

CNNS FROM THE BASICS TO RECENT ADVANCES

Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague <u>ducha.aiki@gmail.com</u>

OUTLINE

• Short review of the CNN design •Architecture progress $AlexNet \rightarrow VGGNet \rightarrow ResNet \rightarrow now...$ \rightarrow GoogLeNet •VGGNet is an universal design? • Automatic architecture search • Design choices

DATASETS USED IN PRESENTATION: IMAGENET AND CIFAR-10

ImageNet:

1.2M training images (~ 256 x 256px) 50k validation images 1000 classes

airplane	🛁 🐜 🐺 📈 🖌 🐂 🛃 🔐 🛶
automobile	an a
bird	in 19 19 19 19 19 19 19 19 19 19 19 19 19
cat	in 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
deer	199 IN IN 🐨 🧟 IV IV IN 📰 🚳
dog	197 🕼 🛷 🔝 🉈 🎯 🖕 🐼 🌋
frog	
horse	
ship	🚔 😼 😅 👞 🕍 🗫 🥩 🖉 🜌
truck	V N N N N N N N N N N N N N N N N N N N

CIFAR-10:

50k training images (32x32 px) 10k validation images 10 classes

Russakovskiy et.al, ImageNet Large Scale Visual Recognition Challenge, 2015 Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009

IMAGENET WINNERS

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Microsoft⁻

Research

CAFFENET ARCHITECTURE

AlexNet (original):Krizhevsky et.al., ImageNet Classification with Deep Convolutional Neural Networks, 2012. CaffeNet: Jia et.al., Caffe: Convolutional Architecture for Fast Feature Embedding, 2014. Image credit: Roberto Matheus Pinheiro Pereira, "Deep Learning Talk". Srinivas et.al "A Taxonomy of Deep Convolutional Neural Nets for Computer Vision", 2016.

CAFFENET ARCHITECTURE

input	image 128x128 px, random crop from 144xN, random mirror
pre-process	out = 0.04 (BGR - (104; 117; 124))
conv1	conv 11x11x96, stride 4
	ReLU
pool1	max pool $3x3$, stride 2
conv2	conv 5x5x256, stride 2, pad 1, group 2
	ReLU
pool2	max pool $3x3$, stride 2
conv3	conv 3x3x384, pad 1
	ReLU
conv4	$\operatorname{conv} 3x3x384$, pad 1, group 2
	ReLU
$\operatorname{conv5}$	$\operatorname{conv} 3x3x256$, pad 1, group 2
	ReLU
pool5	max pool $3x3$, stride 2
fc6	fully-connected 4096
	ReLU
drop6	dropout ratio 0.5
fc7	fully-connected 4096
	ReLU
drop7	dropout ratio 0.5
fc8-clf	softmax-1000

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

VGGNET ARCHITECTURE

All convolutions are 3x3 Good performance, but slow

Szegedy et.al. Going Deeper with Convolutions. CVPR, 2015 Image credit: https://www.udacity.com/course/deep-learning--ud730

DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Microsoft:

Research

DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING

Revolution of Depth

VGG, 19	layers
(ILSVRC 2	2014)

3x3 conv, 64

Microsoft

Research

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

DEPTH LIMIT NOT REACHED YET IN DEEP LEARNING

VGGNet – 19 layers, 19.6 billion FLOPS. Simonyan et.al., 2014

ResNet – 152 layers, 11.3 billion FLOPS. He et.al., 2015

Stochastic ResNet – 1200 layers. Huang et.al., Deep Networks with Stochastic Depth, 2016

XCEPTION, RESNEXT: DEPTH-SEP CONV

Inception

Xception

F.Chollet. Xception: Deep Learning with Depthwise Separable Convolutions, arXiv 2016

XCEPTION, RESNEXT: DEPTH-SEP CONV

ResNet block

ResNeXt block

Xie et.al. Aggregated Residual Transformations for Deep Neural Network, CVPR 2017

ACCURACY-COMPLEXITY TRADE-OFF

Canziani et.al. An analysis of deep neural network models for practical applications, 2016

16

VĠG-16

30

35

40

VGG-19

ACCURACY-COMPLEXITY TRADE-OFF

Canziani et.al. An analysis of deep neural network models for practical applications, 2016

