DATA MINING IN CRM: THE CASE OF A MAJOR LOGISTIC COMPANY

Viktor Nekvapil

Intro

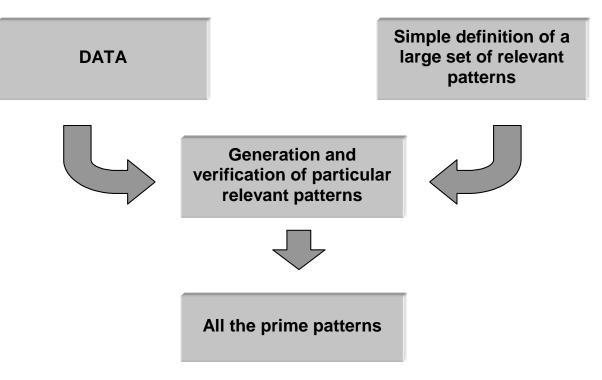
Viktor Nekvapil

- PhD student at the VŠE (KIZI)
- Data analyst in financial advisory

- Collaboration with the logistic company during the work on diploma thesis
- Data mining tool used LISp-Miner

Contents

1. GUHA method and LISp-Miner


2. 4ft-Miner

- 3. Course of the project
 - Iteration 1
 - Iteration 2

4. Summary

GUHA Method

- Offers all interesting patterns true in given data
- Method of exploratory data analysis
- Implemented by GUHA procedures

LISp-Miner, procedures

Ac4ft-Miner

Data representation in LISp-Miner

6

 \square One database table formes data matrix ${\mathcal M}$

 \Box Data matrix \mathcal{M} \blacksquare Boolean attributes(literals)

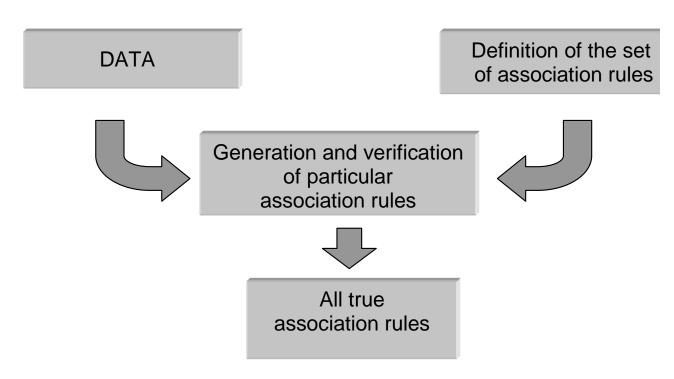
object i.e. row	columns of \mathcal{M} i.e. attributes				examples of literals		
of \mathcal{M}	A_1	A_2	•••	A_{50}	$A_1(1,2)$	$\neg A_{50}(6)$	
01	1	4		4	T	T	
O_2	4	3		6	F	F	
03	2	6	•••	7	T	T	
:	•	:	•.	•	•	:	
O_n	3	1	•	36	$\overset{\cdot}{F}$	\dot{T}	

Data representation in LISp-Miner (example)

	Attributes						
Sex	Age	Typeof	Success	Genetic	City		
		therapy		predisposition			
male	42	none	no	no	Prague		
female	61	diet	yes	no	Čáslav		
female	24	surgery	no	yes	Čáslav		
male	54	medicaments	yes	no	Prague		
female	57	medicaments	yes	no	Prague		
	male female female male 	male42female61female24male54	male42nonefemale61dietfemale24surgerymale54medicaments	SexAgeType of therapySuccessmale42nonenofemale61dietyesfemale24surgerynomale54medicamentsyes	SexAgeType of therapySuccessGenetic predispositionmale42nonenonofemale61dietyesnofemale24surgerynoyesmale54medicamentsyesno	SexAgeType of therapySuccessGenetic predispositionCitymale42nonenonoPraguefemale61dietyesnoČáslavfemale24surgerynoyesCáslavmale54medicamentsyesnoPrague	

Objects	Basic B	oolean		Derived Bo	olean attributes				
	attribut	es							
Patient	Sex	Type of	Sex	Genetic	Sex (male) ∧ (Type of				
	(male)	therapy	(male)∨	predisp. (no)	therapy (diet) ∨ Type of				
	(surgery)		success	∧ Age (50,60)	therapy (medicaments)) ∧				
			(yes)		¬ Age (50,60)				
1	true	false	true	false	false				
2	false	false	true	false	true				
3	false	true	false	false	false				
4	true	false	true	true	false				
632	false	false	true	true	false				

