Manipulating the Capacity of Recommendation Models in Recall-Coverage Optimization

Ing. Tomáš ŘEHOŘEK

Motivation

- Recommender Systems = actively studied topic in the last decades
 - Large number of novel algorithms continuously published
- Confusion in:
 - Evaluating and comparing the models
 - Netflix Prize = RMSE
 - Recall, Precision, F-Measure
 - Tasks solved by the models
 - Long-tail vs. popular items recommendation
- Missing systematic framework for long tail recommendations
 - Novelty and Serendipity of the models
 - Evaluation
 - Control

State of the Art

- Before 2006: GroupLens era
 - Bardul Sarwar: ItemKnn, Associaton Rules, SVD
 - Optimizing MAE, NMAE
- 2006-2014: Netflix Prize, Matrix Factorization era
 - \$1M Prize, 40K teams from 186 countries
 - Optimizing RMSE
 - Robert Bell, Yehuda Koren Top-N recommendation
 - Harald Steck [100,101] MNAR, popularity-stratified recall
- 2015-2019: Deep learning approaches
 - Collaborative Deep Learning optimizing Recall@N, mAP
 - AutoRec RMSE
 - Wide & Deep Recommendation optimizing AUC

Contributions of This Thesis

- Capacity manipulating hyperparameters for different learning algorithms
 - Showing shared nature of most recommendation models
 - Generalizing large number of published algorithms under a common framework
- Popularity-biasing coefficient β as universal capacity hyperparameter
 - Thanks to putting models under common score(u,i) framework
 - Generalizing approach already proposed in [101] to full scale of models
- Recall-Coverage Optimization (RCO)
 - Searching for Pareto-Optimal states while manipulating the capacity
 - Using **Recall@N coupled with Catalog Coverage** to optimize models

Formal Framework for Hyperparametrized Learning

Rating Prediction

 $\mathcal{A}^{\mathrm{RP}}: \mathcal{P}_{\mathcal{A}^{\mathrm{RP}}} \times \left(\mathbb{R} \cup \{?\} \right)^{U \times I} \to \mathbb{R}^{(U \times I)}$

Learning to Rank

 $\mathcal{A}^{\mathrm{Rank}}: \mathcal{P}_{\mathcal{A}^{\mathrm{Rank}}} \times \left(\mathbb{R} \cup \{?\} \right)^{U \times I} \to \mathfrak{S}(I)^U$

Binary Classification $\mathcal{A}^{\mathrm{BC}}: \mathcal{P}_{\mathcal{A}^{\mathrm{BC}}} \times \{0, 1, ?\}^{U \times I} \to \{0, 1\}^{(U \times I)}$

Top-N Recommendation

$$\mathcal{A}^{\text{Top-}N}: \mathcal{P}_{\mathcal{A}^{\text{Top-}N}} \times (\mathbb{R} \cup \{?\})^{U \times I} \to \{I' \subset I \mid |I'| = N\}^U$$

Solving Recommendation Tasks Using score(u,i) $score: U \times I \to \mathbb{R}$

Rating Prediction

Binary Classification

$$model(u, i) = \alpha \cdot score(u, i) - \theta$$

$$model(u, i) = \begin{cases} 0 & \text{if } score(u, i) < \theta \\ 1 & \text{if } score(u, i) \ge \theta \end{cases}$$

Learning to Rank

$$model(u) = (i_1, \dots, i_{|I|})$$

w.r.t. $\forall k \in \{1, \dots, |I|-1\} : score(u, i_k) \ge score(u, i_{k+1})$
Top-N Recommendation

$$\begin{aligned} \operatorname{model}(u) &= \{i_1, \dots i_N\} \\ \text{w.r.t.} \quad \forall i_k \in \operatorname{model}(u) \colon i_k \in I \land \\ &|\{j \in I \setminus \{i_k\} \mid score(u, j) > score(u, i_k)\}| < N \end{aligned}$$

Existing Recommendation Models as score(u,i)