RESIDUAL NETWORKS: HOT TOPIC

- Identity mapping <u>https://arxiv.org/abs/1603.05027</u>
- Wide ResNets <u>https://arxiv.org/abs/1605.07146</u>
- Stochastic depth <u>https://arxiv.org/abs/1603.09382</u>
- Residual Inception <u>https://arxiv.org/abs/1602.07261</u>
- ResNets + ELU <u>http://arxiv.org/pdf/1604.04112.pdf</u>
- ResNet in ResNet <u>http://arxiv.org/pdf/1608.02908v1.pdf</u>
- o DC Nets <u>http://arxiv.org/abs/1608.06993</u>
- Weighted ResNet

http://arxiv.org/pdf/1605.08831v1.pdf

AUTOMATIC ARCHITECTURE SEARCH: REINFORCEMENT LEARNING

Pham et.al. Efficient Neural Architecture Search via Parameter Sharing, 2018

AUTOMATIC ARCHITECTURE SEARCH: EVOLUTION

AmoebaNet Conv cell

AmoebaNet Reduction cell

20

Real et.al. Regularized Evolution for Image Classifier Architecture Search, 2018

TOO MUCH ARCH OPTIMIZATION MAY HURT

ImageNet classification:

PASCAL semantic segmentation

L.

ECN

	run-	FUN-	FCN-
	AlexNet	VGG16	GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

ECN

ECN

Long et.al. Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

TOO MUCH ARCH OPTIMIZATION MAY HURT

Performance on ESPGame dataset, semantic metrics

	Visual ST	Visual MEN	Multimodal ST	Multimodal MEN
AlexNet	0.018	0.448	0.208	0.686
GoogLeNet	0.063	0.487	0.243	0.700
VGGNet	0.125	0.506	0.269	0.708

Kiela et.al. Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics

Now small design choices

CAFFENET ARCHITECTURE

Image credit: Hu et.al, 2015 Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

LIST OF HYPER-PARAMETERS TESTED

Hyper-parameter	Variants
Non-linearity	linear, tanh, sigmoid, ReLU, VLReLU, RReLU,
	PReLU, ELU, maxout, APL, combination
Batch Normalization (BN)	before non-linearity. after non-linearity
BN + non-linearity	linear, tanh, sigmoid, ReLU, VLReLU,
	RReLU, PReLU, ELU, maxout
Pooling	max, average, stochastic, max+average,
	strided convolution
Pooling window size	3x3, 2x2, 3x3 with zero-padding
Learning rate decay policy	step, square, square root, linear
Colorspace & Pre-processing	RGB, HSV, YCrCb, grayscale, learned,
	CLAHE, histogram equalized
Classifier design	pooling-FC-FC-clf, SPP-FC-FC-clf,
	pooling-conv-clf-avepool,
	pooling-conv-conv-avepool-clf
Network width	$1/4, 1/2\sqrt{2}, 1/2, 1/\sqrt{2}, 1, \sqrt{2}, 2, 2\sqrt{2}, 4, 4\sqrt{2}$
Input image size	64, 96, 128, 180, 224
Dataset size	200K, 400K, 600K, 800K, 1200K(full)
Batch size	1, 32, 64, 128, 256, 512, 1024
Percentage of noisy data	0, 5%, 10%, 15%, 32%
Using bias	yes/no

REFERENCE METHODS: IMAGE SIZE SENSITIVE

27

CHOICE OF NON-LINEARITY

CHOICE OF NON-LINEARITY

Table 3: Non-linearities tested.				
Name	Formula	Year		
none	y = x	-		
sigmoid	$y = \frac{1}{1 + e^{-x}}$	1986		
tanh	$y = \frac{e^{2x} - 1}{e^{2x} + 1}$	1986		
ReLU	$y = \max(x, 0)$	2010		
(centered) SoftPlus	$y = \ln \left(e^x + 1 \right) - \ln 2$	2011		
LReLU	$y = max(x, \alpha x), \alpha \approx 0.01$	2011		
maxout	$y = \max(W_1x + b_1, W_2x + b_2)$	2013		
APL	$y = \max(x,0) + \sum_{s=1}^{S} a_i^s \max(0, -x + b_i^s)$	2014		
VLReLU	$y = \max(x, \alpha x), \alpha \in 0.1, 0.5$	2014		
RReLU	$y = max(x, \alpha x), \alpha = random(0.1, 0.5)$	2015		
PReLU	$y = max(x, \alpha x), \alpha$ is learnable	2015		
ELU	$y = x$, if $x \ge 0$, else $\alpha(e^x - 1)$	2015		

NON-LINEARITIES ON CAFFENET

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

BATCH NORMALIZATION (AFTER EVERY CONVOLUTION LAYER)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

31

Ioffe et.al, ICML 2015

BATCH NORMALIZATION: WHERE, BEFORE OR AFTER NON-LINEARITY?

