Occam's razor and modelling of complex phenomena in brain networks

Jaroslav Hlinka

Institute of Computer Science, Czech Academy of Sciences

MFF UK
28/02/2019

Complex Systems: neither random nor fully ordered

Brain: complex function, structure, dynamics

Characterizing brain state: Functional Connectivity

Characterizing brain state: Functional Connectivity

■ Functional connectivity (FC): statistical dependence between activity of remote brain areas

- Typically measured by correlation of time series

■ Can be measured both during resting state or a task
■ In fMRI, FC is supported by LFF
■ Resting networks correspond to functional brain networks

Dependence: how to measure?

Pearson's correlation $\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}$

Dependence: how to measure?

Pearson's correlation $\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}$ Independence $(X, Y$ independent): $p(X, Y)=p(X) p(Y)$
Mutual information: $I(X ; Y)=\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)$

Dependence: how to measure?

Pearson's correlation $\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}$ Independence $(X, Y$ independent): $p(X, Y)=p(X) p(Y)$
Mutual information: $I(X ; Y)=\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)$

■ linear correlation
■ widely used, simple concept

- generally effective

■ linear correlation

- widely used, simple concept
- generally effective

■ BUT ... neuronal and hemodynamic processes nonlinear!
\Rightarrow nonlinear methods proposed for FC

Practical problem

■ linear correlation
■ widely used, simple concept

- generally effective

■ BUT ... neuronal and hemodynamic processes nonlinear!
\Rightarrow nonlinear methods proposed for FC
■ HOWEVER ... nonlinear methods also have problems!

- robustness
- implementation
- interpretation
\Rightarrow Is linear correlation sufficient for fMRI FC?

Assumption: Gaussianity

Assumption: Gaussianity

- for bivariately normal distributions ("linear dependence"):

■ linear correlation $\rho_{X, Y}$ fully captures the dependence

- mutual information between variables is

$$
I(X, Y)=I_{\text {Gauss }}\left(\rho_{X, Y}\right)=-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)
$$

\square for general bivariate distribution (under marginal normality):

- linear correlation is not sufficient to capture the dependence
- mutual information between variables is

$$
I(X, Y) \geq-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)
$$

$■ \Rightarrow$ we can quantify the extra dependence (mutual information) that is not captured by linear correlation:

$$
l_{\text {extra }}=I(X, Y)-I_{\text {Gauss }}\left(\rho_{X, Y}\right)
$$

Strategy vizualization

Example: brain activity dependence network (fMRI)

■ 24 fMRI sessions (3 T, TR=2000 ms, $3 \times 3 \times 3.5 \mathrm{~mm}^{3}, 300$ volumes), standard data preprocessing

- AAL based parcellation to 90 regions

■ each region represented by average activity time series
■ 90-by-90 matrices of linear and nonlinear connectivity

- difference between linear and nonlinear connectivity
- quantified
- tested
- mutual information estimated using the equiquantal method
- $I_{\text {Gauss }}\left(r_{X, Y}\right)$ is estimated by computing mutual information on linearized version of the data (Fast Fourier Transform surrogates) as finite sample estimates of linear correlation and mutual information have different properties (such as bias and variance)

[JH et al., Neuroimage, 2011]

Nonlinear coupling in climate recordings

■ Nonlinear interactions in (monthly) temperature data?