Popularity ("Bestseller") Model

 $score(u,i) = \sum r_{v,i}$ $v \in U \setminus \{u\}$ $r_{v,i} \neq ?$

Existing Recommendation Models as score(u,i) UserKnn Model $NN_k(u) = \{v_1, \dots, v_k\}$ w.r.t. $\forall v \in \mathrm{NN}_k(u): v \in U \setminus \{u\} \land$ $\begin{array}{l} \textbf{veighted} \\ score(u,i) = \begin{cases} \sum_{\substack{v \in NN_{k}(u) \\ r_{v,i} \neq ? \\ \hline |\{v \in NN_{k}(u) \mid r_{v,i} \neq ?\}| \\ 0 & \text{otherwise} } \end{array} & \textbf{if } \exists v \in NN_{k}(u) : r_{v,i} \neq ? \\ 0 & \text{otherwise} \\ \end{array} & \textbf{sim}(u,v) = \frac{\mathbf{r}_{u,*} \cdot \mathbf{r}_{v,*}^{T}}{\|\mathbf{r}_{u,*}\| \cdot \|\mathbf{r}_{v,*}\|} = \frac{r_{u,*}^{i \in I}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ i \in I \\ r_{v,i} \neq ? \\ }}} \frac{r_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{v,i} \neq ? \\ v_{v,i} \neq ? \\ }}} \\ \begin{array}{c} \textbf{Using Cosme c...} \\ \textbf{sim}(u,v) = \frac{\mathbf{r}_{u,*} \cdot \mathbf{r}_{v,*}^{T}}{\|\mathbf{r}_{u,*}\| \cdot \|\mathbf{r}_{v,*}\|} = \frac{r_{u,*}^{i \in I}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ v_{v,i} \neq ? \\ }}} \\ \textbf{v}_{v,i} \neq ? \\ \hline \textbf{v}_{v,i} \neq ? \\ \textbf{v}_{v,i} \neq ? \\ \end{array} \\ \begin{array}{c} \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,*}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ v_{v,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,*}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ v_{v,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,*}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ v_{v,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,i} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i} \neq ? \\ }}} \\ \textbf{u}_{v,i} = \frac{r_{u,*} \cdot \mathbf{r}_{v,i}}}{\sqrt{\sum_{\substack{i \in I \\ r_{u,i$ $|w \in U \setminus \{u\} | sim(u, w) > sim(u, v)| < k$ Unweighted Weighted $score(u,i) = \begin{cases} \underbrace{\frac{v \in NN_k(u)}{r_{v,i} \neq ?}}_{v \in NN_k(u)} & \text{if } \exists v \in NN_k(u) : r_{v,i} \neq ? \\ \underbrace{\sum_{\substack{v \in NN_k(u) \\ r_{v,i} \neq ?}}}_{0} & \text{otherwise} \end{cases}$ Correlation $\sum_{i \in I} (r_{u,i} - \overline{\mathbf{r}_{u,*}}) \cdot (r_{v,i} - \overline{\mathbf{r}_{v,*}})$ $sim(u,v) = \frac{r_{v,i}\neq?}{\sqrt{\sum_{\substack{i\in I\\r_{u,i}\neq?\\r_{v,i}\neq?}} (r_{u,i} - \overline{\mathbf{r}_{u,*}})^2} \cdot \sqrt{\sum_{\substack{i\in I\\r_{u,i}\neq?\\r_{v,i}\neq?}} (r_{v,i} - \overline{\mathbf{r}_{v,*}})^2}}$ With Non-Normalized Neighborhood $score(u,i) = \begin{cases} \sum_{\substack{v \in \mathrm{NN}_k(u) \\ r_{v,i} \neq ?}} sim(u,v) \cdot r_{v,i} & \text{if } \exists v \in \mathrm{NN}_k(u) : r_{v,i} \neq ? \\ 0 & \text{otherwise} \end{cases}$ Ochiai for Binary Matrices $sim(u, v) = \frac{|\hat{\mathbf{r}}_u \cap \hat{\mathbf{r}}_v|}{|\hat{\mathbf{r}}| + |\hat{\mathbf{r}}|}$

Existing Recommendation Models as score(u,i) Association Rules (Survey and Novel Framework)

$$T(u) = \{i \in I \mid r_{u,i} \neq ? \land r_{u,i} \ge \theta\} \quad supp(A) = \frac{|\{u \in U \mid A \subseteq T(u)\}|}{|U|} \quad \mathcal{R} = \{X \Rightarrow Y \mid supp(X \cup Y) \ge s_{\min}\}$$

