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Introduction

Motivation

C. Anderson, “The End of Theory”
1

“Traditional scientific method based on hypotheses would become
obsolete”.
“No more theories or hypotheses, no more discussions about whether
the experimental results refute or confirm the original hypotheses”.

“In this new era, sophisticated algorithms and statistical tools are
needed to sift through vast amounts of data and find information that
can be turned into knowledge”.

1http : //archive.wired.com)/science/discovery/journal/
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Introduction

Data-driven versus hypothesis-driven research

Question 1

Is data-driven research a genuine way to gain knowledge, or is it primarily
a tool for identifying potentially useful information?

Question 2

If we consider Newtonian models based on rough approximations to reality
that are wrong at the atomic level, what do we conclude about their
usefulness?
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Introduction

Inverse Problems

1st Answer

The relationship between data and its model is analyzed using inverse
problems
They tell us about parameters that we cannot directly observe ... but
They influence our judgment of the model validity in relation to the
available data.
The formally expressed relationship is

dobs = F (p).

The inverse problem is to determine the model parameters p that
produce the data dobs.

The inverse problem is unstable ⇒ the direct problem is ill-posed
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Introduction

Inverse Problem in the Form of a Fredholm
Integral Equation

d(x) =

∫
Ω
K(x, t)p(t)dt,

where function p has to be found given the continuous kernel K, function
d, and domain Ω in Rn.

For sufficiently smooth kernels K, the operator F is compact in a
reasonable space;
any solution p (defined up to an additive function lying in the null
space) is unstable;
the Tikhonov regularization is applicable if the solution (not known a
priori) has a sufficiently small L2 norm.
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Introduction

Data-Driven Modeling on Manifolds

Consider data lying on a low dimensional manifold embedded in a
high-dimensional Euclidean space R`;
Show that a space with a fuzzy partition has a manifold structure;
Find the closest manifold suitable for data representation
(data-driven aspect);
Use theory of F-transforms as a source of non-local operators
including the Laplacian
Use non-local Laplacian in the inverse problem where the
corresponding direct is connected with the dimensionality reduction.
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Manifolds and Spaces with a Fuzzy Partition

Topological Manifold

Definition. Gauss, Riemann, Poincare

An n-dimensional topological manifold2 is a topological space M that
can be covered by a collection of open subsets {Ui} which are called
local coordinate neighborhoods with
bi-continuous, one-to-one mappings (homeomorphisms)
φi : Ui → Rn, which are called coordinate maps (or charts).
A collection of charts which covers manifold M is called an atlas of
M . Since all subsets Ui’s cover M , we write M =

⋃
Ui.

Since φi is invertible, the φ−1i exists and it is continuous as well.

2J. P. Fortney, A Visual Introduction to Differential Forms and Calculus on
Manifolds, Springer, 2018
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Manifolds and Spaces with a Fuzzy Partition

Illustration. Charts
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Manifolds and Spaces with a Fuzzy Partition

1-Manifold Example

A Cusp - upside down graph of a membership function

The graph of y = x2/3 in R2 is a topological manifold. It is locally
Euclidean, because it is homeomorphic to R via (x, x2/3)→ x.

5.2 Compatible Charts 49

Example. The Euclidean space Rn is covered by a single chart (Rn,1Rn), where

1Rn : Rn→Rn is the identity map. It is the prime example of a topological manifold.

Every open subset of Rn is also a topological manifold, with chart (U,1U).

Recall that the Hausdorff condition and second countability are “hereditary prop-

erties”; that is, they are inherited by subspaces: a subspace of a Hausdorff space is

Hausdorff (Proposition A.19) and a subspace of a second-countable space is second

countable (Proposition A.14). So any subspace of Rn is automatically Hausdorff and

second countable.

Example 5.3 (A cusp). The graph of y = x2/3 in R2 is a topological manifold (Fig-

ure 5.1(a)). By virtue of being a subspace of R2, it is Hausdorff and second count-

able. It is locally Euclidean, because it is homeomorphic to R via (x,x2/3) 7→ x.

(a) Cusp (b) Cross

p

Fig. 5.1.

Example 5.4 (A cross). Show that the cross in R2 in Figure 5.1 with the subspace

topology is not locally Euclidean at the intersection p, and so cannot be a topological

manifold.