Nonlinear coupling in climate recordings

■ Nonlinear interactions in (monthly) temperature data?
■ nonlinear interaction:

Nonlinear coupling in climate recordings

■ Nonlinear interactions in (monthly) temperature data?
■ nonlinear interaction: deviation from linear interaction

Nonlinear coupling in climate recordings

■ Nonlinear interactions in (monthly) temperature data?
■ nonlinear interaction: deviation from linear interaction

- existence

■ strength

- localization
- sources/form/origin
- relevance for specific analysis
- treatment

Data and methods

Data: NCEP/NCAR reanalysis dataset
■ surface air temperatures
■ monthly data (years 1948-2007; 720 timepoints)

- global grid 73×144 points ($2.5 \mathrm{deg} \times 2.5 \mathrm{deg}$ sampling)

■ yearly cycle removed (anomalies)

Results: Existence

Eyeball method: not much nonlinearity Statistical testing: 15\% links above 95th percentile

Localization of nonlinear contributions

Localization of nonlinear contributions

Form/origin

Form/origin

■ introduce conservative preprocessing: month-wise variance equalization

Form/origin

■ introduce conservative preprocessing: month-wise variance equalization

Form/origin

■ introduce conservative preprocessing: month-wise variance equalization

Statistical testing against surrogates: 8\% links above 95th percentile

Form/origin

Temperature anomalies:

After additional normalization of variance:

What about remaining 'non-linearities'?

Nonstationarity ... and detecting brain states

Nonstationarity ... and detecting brain states

FIGURE 4 | Time series of SL networks. (A) Each row in the SL matrix corresponds to an individual network (examples are shown in the inserts at the left). These networks exhibit periods of relative topological invariance (top two inserts), abrupt transitions (third insert from the top), and recurrences (bottom insert). (B) Normalized cosine similarity matrix between all pairs of SL vectors for the recording period shown in A. Hot colors represent pairs of highly similar networks, cool colors represent dissimilarity. The presence of block structure
along the diagonal of the matrix suggest periods of quasi-stability and rapid intermittent transitions. "Hot" off-diagonal patches suggest recurrences of networks. (C). Cross-correlation matrix of edge time series reordered to reveal clusters of edge communities, as detected in the epoch shown in panel A. (D). Plots show topographic representations of edges constituent to the communities shown at the left. As such, each edge community is the set of edges whose time courses are strongly correlated with one another.

Detecting brain states: [Betzel et al,'12],[JH et al., '15]

FIGURE $6 \mid$ Network states and durations. (A) Representative similarity matrix from one recording epoch (compare with Figure $4 B$) with state boundaries overlaid. (B) Cumulative distributions of state durations (in milliseconds) aggregated across all recording epochs and frequency bands.

Detecting brain states: [Betzel et al,'12],[JH et al., '15]

FIGURE $6 \mid$ Network states and durations. (A) Representative similarity matrix from one recording epoch (compare with Figure 4B) with state boundaries overlaid. (B) Cumulative distributions of state durations (in milliseconds) aggregated across all recording epochs and frequency bands.

The network theory bet for real systems

The network theory bet for real systems

The network theory bet for real systems

The network invasion into neuroscience

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):

The network invasion into neuroscience

Small-world property

Small-world property

[Watts and Strogatz, 1998]

Small-world property

[Watts and Strogatz, 1998]

Graph: $G=(V, E) ; V$ set of nodes; $V=1, \ldots, n ; E \subset V^{2}$ set of edges. $d_{i, j}$ shortest path between i a j. Reprezentation by matrix A: $A_{i, j}=1 \Leftrightarrow(i, j) \in E ; k_{i}=\sum_{j} A_{i, j}$ degree.
$L=\frac{1}{n \cdot(n-1)} \cdot \sum_{i, j} d_{i, j} C=\frac{1}{n} \sum_{i \in V} c_{i} ; \quad c_{i}=\frac{\sum_{j, \ell} A_{i, j} A_{j, \ell} A_{\ell, i}}{k_{i}\left(k_{j}-1\right)}$
small-world index ([Humphries, 2008]): $\sigma=\frac{\gamma}{\lambda} \gg 1 ; \lambda=\frac{L}{L_{\text {rand }}} \gtrsim 1, \gamma=\frac{C}{C_{\text {rand }}} \gg 1$

Small-world in the brain

Small-world in the brain

The brain correlation matrix is a small world:

Why is this interesting?