Multiple Rule-Quality Measures

Different Ways of Combining Rules Together for Recommendation

• **best-rule**
$$score(u, i) = \begin{cases} \max_{\substack{(X \Rightarrow Y) \in \mathcal{R} \\ T(u) \subseteq X \\ i \in Y \\ voting}} (q(X \Rightarrow Y)) & \text{if } \exists (X \Rightarrow Y) \in \mathcal{R} : X \subseteq T(u) \land i \in Y \\ 0 & \text{otherwise} \end{cases}$$

• **weighted** $score(u, i) = \begin{cases} \sum_{\substack{(X \Rightarrow Y) \in \mathcal{R} \\ T(u) \subseteq X \\ i \in Y \\ 0 \\ i \in Y \\ 0 \\ 0 \\ votherwise} \end{cases} \text{ if } \exists (X \Rightarrow Y) \in \mathcal{R} : X \subseteq T(u) \land i \in Y \end{cases}$

Existing Recommendation Models as score(u,i) Matrix Factorization (Survey)

Simple
$$score(u, i) = \mathbf{q}_{*,i}^T \cdot \mathbf{p}_{*,u}$$

With biases

$$score(u,i) = \mu + b_u^U + b_i^I + \mathbf{q}_{*,i}^T \cdot \mathbf{p}_{*,u}$$

$$\min_{\substack{\mathbf{Q} \in \mathbb{R}^{f \times |U|} \\ \mathbf{Q} \in \mathbb{R}^{f \times |I|} \\ \mathbf{Q} \in \mathbb{R}^{f \times |I|}}} \sum_{\substack{u \in U \\ i \in I \\ r_{u,i} \neq ?}} \left(r_{u,i} - \mathbf{q}_{*,i}^{T} \cdot \mathbf{p}_{*,u} \right)^{2} + \lambda \left(\|\mathbf{q}_{*,i}\|^{2} + \|\mathbf{p}_{*,u}\|^{2} \right)$$

$$= \min_{\substack{u \in U \\ r_{u,i} \neq ? \\ \mathbf{Q} \in \mathbb{R}^{f \times |I|} \\ \mathbf{b}^{U} \in \mathbb{R}^{|U|} \\ r_{u,i} \neq ?}} \sum_{\substack{u \in U \\ i \in I \\ i \in I \\ \mathbf{b}^{U} \in \mathbb{R}^{|I|} \\ \mu \in \mathbb{R}}} \left(r_{u,i} - \mu - b_{i}^{I} - b_{u}^{U} - \mathbf{q}_{*,i}^{T} \cdot \mathbf{p}_{*,u} \right)^{2} + \lambda \left(\|\mathbf{q}_{*,i}\|^{2} + \|\mathbf{p}_{*,u}\|^{2} + b_{i}^{I^{2}} + b_{u}^{U^{2}} \right)$$

With mixed implicit and explicit feedback data

$$score(u,i) = b_{u,i} + \sum_{\substack{j \in I \\ r_{u,j}^{R} \neq ?}} \left(r_{u,j}^{R} - b_{u,j} \right) \cdot w_{i,j} + \sum_{\substack{j \in I \\ r_{u,j}^{N} \neq ?}} c_{i,j} \\ w_{explicin i} \\ w_{ex$$

• Harald Steck $\min_{\substack{\mathbf{P} \in \mathbb{R}^{f \times |U|} \\ \mathbf{Q} \in \mathbb{R}^{f \times |I|}}} \sum_{\substack{u \in U \\ i \in I}} w_{u,i} \cdot \left(\left(\mathbf{r}_{u,i}^{o\&i} - r_m - \mathbf{q}_{*,i}^T \cdot \mathbf{p}_{*,u} \right)^2 + \lambda \cdot \sum_{\ell=0}^{f} \left(p_{\ell,u}^2 + q_{\ell,i}^2 \right) \right)$

...trained using different optimization algorithms (Stochastic Gradient Descent, Alternating Least Squares)

