Advances in Computer Vision / Multimedia Processing

Petr Pulc¹, Martin Holeňa¹

¹Institute of Computer Science, Czech Academy of Sciences Prague, Czech Republic

December 20, 2018

Outline

- Primary Methods of Computer Vision
- Based Directly on Pixel Data
- Transfer to Time Series
- Based on Time Series

2 Joint Detection, Tracking and Description

- On Limited Scope
- With Shot-based Metalearning
- With Metalearning on Areas of Interest

Outline

- Primary Methods of Computer Vision
- Based Directly on Pixel Data
- Transfer to Time Series
- Based on Time Series

2 Joint Detection, Tracking and Description

- On Limited Scope
- With Shot-based Metalearning
- With Metalearning on Areas of Interest

3 Discussion

- Based directly on pixel colour data (not necessarily RGB)
- Individual frames as independent pictures
- Very often using (D)*(C)NN

Primary Methods of Computer Vision

Based Directly on Pixel Data

Choose Your (Deep) Weapon!

Excels in object detection, good in object description.

Primary Methods of Computer Vision

Based Directly on Pixel Data

Choose Your (Deep) Weapon!

Excels in object detection, good in object description.

Primary Methods of Computer Vision

Based Directly on Pixel Data

Choose Your (Deep) Weapon!

Good in object detection, commonly used for face description.

Primary Methods of Computer Vision

Based Directly on Pixel Data

Choose Your (Deep) Weapon! ResNet

Much deeper, comparable model size, used for face description.

However...

(d) Person (high)

(f) Untargeted (high)

Chen, S. T., Cornelius, C., Martin, J., & Chau, D. H. P.: Physical Adversarial Attack on Object Detectors.

(e) Sports ball (high)

However...

Chen, S. T., Cornelius, C., Martin, J., & Chau, D. H. P.: Physical Adversarial Attack on Object Detectors.

Use of Networks on Statistical Data

Sabata, T., Pulc, P., & Holena, M.: Semi-supervised and Active Learning in Video Scene Classification from Statistical Features. In Workshop on Interactive Adaptive Learning.

Use of Networks on Statistical Data

(a) Room 4A

(b) Room 4B

(c) Histogram comparison

Šabata, T., Pulc, P., & Holena, M.: Semi-supervised and Active Learning in Video Scene Classification from Statistical Features. In Workshop on Interactive Adaptive Learning.

Detect, Align, Describe, Match

Marčetić, D., & Ribarić, S.: An Online Multi-Face Tracker for Unconstrained Videos.

Detect, Align, Describe, Match

Marčetić, D., & Ribarić, S.: An Online Multi-Face Tracker for Unconstrained Videos.

Optical Flow

Lamba, S. & Nain N.: Oriented Tracklets Approach for Anomalous Scene Detection in High Density Crowd

Optical Flow with Camera Motion Compensation

Beumier, C. & Neyt X.: Trajectories and Camera Motion Compensation in Aerial Videos

Optical Flow with Camera Motion Compensation

Beumier, C. & Neyt X.: Trajectories and Camera Motion Compensation in Aerial Videos

Optical Flow with Camera Motion Compensation

 Information on motion from upper octave (ΔA, ΔA')

Optical Flow with Camera Motion Compensation

- Information on motion from upper octave (ΔA, ΔA')
- Feature motion relative to upper octave $(\Delta a \Delta A)$

Optical Flow with Camera Motion Compensation

- Information on motion from upper octave (ΔA, ΔA')
- Feature motion relative to upper octave (Δa – ΔA)
- Estimation of new position of the feature $(\Delta a')$

Outline

- Based Directly on Pixel Data
- Transfer to Time Series
- Based on Time Series

2 Joint Detection, Tracking and Description

- On Limited Scope
- With Shot-based Metalearning
- With Metalearning on Areas of Interest

3 Discussion

Advances in Computer Vision Joint Detection, Tracking and Description On Limited Scope

Face Detect, Track, Describe

Tapu, R., Mocanu, B. & Zaharia T.: Face recognition in video streams for mobile assistive devices dedicated to visually impaired.

Joint Detection, Tracking and Description

With Shot-based Metalearning

Based on Type of Content Training

- Split content to individual shots
- Based on statistical properties, pick set of processing methods
- Store the best-performing methods to database
- Train a method selection model based on statistical properties

Joint Detection, Tracking and Description

With Shot-based Metalearning

Based on Type of Content Testing

- Split content to individual shots
- Based on statistical properties, pick set of processing methods
- Run k best methods simultaneously
- Provide result with highest support

Advances in Computer Vision Joint Detection, Tracking and Description

With Metalearning on Areas of Interest

Based on Domains of Interest Training

- Split content to individual shots and "layers"
- Based on statistical properties, pick set of processing methods
- Store the best-performing methods to database
- Train a method selection model based on statistical properties

Advances in Computer Vision Joint Detection, Tracking and Description With Metalearning on Areas of Interest

Based on Domains of Interest Layer Splitting

Discussion

Outline

Primary Methods of Computer Vision

- Based Directly on Pixel Data
- Transfer to Time Series
- Based on Time Series

2 Joint Detection, Tracking and Description

- On Limited Scope
- With Shot-based Metalearning
- With Metalearning on Areas of Interest

3 Discussion

Discussion

pulc@cs.cas.cz