1. GUHA method and LISp-Miner

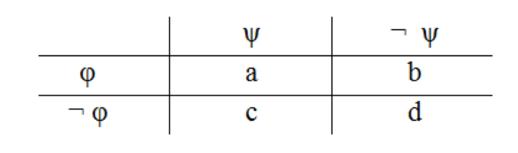

- 3. Course of the project
 - Iteration 1
 - Iteration 2

4. Summary

GUHA method and Association rules – 4ft-Miner

Mines for enhanced association rules = not just implication

9



4ft-Miner procedure

10

 $\phi\approx\psi$

- φ antecedentΨ succedent
- \approx 4ft-quantifier

		Attri	butes		Boolean attributes				
object	A	A ₂	•••	A _K	A ₁ (6)	A ₂ (1,4)	A₂(1,4) ∧ A _K (2,7)		
o 1	6	4	•••	2	1	1	1		
•2	9	3	•••	5	0	0	0	•••	
	•••	•••	•••	•••	•••	•••	•••		
o _n	4	1	•••	3	0	1	0		

Bit-string approach to mine association rules

Apriori algorithm is not used

object i.e. row	C	column i.e. att	ns of <i>J</i> tribute			ples of trals
of \mathcal{M}	A_1	A_2	•••	A_{50}	$A_1(1,2)$	$\neg A_{50}(6)$
01	1	4		4	T	T
O_2	4	3		6	F	F
03	2	6	•••	7	T	T
:	:	•	•.	:	:	:
•	•	•	•	•	•	•
O_n	3	1	• • •	36	F	T

Bit-string approach to mine association rules (2)

□ Attribute A_1 with 4 categories (1, 2, 3, 4)

	row		Ca	ards of categ	gories of 2	4_1	
	of \mathcal{M}	A_1	$A_{1}[1]$	$A_1[2]$	$A_{1}[3]$	$A_1[4]$	-
	01	1	1	0	0	0	•
	O_2	4	0	0	0	1	
	O_3	2	0	1	0	0	
	:	•	:	•	:	•	
	O_n	3	0	0	1	0	
bit-w	vise Boole	an operat	ions	$\mathcal{C}(arphi$,	$\wedge \psi) =$	$\mathcal{C}(arphi)$ /	$\wedge \mathcal{C}(\psi)$
	À,	$\dot{\lor}$		$\mathcal{C}(arphi$	$\vee \psi) =$	$\in \mathcal{C}(arphi)$ is	$\stackrel{.}{\lor} \mathcal{C}(\psi)$
$\mathcal{C}(A_{1})$	(1,2))	$= A_1$	$[1] \stackrel{.}{\vee} A_1$	[2]	$\mathcal{C}(\neg \varphi$	() = -	ч $\mathcal{C}(arphi)$

12

Bit-string approach to mine association rules (3)

13

4ft-table $4ft(\varphi, \psi, \mathcal{M})$ of φ and ψ on \mathcal{M}

\mathcal{M}	ψ	$ eg \psi$
arphi	a	b
$\neg \varphi$	С	d

$$a = Count(\mathcal{C}(\varphi) \land \mathcal{C}(\psi))$$
$$b = Count(\mathcal{C}(\varphi)) - a$$
$$c = Count(\mathcal{C}(\psi)) - a$$
$$d = n - a - b - c$$

$$\begin{array}{l} Count(\xi) = \\ = \text{number of ,,1" in } \xi \end{array}$$

4ft-quantifiers

		ψ	$\neg \psi$
$\phi \approx \psi$	φ	а	b
	$\neg \phi$	с	d

$$\varphi \Rightarrow_{p,Base} \psi \qquad \frac{a}{a+b} \ge p \land a \ge Base$$

$$\varphi \Leftrightarrow_{p,Base} \psi \qquad \frac{a}{a+b+c} \ge p \land a \ge Base$$

$$\varphi \equiv_{p,Base} \psi \qquad \frac{a+d}{a+b+c+d} \ge p \land a \ge Base$$

$$\varphi \Rightarrow^{+}_{p,Base} \psi \qquad \frac{a}{a+b} \ge (1+p)\frac{a+c}{a+b+c+d} \land a \ge Base$$

... and many other possibilities

Contents

1. GUHA method and LISp-Miner

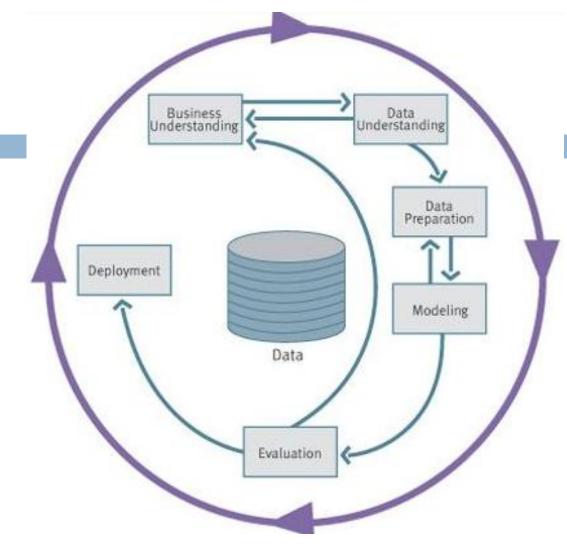
2. 4ft-Miner

- 3. Course of the project
 - Iteration 1
 - Iteration 2

4. Summary

Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

16

Evaluation

Iteration 2 (IT2)

- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

Goals of the project

- 17
- Analyse the given data using the LISp-Miner system in compliance with the aims of the case study
- Propose directions of the use of the LISp-Miner system when solving a similar data mining task
- Propose a simple and understandable way to present results of the LISp-Miner system

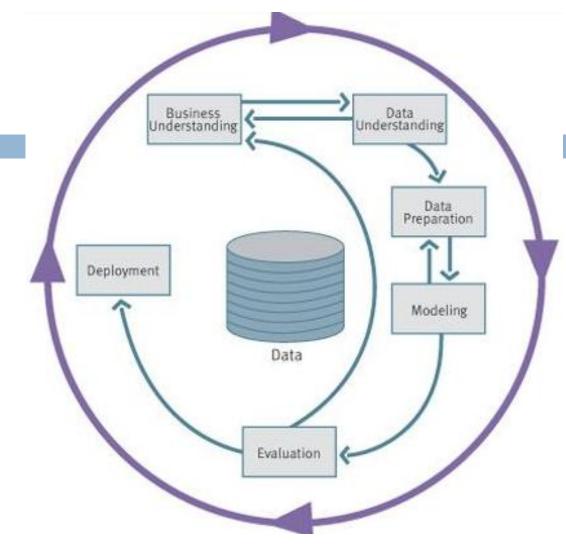
Getting in touch with the company

Four visits in the company

- 1. Initial meeting domain knowledge
- 2. Processes
- 3. Data was obtained
- 4. Meeting after first analysis
- Email and phone communication

Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

19

Evaluation

Iteration 2 (IT2)

- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

IT1 – BUSINESS UNDERSTANDING

- CRM Lead management
 - previously unknown domain
 - Suspect organisation that is believed to fit to the company's customer profile
 - Prospect indication of potential opportunity; organisation expressing some level of interest in company's product.
 - Lead qualified prospects are leads.
 - Opportunity qualified lead being processed by the sales department

Process: Lead management

Processes

21

External database Info from customer service Lead SUSPECT GENERATION gualificators (1) Existing YES customer Identified' NŌ Ŵ Lead LEAD QUALIFICATION qualificators Suspect (2) REGISTERING LEADS Suspect OF EXISTING Development accepted? CUSTOMERS leads (3)YĒS Sales ALLOCATION (4) ccepted into Opportunity territory? YĒS ¥ OPPORTUNITY Sales NURTURING (5) Future opportunity See process "Opportunity nurturing* for details) Activity

Closed

lost

Closed

won

No documentation available

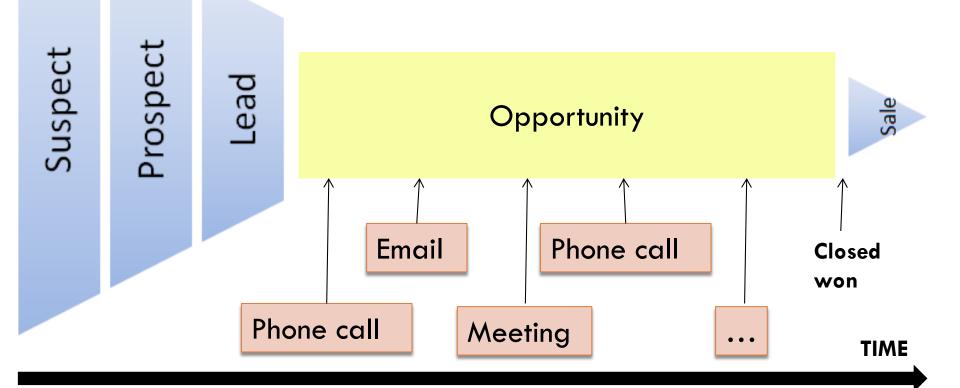
- All information had to be obtained from domain experts
- Took lots of time and effort

Important indicators

- Important from the business point of view
- Experts make decisions according to them
- Assumption: important also in the analysis
- Examples
 - Committed revenue
 - Potential revenue
 - Closing ratio =

closed lost opp + closed won opp

closed lost opp + closed won opp + future opp + open opp


Business and DM objectives

- **Business** change of internal processes of the company (increase the number of closed won opportunities)
- DM 2 analytical questions
- Which combinations of salesman and lead source have the highest revenue / closing ratio / share of closed won opportunities?
- Which sequences of activities result in the highest probability of a closed won opportunity?