Existing Recommendation Models as score(u,i) AutoRec

U-AutoRec

$$score(u, i) = \left(h\left(\mathbf{W} \cdot g\left(\mathbf{V} \cdot \hat{\mathbf{r}}_{u,*}^{T} + \boldsymbol{\mu}\right) + \mathbf{b}\right)\right)_{i}$$
$$\min_{\substack{\mathbf{V} \in \mathbb{R}^{|I| \times f} \\ \boldsymbol{W} \in \mathbb{R}^{|I| \times f} \\ \mathbf{b} \in \mathbb{R}^{|I|}}} \sum_{\substack{u \in U \\ i \in I \\ r_{u,i} \neq ?}} \left(r_{u,i} - \left(h\left(\mathbf{W} \cdot g\left(\mathbf{V} \cdot \hat{\mathbf{r}}_{u,*}^{T} + \boldsymbol{\mu}\right) + \mathbf{b}\right)\right)_{i}\right)^{2} + \frac{\lambda}{2} \cdot \left(\|\mathbf{V}\|^{2} + \|\mathbf{W}\|^{2}\right)$$

I-AutoRec

$$score(u, i) = (h (\mathbf{W} \cdot g (\mathbf{V} \cdot \hat{\mathbf{r}}_{*,i} + \boldsymbol{\mu}) + \mathbf{b}))_{u}$$
$$\min_{\substack{\mathbf{V} \in \mathbb{R}^{J \times |U|} \\ \mathbf{W} \in \mathbb{R}^{|U| \times f} \\ \mathbf{b} \in \mathbb{R}^{|U|}}} \sum_{\substack{u \in U \\ i \in I \\ \mathbf{b} \in \mathbb{R}^{|U|}}} (r_{u,i} - (h (\mathbf{W} \cdot g (\mathbf{V} \cdot \hat{\mathbf{r}}_{*,i} + \boldsymbol{\mu}) + \mathbf{b}))_{u})^{2} + \frac{\lambda}{2} \cdot (\|\mathbf{V}\|^{2} + \|\mathbf{W}\|^{2})$$

Generalized Validation Loss and Validation Reward

$$\mathcal{L}: \mathcal{Y}^{\mathcal{X}} \times 2^{\mathcal{X} \times \mathcal{Y}} \to \mathbb{R}$$

$$P_{\mathcal{A}}^{*} = \operatorname*{arg\,min}_{P \in \mathcal{P}_{\mathcal{A}}} \mathcal{L} \left(\mathcal{A} \left(P, \mathcal{T}_{\mathrm{train}} \right), \mathcal{T}_{\mathrm{val}} \right)$$

$$\mathcal{F}: \mathcal{Y}^{\mathcal{X}} \times 2^{\mathcal{X} \times \mathcal{Y}} \to \mathbb{R}$$

$$P_{\mathcal{A}}^{*} = \operatorname*{arg\,max}_{P \in \mathcal{P}_{\mathcal{A}}} \mathcal{F} \left(\mathcal{A} \left(P, \mathcal{T}_{\mathrm{train}} \right), \mathcal{T}_{\mathrm{val}} \right)$$

Rating Prediction $\mathbf{R} \in (\mathbb{R} \cup \{?\})^{U \times I}$ $\mathcal{T} = \{ ((u,i), r_{u,i}) \mid u \in U \land i \in I \land r_{u,i} \neq ? \} \qquad \mathcal{T} = \{ ((u,i), r_{u,i}) \mid u \in U \land i \in I \land r_{u,i} \neq ? \}$ $MAE(m_{RP}, \mathcal{T}_{val}) = \frac{1}{|\mathcal{T}_{val}|} \sum_{((u,i), r_{u-i}) \in \mathcal{T}_{u-i}} |m_{RP}(u,i) - r_{u,i}| \qquad p_{i}$ $\text{NMAE}\left(m_{\text{RP}}, \mathcal{T}_{\text{val}}\right) = \frac{\text{MAE}\left(m_{\text{RP}}, \mathcal{T}_{\text{val}}\right)}{\max_{\left(\left(u, i\right), r_{u}, i\right) \in \mathcal{T}} \left(r_{u, i}\right) - \min_{\left(\left(u, i\right), r_{u}, i\right) \in \mathcal{T}} \left(r_{u, i}\right)}$ $MSE(m_{RP}, \mathcal{T}_{val}) = \frac{1}{|\mathcal{T}_{val}|} \sum_{(u, i) = v_{i} \in \mathcal{T}} (m_{RP}(u, i) - r_{u,i})^{2}$ $\text{RMSE}(m_{\text{RP}}, \mathcal{T}_{\text{val}}) = \sqrt{\text{MAE}(m_{\text{RP}}, \mathcal{T}_{\text{val}})}$