The brain is a small world...
and randomly connected system also...

$$
X_{t}=A X_{t-1}+e_{t}
$$

The brain is a small world...

and randomly connected system also...

$$
X_{t}=A X_{t-1}+e_{t}
$$

The brain is a small world...

and randomly connected system also...

$$
X_{t}=A X_{t-1}+e_{t}
$$

$L_{S}=2.157, L_{F}=2.308, C_{S}=0.1081, C_{F}=0.2355, \lambda=$ 1.07, $\gamma=2.1778, \sigma=2.0353$. [JH et al., 2012, Chaos]

How strong is the effect?

Problem: choice of the null hypotheses?

Is this the explanation for small-world in real data?

Problem: choice of the null hypotheses?
Solution: a size and coupling-distribution-matched linear vector autoregressive process

Is this the explanation for small-world in real data?

Problem: choice of the null hypotheses?
Solution: a size and coupling-distribution-matched linear vector autoregressive process

- Small-world indices were computed in the same way for data and for 'scrambled interaction' time series. This was modeled by fitting an vector autoregressive (VAR) process of order 1 to the BOLD time series:

$$
\begin{equation*}
X_{t}=c+A X_{t-1}+e_{t} \tag{1}
\end{equation*}
$$

(where c is a $N \times 1$ vector of constants, A is a $N \times N$ matrix and e_{t} is a $N \times 1$ vector of error terms) and subsequently randomly scrambling A.

- To control for the effects of approximation by a VAR process, a realization of the fitted VAR model with scrambling omitted was also analyzed.
- 10 minutes, 240 volumes of resting state fMRI (BOLD)

■ 84 (48 males, mean age \pm SD: 30.83 ± 8.48) healthy volunteers
■ 3T Siemens Trio scanner (GE-EPI, TR/TE=2500/30 ms, voxel $=3 \times 3 \times 3 \mathrm{~mm}$)
■ A 3D high-resolution T1-weighted image was used for anatomical reference.

- slice-timing correction, motion correction, spatial normalization to MNI
- 90 parcels from the Automated Anatomical Labeling (AAL) atlas
■ orthogonalized wrt motion parameters, white matter and CSF signal
■ linear detrending, band-pass filtering (Butterworth filter $0.01-0.08 \mathrm{~Hz}$)
- FC matrix computed by correlation and binarized to 20 percent density

Brain is as 'small-world' as ... a size\&density-matched randomly coupled linear AR(1) system.

And what about the climate?

Detecting causality and measuring information flow

- Granger causality - a variable is considered causal with respect to some target variable, if its inclusion in a model improves the prediction of the target
- Bivariate Granger causality model

$$
X_{t}^{i}=\sum_{\tau=1}^{+\infty} a_{\tau} X_{t-\tau}^{i}+\eta_{t} \quad X_{t}^{i}=\sum_{\tau=1}^{+\infty} b_{\tau} X_{t-\tau}^{i}+\sum_{\tau=1}^{+\infty} c_{\tau} X_{t-\tau}^{j}+\phi_{t}
$$

- Granger causality index

$$
F_{X^{i} \rightarrow X^{i}}=\ln \frac{\operatorname{var}\left(\eta_{t}\right)}{\operatorname{var}\left(\phi_{t}\right)}
$$

Causality - linear and nonlinear

■ Granger causality: X 'Granger causes’ Y iff including the past of Y in a (linear) model of X improves the model fit

$$
F_{X^{j} \rightarrow X^{i}}=\ln \frac{\operatorname{var}\left(\eta_{t}\right)}{\operatorname{var}\left(\phi_{t}\right)} \neq 0
$$

Causality - linear and nonlinear

■ Granger causality: X 'Granger causes’ Y iff including the past of Y in a (linear) model of X improves the model fit

$$
F_{X^{j} \rightarrow X^{i}}=\ln \frac{\operatorname{var}\left(\eta_{t}\right)}{\operatorname{var}\left(\phi_{t}\right)} \neq 0
$$

