Surrogate Modeling and Landscape Analysis for Evolutionary Black-box Optimization

Zbyněk Pitra

Supervisor: Martin Holeňa

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University

Prague, Czech Republic

2022

CONTINUOUS BLACK-BOX OPTIMIZATION

objective function evaluated empirically or through simulations

• optimization (minimization) is finding such $\mathbf{x}^* \in \mathbb{R}^n$ that

$$f(\mathbf{x}^{\star}) = \min_{\forall \mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

expensive scenario – limited number of evaluations

CONTINUOUS BLACK-BOX OPTIMIZATION

- objective function evaluated empirically or through simulations
- optimization (minimization) is finding such $\mathbf{x}^* \in \mathbb{R}^n$ that

$$f(\mathbf{x}^{\star}) = \min_{\forall \mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

expensive scenario – limited number of evaluations

CONTINUOUS BLACK-BOX OPTIMIZATION

- objective function evaluated empirically or through simulations
- optimization (minimization) is finding such $\mathbf{x}^* \in \mathbb{R}^n$ that

$$f(\mathbf{x}^{\star}) = \min_{\forall \mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

expensive scenario – limited number of evaluations

EVOLUTIONARY ALGORITHMS AND SURROGATE MODELING

Evolutionary Algorithms

- escape from local optima
- require many function evaluations

EVOLUTIONARY ALGORITHMS AND SURROGATE MODELING

Evolutionary Algorithms

- escape from local optima
- require many function evaluations

Surrogate Modeling

- approximating regression model
- not expensive
- ► less accurate

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_{λ} appropriately

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_{λ} appropriately

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

1.
$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, ..., \lambda$ sampling
2. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$ where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, ..., \lambda$ sampling 2. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$ where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean
- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

1.
$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ sampling

2.
$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$$
 where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

while not terminate

1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ sampling

2.
$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$$
 where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, ..., \lambda$ sampling 2. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$ where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean
- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

1.
$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ sampling

2.
$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$$
 where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

1.
$$\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$$
, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ sampling

2.
$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$$
 where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

while not terminate

1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ sampling

2.
$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$$
 where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean

- 3. update C
- 4. update step-size σ

GAUSSIAN PROCESSES

A collection of random variables, any finite subset of which have a joint Gaussian distribution.

- **b** specified by a **mean function** and a **covariance function**
- ▶ prediction in a point given as a **univariate** Gaussian

GAUSSIAN PROCESSES

A collection of random variables, any finite subset of which have a joint Gaussian distribution.

- ► specified by a **mean function** and a **covariance function**
- ▶ prediction in a point given as a **univariate** Gaussian

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

while not terminate

1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, ..., \lambda$ {sampling} 2. evaluate \mathbf{x}_i with the original fitness 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$, $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ {update mean} 4. update step-size σ 5. update \mathbf{C}

EVOLUTION CONTROL IN THE CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, ..., \lambda$ {sampling} 2. $\mathbf{y}_i \leftarrow \text{evolutionControl}(\mathbf{x}_i)$ 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$, $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ {update mean} 4. update step-size σ
- 5. update C

SURROGATE CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. evaluate \mathbf{x}_i with the original fitness f & build a model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

SURROGATE CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_{λ} appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. evaluate \mathbf{x}_i with the model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. build a model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. build a model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. evaluate \mathbf{x}_i with the model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

DOUBLY TRAINED SURROGATE CMA-ES Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_{λ} appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. evaluate \mathbf{x}_i with the original fitness f & build a model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

DOUBLY TRAINED SURROGATE CMA-ES Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \dots, w_{λ} appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \quad \{\text{sampling}\}$
- 2. evaluate \mathbf{x}_i with the original fitness f & build a model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

Input: $\mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda \in \mathbb{N}$ **Initialize:** $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_λ appropriately

- 1. $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i$, $\mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C})$, for $i = 1, \dots, \lambda$ {sampling}
- 2. evaluate \mathbf{x}_i with the model $f_{\mathcal{M}}$
- 3. $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- 4. update step-size σ
- 5. update C

DTS-CMA-ES EXPERIMENTAL VALIDATION

COCO testbed

- 24 noiseless benchmarks
- ▶ 2, 3, 5, 10, and 20D
- 15 benchmark transformations (instances)
- 12 surrogate-assisted CMA-ES variants
 - ★ S-CMA-ES (5 gen)
 - DTS-CMA-ES (0.05/2pop)
 - ◊ adaptive DTS-CMA-ES
- ► 250 FE/D or 10⁻⁸ target value

DTS-CMA-ES VARIANTS

Ordinal GP

► Lower performance except Attractive sector

Random forest

Overall lower perfomance

Improves on multimodal functions with global structure

► Infomation criterion selection (early stage)