Binary Classification $\mathbf{R} \in \{0, 1, ?\}^{U \times I}$

$$precision(m, \mathcal{T}_{val}) = \frac{|\{((u, i), r_{u,i}) \in \mathcal{T}_{val} \mid m(u, i) = 1 \land r_{u,i} = 1\}|}{|\{((u, i), r_{u,i}) \in T_{val} \mid m(u, i) = 1\}|}$$

$$recall(m, \mathcal{T}_{val}) = \frac{|\{((u, i), r_{u,i}) \in \mathcal{T}_{val} \mid m(u, i) = 1 \land r_{u,i} = 1\}|}{|\{((u, i), r_{u,i}) \in T_{val} \mid r_{u,i} = 1\}|}$$

$$F_{1}(m, \mathcal{T}_{val}) = \frac{2 \cdot precision(m, \mathcal{T}_{val}) \cdot recall(m, \mathcal{T}_{val})}{precision(m, \mathcal{T}_{val}) + recall(m, \mathcal{T}_{val})}$$

Generalized Validation Loss and Validation Reward Top-N Recommendation

$$\mathcal{T} = \left\{ ((u, obs), target) \mid u \in U \land obs \cup target = r^+(u) \land obs \cap target = \emptyset \land obs \neq \emptyset \right\}$$

Accuracy Measures

$$precision @N(m, \mathcal{T}_{val}) = \frac{1}{|\mathcal{T}_{val}|} \sum_{((u, obs), target) \in \mathcal{T}_{val}} \frac{|m(u, obs) \cap target|}{|m(u, obs)|} \qquad catalog-coverage(m, \mathcal{T}_{val}) = \frac{1}{|\mathcal{I}|} \left| \bigcup_{((u, obs), target) \in \mathcal{T}_{val}} m(u, obs) \right| \\ recall @N(m, \mathcal{T}_{val}) = \frac{1}{|\mathcal{T}_{val}|} \sum_{((u, obs), target) \in \mathcal{T}_{val}} \frac{|m(u, obs) \cap target|}{|target|} \qquad user-coverage(m, \mathcal{T}_{val}) = \frac{1}{|\mathcal{U}|} \sum_{((u, obs), target) \in \mathcal{T}_{val}} \left\{ \begin{array}{c} 0 & \text{if } m(u, obs) \neq \emptyset \\ 1 & \text{if } m(u, obs) \neq \emptyset \end{array} \right\} \\ recall ^{\beta, w}_{PS} @N(m, \mathcal{T}_{val}) = \sum_{((u, obs), target)} w^{\beta}(u) \cdot \frac{\sum_{i \in target \cap m(u, obs)} p(i)^{-\beta}}{\sum_{i \in target} p(i)^{-\beta}} \\ p(i) = |\{u \in U \mid r_{u,i} = 1\}| \end{array} \\ recall @N_{LOO}(m, \mathcal{T}_{val}) = \frac{|\{(u, i) \mid (u, r^{+}(u)) \in \mathcal{T}_{val} \land i \in r^{+}(u) \land i \in m(u, r^{+}(u) \setminus \{i\})\}|}{|\{u, i\} \mid (u, r^{+}(u)) \in \mathcal{T}_{val} \land i \in r^{+}(u) \}|} \end{array}$$

Coverage Measures

Model Capacity Hyperparameters For Individual Learning Algorithms

$$\mathcal{P}_{\mathcal{A}_{\text{UserKnn}}} = [k \in \mathbb{N}, \beta \in \mathbb{R}]$$
$$\mathcal{P}_{\mathcal{A}_{\text{ItemKnn}}} = [k \in \mathbb{N}, \beta \in \mathbb{R}]$$
$$\mathcal{P}_{\mathcal{A}_{\text{AR}}} = [s_{\min} \in [0, 1], \beta \in \mathbb{R}]$$
$$\mathcal{P}_{\mathcal{A}_{\text{MF}}} = [f \in \mathbb{N}, \lambda \in \mathbb{R}, \beta \in \mathbb{R}]$$
$$\mathcal{P}_{\mathcal{A}_{\text{U-AutoRec}}} = [f \in \mathbb{N}, \lambda \in \mathbb{R}, \beta \in \mathbb{R}]$$
$$\mathcal{P}_{\mathcal{A}_{\text{I-AutoRec}}} = [f \in \mathbb{N}, \lambda \in \mathbb{R}, \beta \in \mathbb{R}]$$