■ Transfer entropy: the difference of entropies of Y_{t+1} conditioned on only Y_{t} or also on X_{t} :

$$
T_{X \rightarrow Y}=I\left(X_{t}, Y_{t+1} \mid Y_{t}\right)=H\left(Y_{t+1} \mid Y_{t}\right)-H\left(Y_{t+1} \mid Y_{t}, X_{t}\right)
$$

Causality - linear and nonlinear

■ Granger causality: X 'Granger causes’ Y iff including the past of Y in a (linear) model of X improves the model fit

$$
F_{X^{j} \rightarrow X^{i}}=\ln \frac{\operatorname{var}\left(\eta_{t}\right)}{\operatorname{var}\left(\phi_{t}\right)} \neq 0
$$

■ Transfer entropy: the difference of entropies of Y_{t+1} conditioned on only Y_{t} or also on X_{t} :

$$
T_{X \rightarrow Y}=I\left(X_{t}, Y_{t+1} \mid Y_{t}\right)=H\left(Y_{t+1} \mid Y_{t}\right)-H\left(Y_{t+1} \mid Y_{t}, X_{t}\right)
$$

■ for stationary linear Gaussian processes GC and TE equivalent

$$
\mathcal{T}_{X \rightarrow Y}=\frac{1}{2} \mathcal{F}_{X \rightarrow Y}
$$

Multivariate causal models

a) Indirect causality b) Spurious causality

Multivariate causal models

a) Indirect causality b) Spurious causality

■ Multivariate Granger causality model

$$
X_{t}^{i}=\sum_{\tau=1}^{+\infty} \sum_{k=1, k \neq j}^{n} d_{k, \tau} X_{t-\tau}^{k}+\eta_{t} \quad X_{t}^{i}=\sum_{\tau=1}^{+\infty} \sum_{k=1}^{n} e_{k, \tau} X_{t-\tau}^{k}+\phi_{t}
$$

■ Multivariate model is necessary to distinguish between direct and indirect causality, bivariate model may also lead to detection of spurious links

Advantages of causality analysis

■ provides directional information
■ takes care of indirect connections (if mediating variables included)
■ but: estimation more difficult due to higher dimensionality of variables

- proposed solutions:
- reducing dimensionality in time and space
- iterative estimation of conditional independence structure (Runge, PRL, 2012; Sun, Physica D, 2014; Kugiumtzis, 2012; see Hlinka et al, 2018, arxiv for comparative review)

Example: climate (temperature) interaction network

Example: climate (temperature) interaction network

Data: daily surface temperature anomalies from NCEP/NCAR reanalysis dataset on a geodesic grid Methods: correlation vs. Granger causality

Example: climate (temperature) interaction network
Data: daily surface temperature anomalies from NCEP/NCAR reanalysis dataset on a geodesic grid Methods: correlation vs. Granger causality

Remainder: Climate interactions (non)linearity

\Rightarrow we can quantify the extra dependence (mutual information I) that is not captured by linear correlation ρ : $I_{\text {extra }}(X, Y)=I_{X, Y}-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)$

[JH et al., Climate Dynamics, 2014]

Nonlinear causality estimators might pay for generality with instability: linear Granger vs. estimates of transfer entropy.

Stability of causality estimators

Nonlinear causality estimators might pay for generality with instability: linear Granger vs. estimates of transfer entropy.