ImageNet, top-1 accuracy

Network	No BN	Before ReLU	After ReLU
CaffeNet128-FC2048	47.1	47.8	49.9
GoogLeNet128	61.9	60.3	59.6

CIFAR-10, top-1 accuracy, FitNet4 network

Non-linearity	BN Before	BN After
TanH	88.1	89.2
ReLU	92.6	92.5
MaxOut	92.3	92.9

In short: better to test with your architecture and dataset :)

Mishkin and Matas. All you need is a good init. ICLR, 2016 Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

BATCH NORMALIZATION SOMETIMES WORKS TOO GOOD AND HIDES PROBLEMS

Case:

CNN has less number outputs (just typo), than classes in dataset: 26 vs. 28

BatchNormed "learns well"

NON-LINEARITIES ON CAFFENET, WITH BATCH NORMALIZATION

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

NON-LINEARITIES: TAKE AWAY MESSAGE

- Use ELU without batch normalization
- Or ReLU + BN
- Try maxout for the final layers
- Fallback solution (if something goes wrong) ReLU

BUT IN SMALL DATA REGIME (\sim 50K images) Try Leaky or Randomized ReLU

• Accuracy [%], Network in Network architecture

	ReLU	VLReLU	RReLU	PReLU
CIFAR-10	87.55	88.80	88.81	88.20
CIFAR-100	57.10	59.60	59.80	58.4

• LogLoss, Plankton VGG architecture

	ReLU	VLReLU	RReLU	PReLU
KNDB	0.77	0.73	0.72	0.74

Xu et.al. Empirical Evaluation of Rectified Activations in Convolutional Network ICLR 2015

PADDING TYPES

No padding, stride = 2 Zero padding, stride = 2 Zero padding, stride = 1

38

Dumoulin and Visin. A guide to convolution arithmetic for deep learning. ArXiv 2016

PADDING

• Zero-padding:

- Preserving spatial size, not "washing out" information
- Dropout-like augmentation by zeros

Caffenet128• with conv padding: 47% top-1 acc

• w/o conv padding: **41**% top-1 acc.

Max Pooling: Padding and kernel

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

POOLING METHODS

Table 4: Poolings tested.					
Name	Formula	Year			
max	$\mathbf{y} = \max_{i,j=1}^{h,w} x_{i,j}$	1989			
average	$\mathbf{y} = \frac{1}{hw} \sum_{i,j=1}^{h,w} x_{i,j}$	1989			
stochastic	$y = x_{i,j}$ with prob. $\frac{x_{i,j}}{\sum_{i=1}^{h,w} x_{i,j}}$	2013			
strided convolution	-	2014			
$\max + average$	$y = \max_{i,j=1}^{h,w} x_{i,j} + \frac{1}{hw} \sum_{i,j=1}^{h,w} x_{i,j}$	2015			

POOLING METHODS

42

LEARNING RATE POLICY: LINEAR

Table 5: Learning rate decay policies, tested in paper. L_0 – initial learning rate, M = number of learning iterations, i – current iteration, S – step iteration. γ – decay coefficient.

Name	Formula	Parameters	Accuracy
step	$lr = L_0 \gamma^{\text{floor}(i/S)}$	$S = 100$ K, $\gamma = 0.1, M = 320$ K	0.471
square	$\ln = L_0 (1 - i/M)^2$	M = 320K	0.483
square root	$\ln = L_0 \sqrt{1 - i/M}$	M = 320K	0.483
linear	$\ln = L_0(1 - i/M)$	M = 320K	0.493
		M = 160K	0.466

43

LEARNING RATE POLICY: LINEAR COSINE

• Bello et.al performed large scale reinforcementlearning search of learning rate schedule:

Figure 1. An overview of Neural Optimizer Search.

"Interestingly, we also found that the **linear cosine decay** generally allows for a larger initial learning rate and leads to faster convergence"

Bello et.al. Neural Optimizer Search with Reinforcement Learning, arXiv 2017

IMAGE PREPROCESSING

- Subtract mean pixel (training set), divide by std.
 RGB is the best (standard) colorspace for CNN
 Do nothing more...
- ...unless you have specific dataset.

Image: 13_left Rating: 0

Image: 16_left Rating: 4

Figure 4: Two images from the training set. Original images on the left and preprocessed images on the right.