β = Universal Capacity Hyperparameter Using score(u,i)

$$score_{\rm PS}^{\beta}(u,i) = \begin{cases} \frac{score(u,i)}{|\{v \in U \mid r_{v,i} > 0\}|^{\beta}} & \text{if } \exists v \in U: r_{v,i} > 0\\ 0 & \text{otherwise} \end{cases}$$

Recall-Coverage Optimization Searching for Pareto-Optimal States

Experiments

- Different learning algorithms
- Mixture of academic and industrial datasets

Dataset Name	Total Interactions	Interaction Types	${f Item}\ {f Attributes}$	
MovieLens 1M	1,000,209	Explicit ratings	Genres, Title, Year	
MovieLens 20M	20,000,263	Explicit ratings	Genres, Title, Year	
Last.FM 2K	92,834	Plays	Ø	
BUBB.Store	8,697,556	Detail-views, Cart-additions, Purchases, Explicit ratings	Store ID, Brand, Categories, Name	
Casa Cenina	9,891,560	Detail-views, Bookmarks, Cart-additions, Purchases, Explicit ratings	Categories, Product tags, Manufacturer, Product model	
Just Spotted	875,013	Detail-views, Bookmarks, Cart-additions, Purchases, Explicit ratings	Product name, Vendor, Type	
Moodings	2,884,636	Detail-views, Bookmarks, Cart-additions, Purchases, Explicit ratings	Product name, Vendor, Type	

Experiments

• Different characteristics of academic and industrial datasets

Dataset Name	U	Interactions per User				
Dataset Ivame		P_1	Q_1	Q_2	Q_3	P_{99}
MovieLens1M	6040	20	44	96	208	909
MovieLens20M	138493	20	35	68	155	1114
Last.FM 2K	1892	10	50	50	50	50
BUBB.Store	6119542	1	1	1	1	12
Casa Cenina	465519	1	1	2	6	335
Just Spotted	340842	1	1	2	4	41
Moodings	562170	1	1	2	5	75
		Interactions per Item				
Dataset Name			Intera	actions per	· Item	
Dataset Name	I	P_1	Q_1	$\begin{array}{c} \mathbf{ctions} \ \mathbf{per} \ Q_2 \end{array}$	\cdot Item Q_3	P_{99}
Dataset Name MovieLens1M	<i>I</i> 3883	P_1 0	$ Intera Q_1 26 $	$\begin{array}{c} \textbf{actions per} \\ Q_2 \\ 109 \end{array}$	• Item	P_{99} 1783
Dataset NameMovieLens1MMovieLens20M	<i>I</i> 3883 27278	$\begin{array}{c} P_1 \\ \hline 0 \\ 0 \end{array}$	$ Intera Q_1 26 3 $	$\begin{array}{c} \mathbf{ctions \ per} \\ Q_2 \\ 109 \\ 16 \end{array}$	$ \begin{array}{c} $	$ \begin{array}{r} P_{99} \\ 1783 \\ 14309 \end{array} $
Dataset NameMovieLens1MMovieLens20MLast.FM 2K	<i>I</i> 3883 27278 17632	$\begin{array}{c} P_1 \\ \hline 0 \\ 0 \\ 1 \end{array}$	$ Intera Q_1 26 3 1 $	$\begin{array}{c} \textbf{actions per}\\ Q_2\\ 109\\ 16\\ 1 \end{array}$	$ \begin{array}{c} Item \\ \overline{Q_3} \\ $	$ \begin{array}{r} P_{99} \\ 1783 \\ 14309 \\ 81 \end{array} $
Dataset NameMovieLens1MMovieLens20MLast.FM 2KBUBB.Store	<i>I</i> 3883 27278 17632 51380	$ \begin{array}{c} P_1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	$ Intera Q_1 26 3 1 0 $	$\begin{array}{c} \textbf{actions per}\\ Q_2\\ 109\\ 16\\ 1\\ 2 \end{array}$	• Item Q ₃ 330 194 3 32	$\begin{array}{r} P_{99} \\ \hline 1783 \\ 14309 \\ \hline 81 \\ 1906 \end{array}$
Dataset NameMovieLens1MMovieLens20MLast.FM 2KBUBB.StoreCasa Cenina	I 3883 27278 17632 51380 124559	P_1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Intera Q_1 26 3 1 0 4	$\begin{array}{c} \text{ ctions per } \\ \hline Q_2 \\ \hline 109 \\ \hline 16 \\ \hline 1 \\ \hline 2 \\ \hline 23 \\ \end{array}$		$\begin{array}{r} P_{99} \\ 1783 \\ 14309 \\ 81 \\ 1906 \\ 837 \end{array}$
Dataset NameMovieLens1MMovieLens20MLast.FM 2KBUBB.StoreCasa CeninaJust Spotted	I 3883 27278 17632 51380 124559 4179	$ \begin{array}{c} P_1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	Intera Q_1 26 3 1 0 4 14	$ \begin{array}{c} $	Item Q3 330 194 3 32 82 143	$\begin{array}{r} P_{99} \\ 1783 \\ 14309 \\ 81 \\ 1906 \\ 837 \\ 3063 \end{array}$