Solution. Suppose the cross is locally Euclidean of dimension n at the point p. Then

p has a neighborhood U homeomorphic to an open ball B := B(0,ε) ⊂ Rn with

p mapping to 0. The homeomorphism U → B restricts to a homeomorphism U −
{p} → B−{0}. Now B−{0} is either connected if n ≥ 2 or has two connected

components if n = 1. Since U −{p} has four connected components, there can be

no homeomorphism from U −{p} to B−{0}. This contradiction proves that the

cross is not locally Euclidean at p. ⊓⊔

5.2 Compatible Charts

Suppose (U,φ : U → Rn) and (V,ψ : V → Rn) are two charts of a topological man-

ifold. Since U ∩V is open in U and φ : U → Rn is a homeomorphism onto an open

subset of Rn, the image φ(U ∩V ) will also be an open subset of Rn. Similarly,

ψ(U ∩V ) is an open subset of Rn.

Definition 5.5. Two charts (U,φ : U → Rn), (V,ψ : V → Rn) of a topological

manifold are C∞-compatible if the two maps
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Manifolds and Spaces with a Fuzzy Partition

Connected 1-manifolds

Examples of connected 1-manifolds

The real line R
The half-line R+

The circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1}
The closed interval I = [0, 1]

Topological classification of connected 1-manifolds

Theorem.
Any connected 1-manifold is homeomorphic to one of the four manifolds:
R, R+, S1, I.

No two of these manifolds are homeomorphic to each other
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Fuzzy Partition with Manifold Structure

Fuzzy Partition A1, . . . , An of [a, b]

Fuzzy sets A1, . . . , An with
continuous membership functions
form a fuzzy partition with nodes
x1, . . . , xn if for each k = 1 . . . , n

Ak(xk) = 1

Ak(x) = 0 if
x 6∈ (xk−1, xk+1)

Ak(x)↗ on [xk−1, xk]

Ak(x)↘ on [xk, xk+1]

Opt-ly, Ruspini condition∑n
k=1Ak(x) = 1,

0 b=xn

1

a=x1
x2 x3 xk

A1 A2 Ak An
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Fuzzy Partition with Manifold Structure

Fuzzy Partition ⇒ 1-Manifold

Let fuzzy sets A1, . . . , An be a non-overlapping fuzzy partition of [a, b]
with nodes x1, . . . , xn where Ak : (xk−1, xk+1)→ [0, 1]. Then the
collection of charts

{(U1, φ1), (U2, φ2), . . . , (Un, φn)}

where Uk = {(x,Ak(x)) | x ∈ (xk−1, xk+1)} and φk : (x,Ak(x)→ x is a
1-dimensional manifold MA1,...,An with boundaries (x1, 0), . . . , (xn, 0)
(a = x1, b = xn), i.e.

MA1,...,An = {(U1, φ1), (U2, φ2), . . . , (Un, φn), (x1, 0), . . . , (xn, 0)}.

I. Perfilieva (University of Ostrava, Centre of Excellence IT4Innovations Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, Ostrava, Czech Republicirina.perfilieva@osu.cz )Data FM 15 / 44



Fuzzy Partition with Manifold Structure

1-Manifold ⇒ Fuzzy Partition

Let M be a connected 1-dimensional manifold with n boundary
points p1, . . . , pn, i.e.

M = {(U1, φ1), (U2, φ2), . . . , (Un, φn), p1, . . . , pn} ,

so that
lim
p→p1

φ1(p) = a, lim
p→pn

φn(p) = b, a < b.

Let A1, . . . , An be a fuzzy partition of [a, b] with nodes x1, . . . , xn.
Let MA1,...,An be the corresponding manifold.

Then manifolds M and MA1,...,An are homeomorphic.

I. Perfilieva (University of Ostrava, Centre of Excellence IT4Innovations Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, Ostrava, Czech Republicirina.perfilieva@osu.cz )Data FM 16 / 44



Riemannian Manifolds and their Representation on Graphs

Outline

1 Introduction

2 Manifolds and Spaces with a Fuzzy Partition

3 Fuzzy Partition with Manifold Structure

4 Riemannian Manifolds and their Representation on Graphs

5 Fuzzy Transform
Direct FT
Main Properties

6 Discrete Laplace - Beltrami Operator

7 Experiments with Time Series and Images

I. Perfilieva (University of Ostrava, Centre of Excellence IT4Innovations Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, Ostrava, Czech Republicirina.perfilieva@osu.cz )Data FM 17 / 44