Lower performance except two multimodal functions

- ► GP + ANN (early stage)
 - Only linear covariance improvement

MODEL VS. EVOLUTION CONTROL

► Algorithms

- ► lmm-CMA-ES
- DTS-CMA-ES
- ► lq-CMA-ES
- ▶ 250 FE/D

Benchmarking

- 24 noiseless and 30 noisy benchmarks
- ► 5 dimensions and 15 instances
- Energy wave landscape simulation benchmark (6 dims, 24 settings)

MODEL VS. EVOLUTION CONTROL

► Algorithms

► lmm-CMA-ES

- DTS-CMA-ES
- ► lq-CMA-ES
- ► 250 FE/D

Results

Benchmarking

- 24 noiseless and 30 noisy benchmarks
- ► 5 dimensions and 15 instances
- Energy wave landscape simulation benchmark (6 dims, 24 settings)
- ► EC and model significant influence on convergence
- ► lq-CMA-ES EC and GP models very successful

DATASET

- Snapshots from 100 artificial runs of the DTS-CMA-ES
 - 24 noiseless benchmark functions
 - ► 5 dimensions
 - ► 5 instances
 - 8 covariance functions
 - 100 generations
- ► 48 mil. data

DATASET - SAMPLE SETS

$$\mathcal{S} = \left\{ (\mathbf{x}_i, y_i) \in \mathbb{R}^D \times \mathbb{R} \cup \{\circ\} \mid i = 1, \dots, N \right\}$$

 $^{\top}$ set in CMA-ES basis

DATASET - TRAINING SET SELECTION METHODS (TSS)

TSS full

 $\blacktriangleright \mathcal{A} = \mathcal{T}$

Feature space \sim Exploratory landscape features

$$\varphi: \bigcup_{N \in \mathbb{N}} \mathbb{R}^{N, D} \times (\mathbb{R} \cup \{\circ\})^{N, 1} \mapsto \mathbb{R} \cup \{\pm \infty, \bullet\}$$

- Distribution
- ► Levelset
- Meta-Model
- Nearest better clustering (NBC)

- ► Dispersion
- Information content
- ► Dimension
- ► Number of observations

New CMA-ES features

Feature space \sim Exploratory landscape features

$$\varphi: \bigcup_{N \in \mathbb{N}} \mathbb{R}^{N, D} \times (\mathbb{R} \cup \{\circ\})^{N, 1} \mapsto \mathbb{R} \cup \{\pm \infty, \bullet\}$$

- Distribution
- ► Levelset
- Meta-Model
- Nearest better clustering (NBC)

- ► Dispersion
- Information content
- ► Dimension
- ► Number of observations

New CMA-ES features

CMA-ES FEATURES

► Generation number ► Generation number ► Step-size ► Step-size ► Number of restarts ► CMA mean distance $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^{\top} \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square $\varphi_{\mathbf{p}_{c}} = \|\mathbf{p}_{c}\|^{2}$ ► σ evolution path ratio $\varphi_{\mathbf{p}_{\sigma}} = \frac{\|\mathbf{p}_{\sigma}\|}{E\|N(0,1)\|}$ ► CMA similarity likelihood $\varphi_{c} = -\frac{N}{2} (D \log 2\pi\sigma^{2} + \log \det \mathbf{C}) - \frac{1}{2} \sum_{\mathbf{r} \in \mathbf{Y}} (\mathbf{x} - \mathbf{m})^{\top} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{m})$

CMA-ES FEATURES

► Generation number $\varphi_g = g$ ► Step-size $\varphi_\sigma = \sigma$ ► Number of restarts $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^\top \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► CMA mean distance $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^\top \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square $\varphi_{\mathbf{p}_c} = ||\mathbf{p}_c||^2$ ► σ evolution path ratio $\varphi_{\mathbf{p}_\sigma} = \frac{||\mathbf{p}_\sigma||}{E||\mathbf{N}(0,\mathbf{I})||}$ ► CMA similarity likelihood $\varphi_c = -\frac{N}{2} (D \log 2\pi\sigma^2 + \log \det \mathbf{C}) - \frac{1}{2} \sum_{\mathbf{r} \in \mathbf{Y}} (\mathbf{x} - \mathbf{m})^\top \mathbf{C}^{-1} (\mathbf{x} - \mathbf{m})$