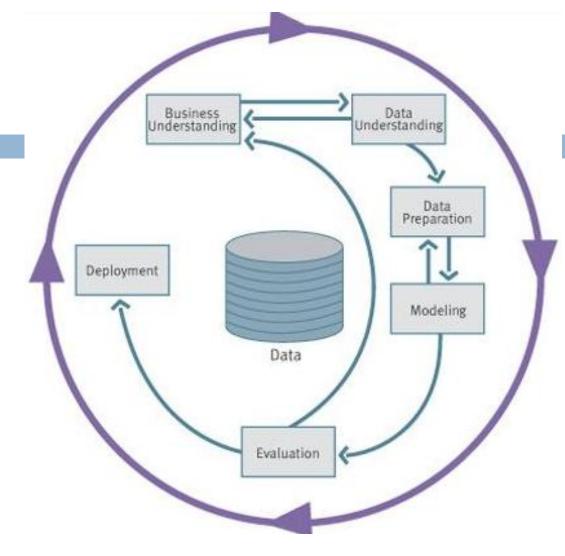
Analytical question 2

24

AQ2: Which sequences of activities result in the highest probability of a closed won opportunity?

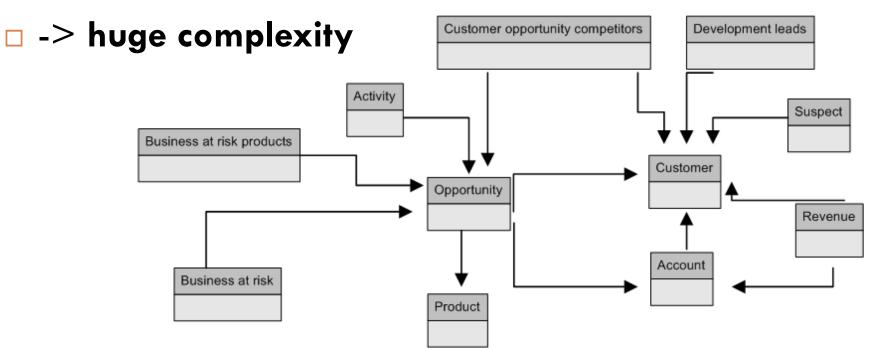
Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

25

Evaluation

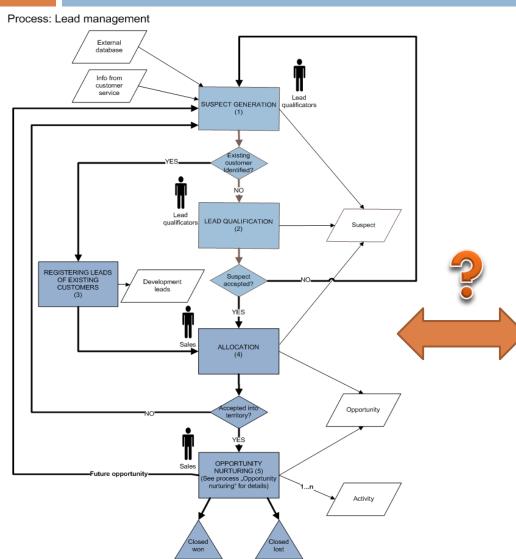

Iteration 2 (IT2)

- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

IT1 – DATA UNDERSTANDING

- 26
- 22 tables ("extracts") available
- each containing on average about 20 columns (fields)
- no description of the meaning of the columns

IT1 – Data understanding


- 27
- Opportunity and Activity extract identified as promising for answering both analytical questions
- Only Opportunity extract available at the moment
- => only first analytical question is solved in Iteration 1

Example – Extract "Opportunity"

#	Field Name	Data Type	Length	LOV	Comments
1	ACTUAL CLOSE DATE	Date	7		Date format will be DD-MM-YYYY
2	[TOTAL] COMMITTED REVENUE	Number	22		
3	CUSTOMER NAME	Char	100		
4	PIPELINE 2 ENTERED	Date	7		Date format will be DD-MM-YYYY
5	PIPELINE 3 ENTERED	Date	7		Date format will be DD-MM-YYYY
6	PIPELINE 4 ENTERED	Date	7		Date format will be DD-MM-YYYY
7	PIPELINE 5 ENTERED	Date	7		Date format will be DD-MM-YYYY
8	PIPELINE 6 ENTERED	Date	7		Date format will be DD-MM-YYYY
9	PIPELINE 7 ENTERED	Date	7		Date format will be DD-MM-YYYY
10	PIPELINE 8 ENTERED	Date	7		Date format will be DD-MM-YYYY
11	PIPELINE 9 ENTERED	Date	7		Date format will be DD-MM-YYYY
12	EXPECTED CLOSE DATE	Date	7		Date format will be DD-MM-YYYY
13	GSFA CUSTOMER ID	Char	50		
14	LEAD ORIGINATOR	Char	15		
15	LEAD SOURCE	Char	100		
16	OPPORTUNITY CREATED BY LOGIN ID	Char	15		
17	OPPORTUNITY CREATED DATE	Date	7		Date format will be DD-MM-YYYY
18	OPPORTUNITY ID	Char	15		
19	OPPORTUNITY NAME	Char	100		
20	OPPORTUNITY STAGE	Char	30	Yes	
21	OPPORTUNITY TYPE	Char	30	Yes	
22	PIPELINE LAST UPDATE BY	Char	15		
23	PIPELINE LAST UPDATED DATE	Date	7		Date format will be DD-MM-YYYY
24	[TOTAL] POTENTIAL REVENUE	Number	22		
25	PREVIOUS PIPELINE STAGE	Char	50		
26	REASON FOR LEAD	Char	30	Yes	
27	REASON [WON]/LOST	Char	30	Yes	
28	SALES TEAM	Char	50		
29	SALES TERRITORY CODE	Char	50		
30	PRIMARY [MAIN] COMPETITOR	Char	75		
	OPPORTUNITY LAST UPDATED BY	Char	50		
32	GSFA ACCOUNT ID	Char	50		
33	ACCOUNT NUMBER	Char	15		
34	SOURCE TYPE (lead)	Char	30	Yes	

