies of Yt+1
conditioned on only Yt or also on Xt :

TX→Y = I(Xt ,Yt+1|Yt ) = H(Yt+1|Yt )− H(Yt+1|Yt ,Xt ).

for stationary linear Gaussian processes GC and TE
equivalent

TX→Y =
1
2
FX→Y
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Multivariate causal models

YX Z

X

Y Z

b)a)

a) Indirect causality b) Spurious causality

Multivariate Granger causality model

X i
t =

+∞∑
τ=1

n∑
k=1,k 6=j

dk ,τX k
t−τ + ηt X i

t =
+∞∑
τ=1

n∑
k=1

ek ,τX k
t−τ + φt

Multivariate model is necessary to distinguish between
direct and indirect causality, bivariate model may also lead
to detection of spurious links
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Advantages of causality analysis

provides directional information
takes care of indirect connections (if mediating variables
included)
but: estimation more difficult due to higher dimensionality
of variables
proposed solutions:

reducing dimensionality in time and space
iterative estimation of conditional independence structure
(Runge, PRL, 2012; Sun, Physica D, 2014; Kugiumtzis,
2012; see Hlinka et al, 2018, arxiv for comparative review)



Example: climate (temperature) interaction network

Data: daily surface temperature anomalies from NCEP/NCAR
reanalysis dataset on a geodesic grid
Methods: correlation vs. Granger causality
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Remainder: Climate interactions (non)linearity

⇒ we can quantify the extra dependence (mutual information I)
that is not captured by linear correlation ρ:
Iextra(X ,Y ) = IX ,Y − 1

2 log(1− ρ2
X ,Y )

0 0.5 1 1.5 2
0

0.5

1

1.5

2

M
I 

in
 d

at
a 

(b
it

s)

MI in surrogate data (bits)

mean MI of a node

 

 

0 60 120 180 240 300 360

90

60

30

0

−30

−60

−90 0

0.02

0.04

0.06

0.08

0.1

mean extraMI of a node

 

 

0 60 120 180 240 300 360

90

60

30

0

−30

−60

−90 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

mean extraMI of a node
(relative to meanMI)

 

 

0 60 120 180 240 300 360

90

60

30

0

−30

−60

−90 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

[JH et al., Climate Dynamics, 2014]



Stability of causality estimators

Nonlinear causality estimators might pay for generality with
instability: linear Granger vs. estimates of transfer entropy.
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Causalities in climate





Winds - detail



Causalities in climate - detail

[JH et al, 2017, Chaos]



Advanced application: causal climate network
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Challenges/generalizations

large network estimation
nonlinear interaction estimation
event-like data
oscillatory signals
chaotic systems
higher-order dependences
nonstationarity
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Detailed results
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Left: relative clustering (median, quartiles, extremes, outliers)
for data, VAR model and randomized VAR model.
Right: relative mean path length.

The small-world property is driven by the clustering coefficient



Modelling perturbation of epileptic dynamics

The dynamics of neural population activity is modeled by:

dv/dt = −τx (v3 + v2 − a),

Dynamics of the population excitability parameter a are
modelled as

da/dt = τa(tanhc(h − v)− 0.5),

We set τx = 1, τa = 0.001, c = 1000 and h = −0.44 + 1.6a.





Do perturbations cause or delays seizures?

[Chang et al., submitted]



Do perturbations cause or delays seizures?

[Chang et al., submitted]



’Realistic’ Epileptor model [Jirsa et al, 2014]

Here, the x1 and y1 variables constitute a subsystem
responsible for fast oscillations, the x1 and y1 variables
constitute a second subsystem involved in spike wave events.
The slow permittivity variable is z.



Similar dual effect in modified Epileptor
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Left: phase space visualization; Right: modelled time series
Top: unperturbed model dynamics; Middle: increased seizure
rate (A=1.8, P=0.0006); Bottom: decreased seizure rate
(A=1.2, P=0.00018)



Why I(X ,Y ) ≥ −1
2 log(1− ρ2

X ,Y )?

Maximum entropy distributions:
(0,1): uniform
R: does not exist, but:
R, σ(X ) = c: N (µ, σ2)

R2, Cov(X ) = Σ : N (µ, Σ)

What about minimal information distribution?
I(X ; Y ) = H(X ) + H(Y )− H(X ,Y )

arg min
X

I(X )
?
= N (µ, Σ)

Yes, if we fix H(X ) and H(Y ) by marginal normalization...

Is this needed?
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