CMA-ES FEATURES

► Generation number ► Generation number ► Step-size ► Number of restarts ► CMA mean distance ► $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^{\top} \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square ► $\varphi_{\mathbf{p}_{c}} = ||\mathbf{p}_{c}||^{2}$ ► σ evolution path ratio ► CMA similarity likelihood $\varphi_{c} = -\frac{N}{c} (D \log 2\pi\sigma^{2} + \log \det \mathbf{C}) - \frac{1}{c} \sum_{\mathbf{r} \in \mathbf{X}} (\frac{\mathbf{x} - \mathbf{m}}{c})^{\top} \mathbf{C}^{-1} (\frac{\mathbf{x} - \mathbf{m}}{c})$

CMA-ES FEATURES

► Generation number ► Generation number ► Step-size ► Number of restarts ► CMA mean distance ► $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^{\top} \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square ► $\varphi_{\mathbf{p}_{c}} = ||\mathbf{p}_{c}||^{2}$ ► σ evolution path ratio ► CMA similarity likelihood $\varphi_{C} = -\frac{N}{2} (D \log 2\pi\sigma^{2} + \log \det \mathbf{C}) - \frac{1}{2} \sum_{\mathbf{r} \in \mathbf{X}} (\underline{\mathbf{X}} - \underline{\mathbf{m}})^{\top} \mathbf{C}^{-1} (\underline{\mathbf{X}} - \underline{\mathbf{m}})$

CMA-ES FEATURES

CMA-ES FEATURES

► Generation number ► Generation number ► Step-size ► Number of restarts ► CMA mean distance ► CMA mean distance ► Cevolution path length square ► C evolution path length square ► $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^{\top} \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square ► $\varphi_{\mathbf{p}_{c}} = ||\mathbf{p}_{c}||^{2}$ ► σ evolution path ratio ► CMA similarity likelihood $\varphi_{\mathcal{L}} = -\frac{N}{2} (D \log 2\pi\sigma^{2} + \log \det \mathbf{C}) - \frac{1}{2} \sum_{\mathbf{x} \in \mathbf{X}} (\frac{\mathbf{x} - \mathbf{m}}{\sigma})^{\top} \mathbf{C}^{-1} (\frac{\mathbf{x} - \mathbf{m}}{\sigma})$

CMA-ES FEATURES

► Generation number ► Generation number ► Step-size ► Number of restarts ► CMA mean distance $\varphi_{d(\mathbf{m})} = \sqrt{(\mathbf{m} - \mu_{\mathbf{X}})^{\top} \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{m} - \mu_{\mathbf{X}})}$ ► C evolution path length square $\varphi_{\mathbf{p}_{c}} = ||\mathbf{p}_{c}||^{2}$ ► σ evolution path ratio $\varphi_{\mathbf{p}_{\sigma}} = \frac{||\mathbf{p}_{\sigma}||}{E||\mathbf{N}(\mathbf{0},\mathbf{I})||}$ ► CMA similarity likelihood $\varphi_{\mathcal{L}} = -\frac{N}{2} \left(D \log 2\pi\sigma^{2} + \log \det \mathbf{C} \right) - \frac{1}{2} \sum_{\mathbf{x} \in \mathbf{X}} \left(\frac{\mathbf{x} - \mathbf{m}}{\sigma} \right)^{\top} \mathbf{C}^{-1} \left(\frac{\mathbf{x} - \mathbf{m}}{\sigma} \right)$

• and $\pm\infty$

Impossibility of calculation •

- ► $\geq 25\%$ of values = \rightarrow exclude feature
- Minimal number of points for feature calculation N_{\bullet}
 - < 1% of values = •
 - $N_{\bullet} = 6$ without \mathcal{P}
 - ► $N_{\bullet} = 13$ with \mathcal{P}

• and $\pm\infty$

Impossibility of calculation •

- ▶ $\geq 25\%$ of values = → exclude feature
- Minimal number of points for feature calculation N_{\bullet}
 - < 1% of values = •
 - ▶ $N_{\bullet} = 6$ without \mathcal{P}
 - ► $N_{\bullet} = 13$ with \mathcal{P}

Normalization

- ▶ Sigmoid scaling to [0,1]
- ▶ 0.01 and 0.99 quantiles mapped to 0.01 and 0.99
- Dealing with $\pm \infty$

ROBUSTNESS

Proportion of cases for which the difference between the 1^{st} and 100^{th} percentile $\leq 0.05.$

threshold	TSS full	TSS nearest	TSS knn
0.5	125 /195	244 /384 (119/189)	188 /366 (63/171)
0.6	82 /195	158 /384 (76/189)	131 /366 (49/171)
0.7	54 /195	102 /384 (48/189)	93 /366 (39/171)
0.8	43 /195	80 /384 (37/189)	73 /366 (30/171)
0.9	33 /195	60 /384 (27/189)	59 /366 (26/171)
0.99	28 /195	50 /384 (22/189)	30 /366 (2/171)