Mapping data on the processes

29

#	Field Name	Data Type	Length	LOV	Comments
1	ACTUAL CLOSE DATE	Date	7		Date format will be DD-MM YYYY
2	[TOTAL] COMMITTED REVENUE	Number	22		
3	CUSTOMER NAME	Char	100		
4	PIPELINE 2 ENTERED	Date	7		Date format will be DD-MM YYYY
5	PIPELINE 3 ENTERED	Date	7		Date format will be DD-MM YYYY
6	PIPELINE 4 ENTERED	Date	7		Date format will be DD-MM YYYY
7	PIPELINE 5 ENTERED	Date	7		Date format will be DD-MM YYYY
8	PIPELINE 6 ENTERED	Date	7		Date format will be DD-MM YYYY
9	PIPELINE 7 ENTERED	Date	7		Date format will be DD-MM YYYY
	PIPELINE 8 ENTERED	Date	7		Date format will be DD-MM YYYY
	PIPELINE 9 ENTERED	Date	7		Date format will be DD-MM YYYY
12	EXPECTED CLOSE DATE	Date	7		Date format will be DD-MM YYYY
13	GSFA CUSTOMER ID	Char	50		
14	LEAD ORIGINATOR	Char	15		
15	LEAD SOURCE	Char	100		
	OPPORTUNITY CREATED BY LOGIN ID	Char	15		
17	OPPORTUNITY CREATED DATE	Date	7		Date format will be DD-MN YYYY
18	OPPORTUNITY ID	Char	15		
19	OPPORTUNITY NAME	Char	100		
20	OPPORTUNITY STAGE	Char	30	Yes	
21	OPPORTUNITY TYPE	Char	30	Yes	
22	PIPELINE LAST UPDATE BY	Char	15		
23	PIPELINE LAST UPDATED DATE	Date	7		Date format will be DD-MN YYYY
24	[TOTAL] POTENTIAL REVENUE	Number	22		

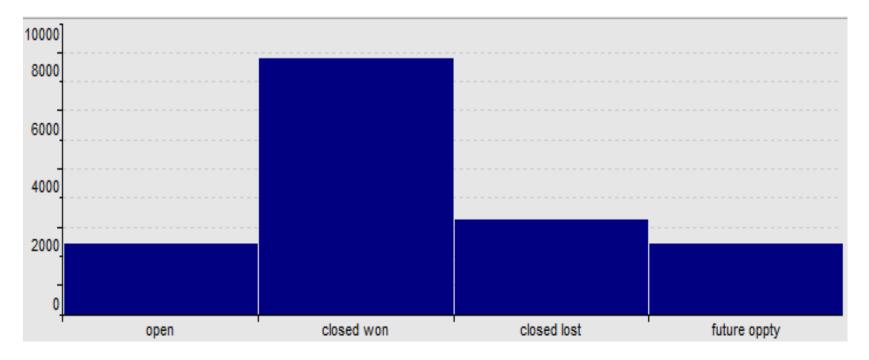
Mapping data on the processes

#	Field name	Stage / state
1	ACTUAL CLOSE DATE	Closed won / closed lost / future opportunity
2	[TOTAL] COMMITTED REVENUE	ALLOCATION (4)
3	CUSTOMER NAME	ALLOCATION (4)
4	PIPELINE 2 ENTERED	ESTABLISHING FIRST CONTACT (5. 1) / established: yes
5	PIPELINE 3 ENTERED	PRICE OFFER (5. 2) / accepted: yes
6	PIPELINE 4 ENTERED	SHIPMENT AGREEMENT (5. 3) / agreed: yes
7	PIPELINE 5 ENTERED	IMPLEMENTATION (5. 4) / implemented: yes
8	PIPELINE 6 ENTERED	Irrelevant – not in the process schema
9	PIPELINE 7 ENTERED	Irrelevant – not in the process schema
10	PIPELINE 8 ENTERED	OPPORTUNITY NURTURING (5) / closed lost
11	PIPELINE 9 ENTERED	OPPORTUNITY NURTURING (5) / future opportunity
12	EXPECTED CLOSE DATE	ALLOCATION (4), further
13	GSFA CUSTOMER ID	ALLOCATION (4)
14	LEAD ORIGINATOR	ALLOCATION (4)
15	LEAD SOURCE	ALLOCATION (4)
16	OPPORTUNITY CREATED BY LOGIN ID	ALLOCATION (4)
17	OPPORTUNITY CREATED DATE	ALLOCATION (4)
18	OPPORTUNITY ID	ALLOCATION (4)
19	OPPORTUNITY NAME	ALLOCATION (4)
20	OPPORTUNITY STAGE	ALLOCATION (4), OPPORTUNITY NURTURING (5)

Data description – Opportunity extr.