Riemannian Manifolds and their Representation on Graphs

Motivating Problem

A continuous function of p, p ≥ 1, variables on a bounded domain
can be represented by its projections (components of the
F-transform) onto the nearest manifold with a finite number of
connected components, so that the charts of the latter can be used
to approximate the function by its inverse F-transform.
The goal is:

To find the nearest manifold and use it in the invFT

HOW THIS CAN BE DONE?
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Riemannian Manifolds and their Representation on Graphs

Motivating Example
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Fuzzy Transform Direct FT

Direct F-transform - details

Definition

Assume that
• x ∈ L2(R),
• {Ak, k ∈ Z} is an h-uniform fuzzy partition of R.

The sequence F [x] = (Xk, k ∈ Z), where

Xk =

∫∞
−∞Ak(s) · x(s) ds∫∞
−∞Ak(s) ds

=
1

H

∫ ∞
−∞

Ak(s) · x(s) ds

is the (direct) F-transform of x with respect to {Ak, k ∈ Z}3. Real
numbers Xk, k ∈ Z, are the F-transform components of x.

3I. Perfilieva, Fuzzy transforms: Theory and applications Fuzzy Sets and Systems
157 (2006) 993 – 1023
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Fuzzy Transform Direct FT

(Fuzzy) F-Transform Schematically
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Fuzzy Transform Main Properties

Main Properties of the F-Transform

Best Approximation

Component Fk, k = 1, . . . , n, minimizes the following criterion

Φk(y) =

∫ ∞
−∞

(f(x)− y)2Ak(x)dx.
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Fuzzy Transform Main Properties

Main Properties of the F-Transform

F-Transform of Constants

Components Ck, k = 1, . . . , n, of a constant function c coincide with c,
i.e.

Fn(c) = (c, . . . , c).
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Fuzzy Transform Main Properties

Main Properties of the F-Transform

Linearity

The F-transform is an image of a linear operator Fn, i.e. for all
f, h ∈ (L2[a, b];A1, . . . , An) and for all α, β ∈ R,

Fn(αf + βh) = αFn(f) + βFn(h).
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Fuzzy Transform Main Properties

Inverse F-transform - details

Inversion Formula

Let
• x = (Xk, k ∈ Z) be an arbitrary sequence of reals,
• {Ak, k ∈ Z} be an h-uniform fuzzy partition of R,

and The following inversion formula4

x̂F (t) =

∑∞
k=−∞Xk ·Ak(t)∑∞
k=−∞Ak(t)

, t ∈ R,

converts the sequence x into the real function x̂F such that x̂F : R→ R.

Definition

x̂F is the inverse F-transform of the sequence x = (Xk, k ∈ Z) with
respect to the fuzzy partition {Ak, k ∈ Z}.

4I. Perfilieva, M. Holcapek, V. Kreinovich, A new reconstruction from the
F-transform components, FSS 2016
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Fuzzy Transform Main Properties

The nearest 1-manifold. Specification

Parameters To be Found

Boundary points - Keypoints;
Collection of charts {(U1, φ1), (U2, φ2), . . . , (Un, φn)} - Local pieces
of topologically close points;
Measure of “goodness”.

This Requires to Establish a Calculus on a Manifold !
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Fuzzy Transform Main Properties

Weighted Graph as a Model of a Manifold

Let G = (V,E,w) be a a weighted graph where V = {v1, . . . , v`} is
a finite set of vertices, and E (E ⊂ V × V ) is a set of weighted
edges so that w : E → R+.
The edge e = (vi, vj) connects two vertices vi and vj , and then the
weight of e is w(vi, vj) or just wij .
Weights are set using the function w : V × V → R+, which is
symmetric (wij = wji,∀ 1 ≤ i, j ≤ `), non-negative (wij ≥ 0) and
wij = 0 if (vi, vj) 6∈ E.
The notation vi ∼ vj denotes two adjacent vertices vi and vj with an
existing edge connecting them.
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Fuzzy Transform Main Properties

Two Hilbert spaces on a Weighted Graph

Let H(V ) denote the Hilbert space of real-valued functions on the set
of vertices V of the graph, where if f, h ∈ H(V ) and f, h : V → R.
The inner product

〈f, h〉H(V ) =
∑
v∈V

f(v)h(v).