DIMENSION DEPENDENCY AND SIMILARITY

Dimension dependency

► Friedman rejected feature medians independence on 0.05 level

DIMENSION DEPENDENCY AND SIMILARITY

Dimension dependency

► Friedman rejected feature medians independence on 0.05 level Feature similarity

- Agglomerative hierarchical clustering
- ► Similarity = 1 Schweizer-Wolf correlation
- Ordering-dependency compensation
 - ► 5 runs for each TSS method
 - ► Optimal: 14 clusters
- ► Feature cluster representatives
 - *k*-medoids clustering (k = 14)
 - Almost identical features for all TSS selected including dimension and number of observations

SURROGATE MODELS

► GP

8 covariance functions

► RF

- ► 5 splitting methods
- Latin-hypercube design on 100 out of 400 combinations
 - Number of trees $\{2^6, 2^7, 2^8, 2^9, 2^{10}\}$
 - ► Number of bootstrapped training points $\left[\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\} \cdot N\right]$
 - ► Number of subsampled dimensions [{¹/₄, ¹/₂, ³/₄, 1} · D]
- ► 2 TSS methods, 2 error measures
- ► polynomial
 - Imm model
 - Iq model

DATASET

- Snapshots from independent runs of the DTS-CMA-ES
 - 24 noiseless benchmark functions
 - ► 5 dimensions
 - ► 5 instances
 - 7 covariance functions
 - ► 25 generations

Performance space \sim MSE & Ranking Difference Error

MSE

► Difference directly from the objective function landscape

Performance space \sim MSE & Ranking Difference Error

MSE

• Difference directly from the objective function landscape RDE

• Difference of ranking of μ best points

$$RDE_{\mu}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{\sum_{i:\rho(i) \le \mu} |\hat{\rho}(i) - \rho(i)|}{\max_{\pi \in \text{Permutations of } (1, \dots, \lambda)} \sum_{i:\pi(i) \le \mu} |i - \pi(i)|}$$

 λ – population size $\mathbf{y}, \hat{\mathbf{y}} \in \mathbb{R}^{\lambda}, \mu = \lceil \frac{\lambda}{2} \rceil$ $\rho(i)$ – ranks of the *i*-th element in vector \mathbf{y} $\hat{\rho}(i)$ – ranks of the *i*-th element in vector $\hat{\mathbf{y}}$

STATISTICAL TESTING

- MSE and RDE data diversity
 - Friedman test and Tukey's post-hoc test
 - ► Pairwise two-sided Wilcoxon signed rank Holm correction
 - Significant differences among wast majority of pairs of 39 model settings
 - GP model settings provided the highest perfomance followed by polynomial models
- Univariate features descriptivity
 - Kolmogorov-Smirnov test
 - Significant differences between features on sample sets with particular best setting and all data
- Multivariate features descriptivity
 - Classification tree per TSS method
 - Equal RDE \rightarrow MSE

STATISTICAL TESTING

- MSE and RDE data diversity
 - Friedman test and Tukey's post-hoc test
 - ▶ Pairwise two-sided Wilcoxon signed rank Holm correction
 - Significant differences among wast majority of pairs of 39 model settings
 - GP model settings provided the highest perfomance followed by polynomial models
- Univariate features descriptivity
 - Kolmogorov-Smirnov test
 - Significant differences between features on sample sets with particular best setting and all data
- Multivariate features descriptivity
 - Classification tree per TSS method
 - $\blacktriangleright Equal RDE \rightarrow MSE$

STATISTICAL TESTING

- MSE and RDE data diversity
 - Friedman test and Tukey's post-hoc test
 - ▶ Pairwise two-sided Wilcoxon signed rank Holm correction
 - Significant differences among wast majority of pairs of 39 model settings
 - GP model settings provided the highest perfomance followed by polynomial models
- Univariate features descriptivity
 - Kolmogorov-Smirnov test
 - Significant differences between features on sample sets with particular best setting and all data
- Multivariate features descriptivity
 - Classification tree per TSS method
 - Equal RDE \rightarrow MSE

KOLMOGOROV-SMIRNOV TEST

Selection \sim Decision tree

SUMMARY OF RESULTS

► Evolution control

- Generation EC drops early with GP and RF
- ► Doubly trained EC using GP very useful in middle stage
- EC and SM significantly influence the algorithm's performance
- Landscape analysis
 - Large number of low robust and similar features
 - Significant differences in model settings performance
 - ► Significant differences in feature distribution
 - CMA-ES based features are useful
- ► Future research:
 - Surrogate model selection system

QUESTIONS?

z.pitra@gmail.com

martin@cs.cas.cz