31

			No. of	% of		
	data		missing	missing		Remarks / meaning of
# Column	type	range of values	values	values	meaning of missing value	the column
1 Actual Close Date	date	2005 – 2012	8009	47.16%	not closed yet	
2 Committed Revenue	int	0 – 12 714 000	0	0.00%	-	
3 Pipeline 2 Entered	date	2005 – 2012	990	5.83%	opp was/is not in the stage	first contact established
4 Pipeline 3 Entered	date	2005 – 2012	2650	15.61%	opp was/is not in the stage	price offer
5 Pipeline 4 Entered	date	2005 – 2012	6221	36.64%	opp was/is not in the stage	shipment agreement
6 Pipeline 5 Entered	date	2005 – 2012	6462	38.05%	opp was/is not in the stage	implemented
7 Pipeline 6 Entered	date	2005 – 2012	7131	41.99%	opp was/is not in the stage	first consignment
8 Pipeline 7 Entered	date	2005 – 2012	12965	76.35%	opp was/is not in the stage	shipped to profile
9 Pipeline 8 Entered	date	2005 – 2012	13460	79.27%	opp was/is not in the stage	unable to gain
10 Pipeline 9 Entered	date	2005 – 2012	12157	71.59%	opp was/is not in the stage	future opportunity
11 Expected Close Date	date	2004 – 2013, 2015	15	0.09%	value not known / omitted	
12 GSFA Cust ID	char	10221 distinct values	0	0.00%	-	ID of a customer
13 Lead Originator	char	200 distinct values	13320	78.44%	value not known / omitted	
14 Lead Source	char	24 distinct values	114	0.67%	value not known / omitted	
15 Oppty Created Date	date	2004 – 2012	0	0.00%	-	
16 Oppty ID	char	16121 distinct values	0	0.00%	-	
17 Oppty Stage	char	11 distinct values	0	0.00%	-	*
18 Oppty Type	char	6 distinct values	0	0.00%	-	
19 Pipeline Last Upd Date	date	2007 – 2012	29	0.17%	not updated yet	
20 Potential Revenue	int	0 – 59 332 000	68	0.40%	value not known / omitted	


Data selection – Opportunity extr.

32

				No. of missin	% of missin		
		data		g	g	meaning of missing	
#	column	type	range of values	values	values	value	
2	Committed Revenue	int	0 – 12 714 000	0	0.00%	-	
14	Lead Source	char	24 distinct values	114	0.67%	value not known / omitted	
17	Oppty Stage	char	11 distinct values	0	0.00%	-	
18	Oppty Type	char	6 distinct values	0	0.00%	-	
20	Potential Revenue	int	0 – 59 332 000	68	0.40%	value not known / omitted	
21	Prev Pipeline Stage	char	12 distinct values	646	3.80%	newly created opportunity	
24	Territory	char	54 distinct values	0	0.00%	-	
26	Lead Source Type	char	9 distinct values	114	0.67%	value not known / omitted	
28	New	char	2 distinct values	0	0.00%	-	
29	Nr Of Shpts	int	0 – 1 800 000	0	0.00%		

Data construction

Derived attribute Status – merging of the opportunity stage columns

Data construction

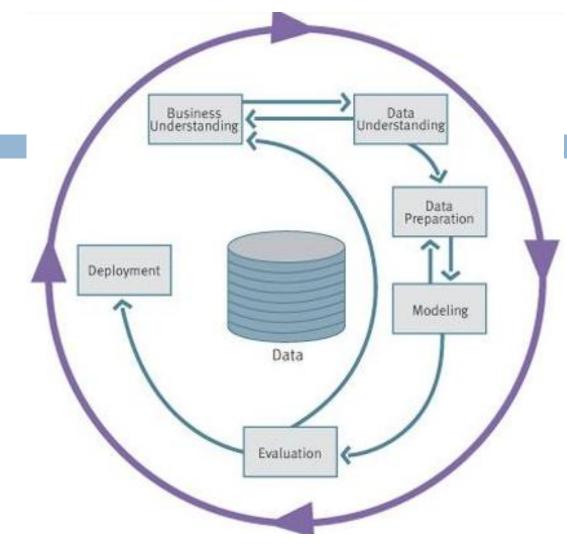
- Derived attribute Closed to compute Closing ratio
- Category closed in the succedent + various attributes in antecedent =>
- closing ratio = confidence of the rule

closed lost opp + closed won opp

closed lost opp + closed won opp + future opp + open opp

Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

35

Evaluation

Iteration 2 (IT2)

- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

IT1 - MODELLING

First analysis as a demonstration of possibilities of the LISp-Miner System

Contents

Question 1

Basic statistics

Lead source	combination	lead source	opp type	territory	% of closed won
Territory	1*	sales	one off/seasonal	CZ2E2	97
Potential revenue	2	any	one off/seasonal	CZ2E2	97
Potential revenue	3	sales	one off/seasonal	CZ1E0	92,6
Examples of questions	4	any	one off/seasonal	CZ1E0	92,6
Question 1	5	sales	one off/seasonal	CZ1P0	91,5
Question 1	6	sales	one off/seasonal	CZ2B1	91,4
Question 2	7	any	one off/seasonal	CZ1P0	91,5
Question 3	8	any	one off/seasonal	CZ2B1	91,4
Question 5	9	any	upselling	CZ2S0	88,2
Question 4	10	sales	any	CZ1E0	86,9

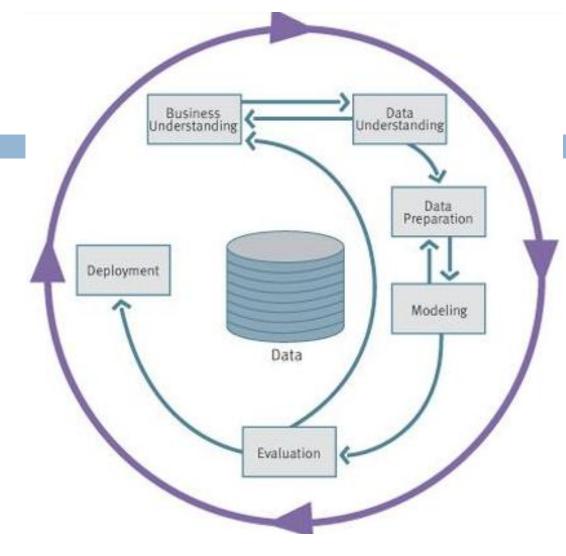
Question 5

Facts taken into account

- Managers do not have time the document should not be too extensive
- They are not interested in how the software works keep it as simple as possible, hide all unnecessary technical details
- Prerequisite: managers know what the data represents – the data description is not presented, because it would extend the document to an undesirable length

Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

38

Evaluation

Iteration 2 (IT2)

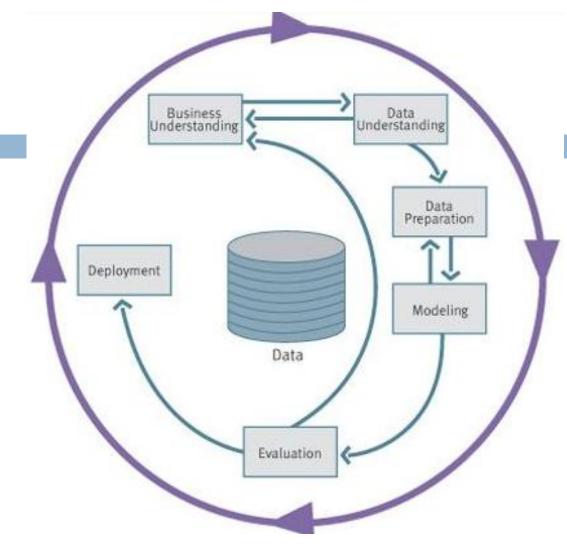
- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

IT1 - EVALUATION

- Meeting with the experts
- The results of the first analysis are promising, however there are some inaccuracies.
- The way the results are presented to the business experts is comprehensible
- The Activity extract will be made available to answer the second analytical question

Project overview

Iteration 1 (IT1)


- Business understanding
- Data understanding
- Data preparation
- Modelling

40

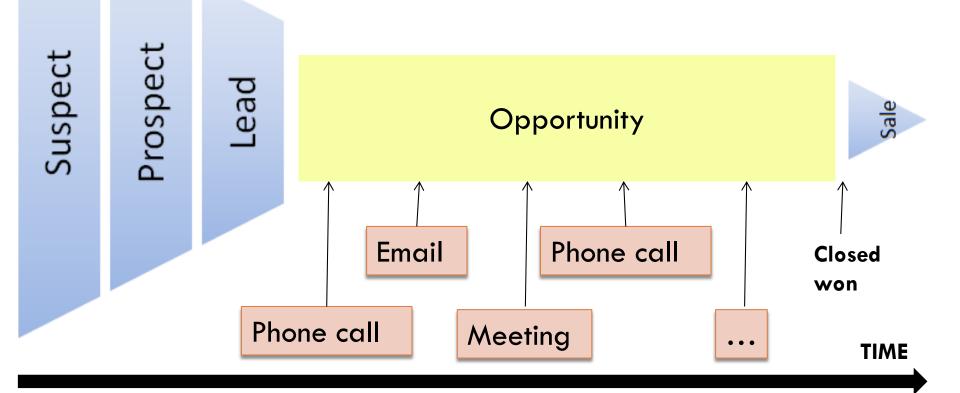
Evaluation

Iteration 2 (IT2)

- After the meeting with the experts
- Includes comments and observations from the first iteration
- New portion of data obtained

ITERATION 2

- Includes comments and observations from the first iteration
- New portion of data obtained Activity extract
 To answer second analytical question
- Data understanding, Data preparation made for the Activity extract


Issues in the second iteration

- Inaccuracies in processes (closed won)
- Data quality issues
- Duplicate rows in the data
- How to represent sequence of activities

How to represent sequence of activities

43

AQ2: Which sequences of activities result in the highest probability of a closed won opportunity?