[JH et al, Entropy, 2013]

Causalities in climate

Winds - detail

Wind field at 1000 hPa level and temperature field TOTAL

Causalities in climate - detail

[JH et al, 2017, Chaos]

Advanced application: causal climate network

ARTICLE

Received 4 Apr 2015 | Accepted 28 Aug 2015 | Published 7 Oct 2015

DO1: 10.1038/ncomms9502

OPEN
Identifying causal gateways and mediators in complex spatio-temporal systems

Jakob Runge ${ }^{1,2}$, Vladimir Petoukhov ${ }^{1}$, Jonathan F. Donges ${ }^{1,3}$, Jaroslav Hlinka ${ }^{4}$, Nikola Jajcay ${ }^{4,5}$, Martin Vejmelka ${ }^{4}$, David Hartman ${ }^{4,6}$, Norbert Marwan ${ }^{1}$, Milan Paluš ${ }^{4}$ \& Jürgen Kurths ${ }^{1,2,7,8,9}$

Summary

Summary

Summary

Summary

Summary

Challenges/generalizations

■ large network estimation
■ nonlinear interaction estimation
■ event-like data

- oscillatory signals
- chaotic systems

■ higher-order dependences
■ nonstationarity

Thanks to my colleagues at ICS CAS, Prague, Czech Republic: Milan Palus, David Hartman, Nikola Jajcay, Michal Hadrava,...

Thanks to my colleagues at ICS CAS, Prague, Czech Republic: Milan Palus, David Hartman, Nikola Jajcay, Michal Hadrava,...
and collaborators at NIMH, Klecany: Jaroslav Tintera, Jiri Horacek, Filip Spaniel, David Tomecek,... and PIK, Potsdam: Jakob Runge, Juergen Kurths, Norbert Marwan

Thanks to my colleagues at ICS CAS, Prague, Czech Republic: Milan Palus, David Hartman, Nikola Jajcay, Michal Hadrava,...
and collaborators at NIMH, Klecany: Jaroslav Tintera, Jiri Horacek, Filip Spaniel, David Tomecek,... and PIK, Potsdam: Jakob Runge, Juergen Kurths, Norbert Marwan

Open PhD and Postdoc positions at ICS CAS and NIMHCR!

Thanks to my colleagues at ICS CAS, Prague, Czech Republic: Milan Palus, David Hartman, Nikola Jajcay, Michal Hadrava,...
and collaborators at NIMH, Klecany: Jaroslav Tintera, Jiri Horacek, Filip Spaniel, David Tomecek,... and PIK, Potsdam: Jakob Runge, Juergen Kurths, Norbert Marwan

Open PhD and Postdoc positions at ICS CAS and NIMHCR! Thank you for your attention!
hlinka@cs.cas.cz

Brain is as 'small-world' as ... a size\&density-matched randomly coupled linear $A R(1)$ system. Different atlas (AAL, 90 regions):

Detailed results

Left: relative clustering (median, quartiles, extremes, outliers) for data, VAR model and randomized VAR model.
Right: relative mean path length.

The small-world property is driven by the clustering coefficient

Modelling perturbation of epileptic dynamics

The dynamics of neural population activity is modeled by:

$$
d v / d t=-\tau_{x}\left(v^{3}+v^{2}-a\right)
$$

Dynamics of the population excitability parameter a are modelled as

$$
d a / d t=\tau_{a}(\tanh c(h-v)-0.5)
$$

We set $\tau_{x}=1, \tau_{a}=0.001, c=1000$ and $h=-0.44+1.6 a$.

A Bifurcation diagram

B Phase plane diagram

Do perturbations cause or delays seizures?

Do perturbations cause or delays seizures?

[Chang et al., submitted]