Similarly, H(E) denotes the space of real-valued functions defined on
the set E of edges of a graph G. This space has the inner product

〈F,H〉H(E) =
∑

(u,v)∈E

F (u, v)H(u, v) =
∑
u∈V

∑
v∼u

F (u, v)H(u, v),

where F,H : E → R are two functions on H(E).
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Discrete Laplace - Beltrami Operator
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Discrete Laplace - Beltrami Operator

Directional Derivative of a Function on a Graph

Let G = (V,E,w) be a weighted graph, and let f : V → R be a function
in H(V ). The difference operator d : H(V )→ H(E) of f , is defined on
(u, v) ∈ E by

(df)(u, v) =
√
w(u, v) (f(v)− f(u)) .

The directional derivative of f , at vertex v ∈ V , along the edge
e = (u, v), is defined as:

∂vf(u) = (df)(u, v).
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Discrete Laplace - Beltrami Operator

Adjoint to the Difference Operator

The adjoint to the difference operator d∗ : H(E)→ H(V ), is a linear
operator defined by:

〈df,H〉H(E) = 〈f, d∗H〉H(V ),

for any function H ∈ H(E) and function f ∈ H(V ).
Proposition

The adjoint operator d∗ can be expressed at a vertex u ∈ V by the
following formula:

(d∗H)(u) =
∑
v∼u

√
w(u, v) (H(v, u)−H(u, v)) .

The divergence operator, defined by −d∗, measures the network outflow
of a function in H(E), at each vertex of the graph.
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Discrete Laplace - Beltrami Operator

The Weighted Laplace Operator

The weighted gradient operator of f ∈ H(V ), at vertex
u ∈ V, ∀(u, vi) ∈ E, is a column vector:

∇wf(u) = (∂vf(u) : v ∼ u)T = (∂v1f(u), . . . , ∂vkf(u))
T .

The weighted Laplace operator ∆w : H(V )→ H(V ), is defined by:

∆wf = −1

2
d∗(df).
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Discrete Laplace - Beltrami Operator

w-Laplace Operator and Measure of “Goodness”

Proposition

The weighted Laplace operator ∆w at f ∈ H(V ) acts as follows:

(∆wf)(u) = −
∑
v∼u

w(u, v)(f(v)− f(u)).

This Laplace operator is linear and corresponds to the graph Laplacian.

Keypoints are the points of local extrema of a Laplacian !

Laplacian values regulate the charts areas !
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Experiments with Time Series and Images
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Experiments with Time Series and Images

Financial Time Series

5

5Yahoo Finance: The (2016) daily closing prices from international stock indices,
namely Prague (PX), Paris (FCHI), Frankfurt (GDAXI) and Moscow (MOEX)

I. Perfilieva (University of Ostrava, Centre of Excellence IT4Innovations Institute for Research and Applications of Fuzzy Modeling 30. dubna 22, Ostrava, Czech Republicirina.perfilieva@osu.cz )Data FM 34 / 44



Experiments with Time Series and Images

Scale-Dependent Keypoints, w = 2t, t = 4, 5
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Experiments with Time Series and Images

Scale-Dependent Keypoints, w = 2t, t = 6, 7
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Experiments with Time Series and Images

Scale-Dependent Keypoints, w = 2t, t = 8, 9
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Experiments with Time Series and Images

The nearest 1-manifold, w = 2t, t = 4, 5
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Experiments with Time Series and Images

The nearest 1-manifold, w = 2t, t = 6, 7, 9
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Experiments with Time Series and Images

Aggregated Reconstructions: AggIFT – NN
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Experiments with Time Series and Images

Aggregated Reconstructions with RMSE
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Experiments with Time Series and Images

Image and Its Scale-Dependent Keypoints
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Experiments with Time Series and Images

Image and Its Reconstruction from
Scale-Dependent Keypoints
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Experiments with Time Series and Images

Conclusion

We have contributed to efficient data-driven modeling by showing
that

A connected 1 manifold naturally leads to a space with a fuzzy
partition;
The data-driven modeling is about finding the nearest manifold;
The quality of a data-driven modeling is connected with the
Laplace-Beltrami operator.
A continuous function on a bounded domain can be represented by its
projections (components of the F-transform) onto the nearest
manifold, so that the charts of the latter can be used to approximate
the function using the inverse F-transform.
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