Subtract local mean pixel B.Graham, 2015 Kaggle Diabetic Retinopathy Competition report

IMAGE PREPROCESSING: WHAT DOESN`T WORK

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

IMAGE PREPROCESSING: LET`S LEARN THE COLORSPACE

Table 6: Mini-networks for learned colorspace transformations, placed after image and before conv1 layer. In all cases RGB means scales and centered input 0.04 * (Img - (104, 117, 124)).

Name	Architecture	Non-linearity	Acc.
А	$RGB \rightarrow conv1x1x10 \rightarrow conv1x1x3$	anh	0.463
RGB	RGB	-	0.471
В	$RGB \rightarrow conv1x1x3 \rightarrow conv1x1x3$	VLReLU	0.480
\mathbf{C}	$RGB \rightarrow conv1x1x10 \rightarrow conv1x1x3 + RGB$	VLReLU	0.482
D	$[RGB; \log(RGB)] \rightarrow conv1x1x10 \rightarrow conv1x1x3$	VLReLU	0.482
\mathbf{E}	$RGB \rightarrow conv1x1x16 \rightarrow conv1x1x3$	VLReLU	0.483
\mathbf{F}	${\rm RGB} \rightarrow {\rm conv1x1x10} {\rightarrow} {\rm conv1x1x3}$	VLReLU	0.485

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016 Image credit: https://www.udacity.com/course/deep-learning--ud730

DATASET QUALITY AND SIZE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

NETWORK WIDTH: SATURATION AND SPEED PROBLEM

Figure 9: Network width impact on the accuracy.

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

BATCH SIZE AND LEARNING RATE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

CLASSIFIER DESIGN

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016 Ren et.al Object Detection Networks on Convolutional Feature Maps, arXiv 2016

APPLYING ALTOGETHER

>5 pp. additional top-1 accuracy for free.

52

TAKE HOME MESSAGES

- use ELU if without batchnorm or ReLU with BN.
- apply a **learned colorspace** transformation of RGB (2 layers of 1x1 convolution).
- use the **linear learning rate** decay policy.
- use a sum of the average and max pooling layers.
- use mini-batch size around 128 or 256. If this is too big for your GPU, decrease the learning rate proportionally to the batch size.
- use **fully-connected layers as convolutional** and average the predictions for the final decision.
- when investing in increasing training set size, check if a plateau has not been reach.
- o cleanliness of the data is more important than the size.
- if you cannot increase the input image size, reduce the stride in the consequent layers, it has roughly the same effect.
- if your network has a complex and highly optimized architecture, like e.g. GoogLeNet, be careful with modifications.

THANK YOU FOR THE ATTENTION

• Any questions?

- All logs, graphs and network definitions: <u>https://github.com/ducha-aiki/caffenet-benchmark</u> Feel free to add your tests
- The paper is here: <u>https://arxiv.org/abs/1606.02228</u>

<u>ducha.aiki@gmail.com</u> <u>mishkdmy@cmp.felk.cvut.cz</u>

ARCHITECTURE

• Use as small filters as possible

- 3x3 + ReLU + 3x3 + ReLU > 5x5 + ReLU.
- 3x1 + 1x3 > 3x3.
- $2x^2 + 2x^2 > 3x^3$
- Exception: 1st layer. Too computationally ineffective to use 3x3 there.

	top-1	top-5	d	stage 1	pool	stage 2	pool	stage 3	pool	stage 4	comp.
Α	37.4	15.9	5	$(7, 64)_{/2}$	$3_{/3}$	(5, 128)	$2_{/2}$	(3, 256)×3			1
В	35.7	14.9	8	$(7, 64)_{/2}$	$3_{/3}$	(5, 128)	$2_{/2}$	(2, 256)×6			0.96
C	35.0	14.3	6	$(7, 64)_{/2}$	$3_{/3}$	(3, 128)×2	$2_{/2}$	(3, 256)×3			1.02
D	34.5	13.9	9	$(7, 64)_{/2}$	$3_{/3}$	(3, 128)×2	$2_{/2}$	(2, 256)×6			0.98
Е	<u>33.8</u>	13.3	11	$(7, 64)_{/2}$	$3_{/3}$	$(2, 128) \times 4$	$2_{/2}$	(2, 256)×6			0.99
F	35.5	14.8	8	$(7, 64)_{/2}$	3/3	(5, 128)	$2_{/2}$	(3, 160)×5+(3, 256)			1
G	35.5	14.7	11	$(7, 64)_{/2}$	$3_{/3}$	(5, 128)	$2_{/2}$	(3, 128)×8+(3, 256)			1
Н	34.7	14.0	8	$(7, 64)_{/2}$	3/3	(3, 64)×3+(3, 128)	$2_{/2}$	(3, 256)×3			0.97
Ι	33.9	13.5	11	$(7, 64)_{/2}$	$3_{/3}$	(3, 64)×3+(3, 128)	$2_{/2}$	(2, 256)×6			0.93
J	32.9	12.5	11	$(7, 64)_{/2}$	3/3	(2, 128)×4	$2_{/2}$	(2, 256)×4	3/3	(2, 2304)+(2, 256)	0.98