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=y_{1}-f_{1}\left(x_{1}, x_{2}, z\right)-z+I_{\text {ext } 1} \\
& \frac{\mathrm{~d} y_{1}}{\mathrm{~d} t}=c-d x_{1}^{2}-y 1 \\
& \frac{\mathrm{~d} z}{\mathrm{~d} t}
\end{aligned}=r f_{z}\left(s\left(x_{1}-x_{0}\right)+u z\right) . \begin{aligned}
& \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=-y_{2}+x_{2}-x_{2}^{3}+I_{\text {ext } 2}+0.002 g-0.3(z-3.5) \\
& \frac{\mathrm{d} y_{2}}{\mathrm{~d} t}=\frac{1}{\tau}\left(-y_{2}+f_{2}\left(x_{2}\right)\right) \\
& \frac{\mathrm{d} g}{\mathrm{~d} t}=-0.01\left(g-0.1 x_{1}\right), \\
& f_{1}\left(x_{1}, x_{2}, z\right)= \begin{cases}a x_{1}^{3}-b x_{1}^{2} & \text { if } x_{1}<0 \\
-\left(\text { slope }-x_{2}+0.6(z-4)^{2}\right) x_{1} & \text { if } x_{1} \geq 0\end{cases} \\
& f_{2}\left(x_{2}\right)= \begin{cases}0 & \text { if } x_{2}<-0.25 \\
a_{2}\left(x_{2}+0.25\right) & \text { if } x_{2} \geq-0.25 .\end{cases}
\end{aligned}
$$

Here, the x_{1} and y_{1} variables constitute a subsystem responsible for fast oscillations, the x_{1} and y_{1} variables constitute a second subsystem involved in spike wave events. The slow permittivity variable is z.

Similar dual effect in modified Epileptor

Left: phase space visualization; Right: modelled time series Top: unperturbed model dynamics; Middle: increased seizure rate ($\mathrm{A}=1.8, \mathrm{P}=0.0006$); Bottom: decreased seizure rate ($\mathrm{A}=1.2, \mathrm{P}=0.00018$)

Why $I(X, Y) \geq-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)$?
Maximum entropy distributions:
■ $(0,1)$: uniform
$■ \mathbb{R}$: does not exist, but:
$\square \mathbb{R}, \sigma(X)=c: \quad \mathcal{N}\left(\mu, \sigma^{2}\right)$
$■ \mathbb{R}^{2}, \operatorname{Cov}(X)=\Sigma: \mathcal{N}(\mu, \Sigma)$

Why $I(X, Y) \geq-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)$?

Maximum entropy distributions:
■ $(0,1)$: uniform
$■ \mathbb{R}$: does not exist, but:
$\square \mathbb{R}, \sigma(X)=c: \quad \mathcal{N}\left(\mu, \sigma^{2}\right)$
$\square \mathbb{R}^{2}, \operatorname{Cov}(X)=\Sigma: \mathcal{N}(\mu, \Sigma)$
\square What about minimal information distribution?

Why $I(X, Y) \geq-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)$?

Maximum entropy distributions:
■ $(0,1)$: uniform
$■ \mathbb{R}$: does not exist, but:
$\square \mathbb{R}, \sigma(X)=c: \quad \mathcal{N}\left(\mu, \sigma^{2}\right)$
$\square \mathbb{R}^{2}, \operatorname{Cov}(X)=\Sigma: \mathcal{N}(\mu, \Sigma)$
\square What about minimal information distribution?
■ $I(X ; Y)=H(X)+H(Y)-H(X, Y)$

- $\underset{X}{\arg \min } I(X) \stackrel{?}{=} \mathcal{N}(\mu, \Sigma)$

Why $I(X, Y) \geq-\frac{1}{2} \log \left(1-\rho_{X, Y}^{2}\right)$?

Maximum entropy distributions:
■ $(0,1)$: uniform
$\square \mathbb{R}$: does not exist, but:
$\square \mathbb{R}, \sigma(X)=c: \quad \mathcal{N}\left(\mu, \sigma^{2}\right)$
$\square \mathbb{R}^{2}, \operatorname{Cov}(X)=\Sigma: \mathcal{N}(\mu, \Sigma)$
\square What about minimal information distribution?
■ $I(X ; Y)=H(X)+H(Y)-H(X, Y)$
$\square \arg \min I(X) \stackrel{?}{=} \mathcal{N}(\mu, \Sigma)$
■ Yes, if we fix $H(X)$ and $H(Y)$ by marginal normalization...

■ Is this needed?