1:n relation between opportunity and activity

How to make a single matrix suitable for analysis with LISp-Miner?

Number of activities performed during existence of an opportunity

-	
number of	
activities	number of
performed	opportunities
C	1922
1	3270
2	2 3025
3	3 2177
4	1442
5	5 1058
6	5 750
7	5 47
8	358
ç	292
10	252

number of			1	
number of				
activities	number of			
performed	opportun	opportunities		
88		1		
89		1		
96		1		
109		1		
114	1			
121		1		
134		1		
141	1			
sum		16121		
Number of all activities		61 298		
median category		2		
average number of				
activities performed		3.80		

Representing sequences of activities

- Maximum number of activities taken into account
- Type of activity
- Length of sequences
- Measuring time distance of opportunity and activity

Proposed derived attributes characterising sequence of activities

attribute	meaning	meaning of null value	
no_of_act	number of activities performed during the opportunity	no null values	
	days between creation of the opportunity and		
opp_A1_dist	completion of the first activity	the opp has no activities performed	
A1_type	type of the first activity	the opp has no activities performed	
	days between completion of the first activity and		
A1_A2_dist	completion of the second activity	the opp has less than 2 activities performed	
A2_type	type of the second activity	the opp has less than 2 activities performed	
	days between completion of the second activity and		
A2_A3_dist	completion of the third activity	the opp has less than 3 activities performed	
A3_type	type of the third activity	the opp has less than 3 activities performed	
seq_3	sequence of the types of the first three activities	the opp has less than 3 activities performed	
seq_5	sequence of the types of the first five activities	the opp has less than 5 activities performed	
seq_10	sequence of the types of the first ten activities	the opp has less than 10 activities performed	
	boolean attribute expressing whether the sequence of		
reduced_3	activities was longer than 3	the opp has less than 3 activities performed	
	boolean attribute expressing whether the sequence of		
reduced_5	activities was longer than 5	the opp has less than 5 activities performed	
	boolean attribute expressing whether the sequence of		
reduced_10	activities was longer than 10	the opp has less than 10 activities performed	

Creating one matrix with proposed derived attributes

48

IT2 – Modelling

- 49
- "Basic"rules interesting (changeable) attributes in the antecedent and an indicator in the succedent
- More complex rules combinations of interesting attributes in the antecedent and an indicator in the succedent

Which combinations of salesman and lead source have the highest revenue?

50

ANTECEDENT		SUCCEDENT			
	More cor Basic	nplex rule Basic	More complex	Basic	Basic
	rule 1	rule 2	rule	rule 1	rule 2
#	Salesman	Lead source	% of opps with potential revenue		
		higher than 70000			
			Salesman and	Salesma	Lead
			lead source	n alone	source
			together		alone
1	KA	Sales	77.5 %	76.6 %	16.0 %
2	FS	IMP 2010	54.4 %	38.0 %	20.4 %
3	FS	Campaign	45.6 %	38.0 %	31.3 %
		Squeeze TNT			
4	FS	Sales	37.2 %	38.0 %	16.0 %
5	Other	Sales	11.1 %	11.5 %	16.0 %
6	TS	Sales	9.2 %	9.3 %	16.0 %
7	Mic	Sales	6.3 %	6.2 %	16.0 %

IT2 - EVALUATION

- The results of the second analysis were sent to business experts
- □ No response

Contents

1. GUHA method and LISp-Miner

2. 4ft-Miner

- 3. Course of the project
 - Iteration 1
 - Iteration 2

4. Summary

Business understanding

- deployment of the analysis should be very concretely defined at the very beginning
- formulating of business aims
- motivation of the company
- Data understanding
 - abstract from the complexity of the data
 - no data description available anticipate the meaning and ask for feedback when you have something to offer
 - identify indicators

Data preparation

- always test the data for duplicate rows
- consider whether answering an analytical question is worth of time and effort in the data preparation phase

Modelling

- Create basic rules place interesting attributes in the 1. antecedent and an indicator in the succedent
- Create more complex rules combinations of 2. interesting attributes in the antecedent and an indicator in the succedent
- Compare the rules generated in point 2 with those 3. generated in point 1 – potentially interesting are those rules that have higher confidence than the basic rules

- Ac4ft-Miner and SD4ft-Miner are too complicated for domain experts
- Motivation of the domain experts?