UserKnn

ItemKnn: Rating Similarity

ItemKnn: Attribute Similarity

Association Rules: Best-Rule Method

Association Rules: Weighted Voting Method

Matrix Factorization

Last.FM 2K: Matrix Factorization, Manipulating FACTORS

Last.FM 2K: Matrix Factorization, BETA=0.0, Manipulating LAMBDA

AutoRec

MovieLens 1M: AutoRec, FACTORS=200, Manipulating LAMBDA

Related Activities of the Author

- Supervised 20 Bachelor+Master theses
 - \circ 7× received the Dean's award
- Created and lectured Fundamentals of Artificial Intelligence course
 - 200+ students / 1 run
 - created full course from scratch, giving lectures and seminars for 5 years
- Co-Founded Recombee, designed and implemented Recombee Engine
 - Supervising demand-inspired research in embeddings, deep learning, auto ML
 - SaaS, 3000 online registrations,
 - 50 recurrently paying customers from 30 countries,
 - running real-time service on 120 servers, 1000 CPUs, 10TB RAM
 - currently maintained and improved by team of 10 people
 - customers with
 - 200 M interactions / month,
 - 300 recommendations / second
 - 20 M items with text descriptions and average 5 images per item

Thank you for your attention!

Questions?

Performance in Production

- Presented models are running live in Recombee
 - Incremental implementation (response to new data)
 - Dozens of use-cases (E-Commerce, news, classifieds, movies, job boards, cultural events...)
 - Initial implementation done by author of this thesis
- Capacity manipulation from dissertation frequently A/B tested in production
- Using $\beta > 0$ by default for some models
- Maximizing recall: better than random, but sometimes suboptimal
- RCO:
 - sometimes better than recall,
 - sometimes both recall and RCO are deceiving for user response (CTR, CR)

IsThereAnyDeal.com Experiment

Online Experiment: Large Czech Job Board

Other Experiments (BUBB.Store)

Other Experiments (Moodings)

Recall vs. Catalog Coverage, Top-N Recommendation, User-kNN (weighted)

Online Model Optimization (CMA-ES)

• Bc. Radek Bartyzal

Comparing Offline and Online Evaluation Results of Recommender Systems (RecSys Paper)

Model Ensembles in RCO

Cold-Start

- Rating data = high quality, but limited
- Recommendation based on attributes needed
- Researched topics:
 - Feature selection by Semi-supervised learning (Bc. Michal Režnický)
 - Neural prediction of interaction similarity from attributes (Bc. Petr Kasalický)
 - Stacked denoising autoencoders (Bc. Radek Bartyzal)

Image Embeddings

- Image-Based ItemKnn (Bc. Martin Pavlíček)
- Re-training convolutional networks from interactions (Bc. Petr Kasalický)

Cluster 183

Hyper-Embeddings

• Ing. Ivan Povalyaev (Recombee)

Cluster 167 Cluster 207 Cluster 174 0 1 (1 0 ()1 1 $\left(\right)$ \cap 1 () \cap

Showmax Scene Embeddings for Recommendation

• Ing. Ivan Povalyaev (Recombee), Bc. Ondřej Bíža (ShowmaxLab)