Table 1. Configurations of the models under constrained time complexity. The notation (s, n) represents the filter size and the number of filters. "/2" represents stride = 2 (default 1). "×k" means the same layer configuration is applied k times (not sharing weights). "+" means another layer is followed. The numbers in the pooling layer represent the filter size and also the stride. All convolutional layers are with ReLU. The feature map size of stage 2 is dominantly 36×36 , of stage 3 is 18×18 , and of stage 4 (if any) is 6×6 . The top-1/top-5 errors (at 75 epochs) are on the validation set. The "comp." is the theoretical time complexity (relative to A) computed using Eqn.(1).

Convolutional Neural Networks at Constrained Time Cost. He and Sun, CVPR 2015

WEIGHT INITIALIZATION FOR A VERY DEEP NET

• Gaussian noise with variance.

- $var(\omega_l) = 0.01$
- $var(\omega_l) = 1/n_{inputs}$
- $var(\omega_l) = 2/n_{inputs}$

(AlexNet, Krizhevsky et.al, 2012) (Glorot et.al. 2010) (He et.al. 2015)

- Orthonormal: (Saxe et.al. 2013) Glorot \rightarrow SVD $\rightarrow \omega_l = V$
- Data-dependent: LSUV (Mishkin et.al, 2016)

WEIGHT INITIALIZATION INFLUENCES ACTIVATIONS

Mishkin and Matas. All you need is a good init. ICLR, 2016

ACTIVATIONS INFLUENCES MAGNITUDE OF GRADIENT COMPONENTS

Mishkin and Matas. All you need is a good init. ICLR, 2016

LAYER-SEQUENTIAL UNIT-VARIANCE ORTHOGONAL INITIALIZATION

Algorithm 1. Layer-sequential unit-variance orthogonal initialization.

- L convolution or fully-connected layer, W_L its weights, O_L layer output,
- ε variance tolerance,
- T_i iteration number, T_{max} max number of iterations.

Pre-initialize network with orthonormal matrices as in Saxe et.al. (2013) **for** each convolutional and fully-connected layer *L* do

do forward pass with mini-batch

calculate $var(O_L)$ $W_L^{i+1} = W_L^i / \sqrt{var(O_L)}$

until $|var(O_L) - 1.0| < \varepsilon$ or $(T_i > Tmax)$

end for

 * The LSUV algorithm does not deal with biases and initializes them with zeros

Mishkin and Matas. All you need is a good init. ICLR, 2016

COMPARISON OF THE INITIALIZATIONS FOR DIFFERENT ACTIVATIONS

• CIFAR-10 FitNet, accuracy [%]

Init method	Maxout	ReLU	VLReLU	tanh
LSUV	93.94	92.11	92.97	89.28
OrthoNorm	93.78	91.74	92.40	89.48
Xavier	91.75	90.63	92.27	89.82
MSRA	n/c†	90.91	92.43	89.54
OrthoNorm MSRA-scaled	—	91.93	93.09	

OUTAK-10 FITKESINET, accuracy [%]

Init method	maxout	ReLU	VLReLU	tanh
LSUV	94.16	92.82	93.36	89.17
OrthoNorm	n/c	91.42	n/c	89.31
Xavier	n/c	92.48	93.34	89.62
MSRA	n/c	n/c	n/c	88.59
_	_	_	_	_

LSUV INITIALIZATION IMPLEMENTATIONS

- Caffe <u>https://github.com/ducha-aiki/LSUVinit</u>
- Keras <u>https://github.com/ducha-aiki/LSUV-keras</u>
- Torch https://github.com/yobibyte/torch-lsuv

CAFFENET TRAINING

Mishkin and Matas. All you need is a good init. ICLR, 2016

GOOGLENET TRAINING

Mishkin and Matas. All you need is a good init. ICLR, 2016