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• Intro to Causality

• Causal Structure Learning

• Bayesian Causal Structure Learning

• Differentiable Probabilistically Masked DAG (DPM-DAG)

Outline of this talk
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• Fundamental differences

• Promising applications

Causality for Machine Learning

Statistical relations ℒ1 Causal relations ℒ1:3

Robustness & generalization Interpretability & explainability Fairness Causal Insights

Associations

Interventions

Counterfactuals

ℒ1

ℒ2

ℒ3
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• Indiviudal effect of a treatment 𝑇on an outcome 𝑌: ITE𝑖 ≔ 𝑌𝑖 𝑇 = 1 − 𝑌𝑖(𝑇 = 0)

• Average treatment effect: ATE ∶= 𝔼𝑖 ITE𝑖

• Identifiability: Causal effect can be consistently estimated from observed data

• Controlling/adjusting for a set of confounders 𝑋:

CATE = 𝔼𝑋 𝔼𝑌 𝑌|𝑇 = 1, 𝑋 − 𝔼𝑌 𝑌|𝑇 = 0, 𝑋 =
1

𝒟𝑇=1
 ෍

𝑖 ∈ 𝒟𝑇=1

Ƹ𝜇𝑌|𝑇=1, 𝑋 𝑋𝑖 −
1

𝒟𝑇=0
෍

𝑗 ∈ 𝒟𝑇=0

Ƹ𝜇𝑌|𝑇=0, 𝑋 𝑋𝑗
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Causal Model as Basis for Causal Inference

Causal Estimand Statistical Estimand

Identification
using a causal model

Estimate

Estimation
based on observed data
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• Graphical model:
One-to-one mapping between nodes 𝑉𝑖 ∈ 𝑉 of a direct acyclic
graph (DAG) 𝐺 = (𝑉, 𝐸) and random variables 𝑋𝑖 ∈ 𝑿

• Local Markov Condition:
Given the parents pa of a node 𝑉𝑖 in the DAG 𝐺, the corresponding
random variable 𝑋𝑖 is independent of all its non-descendants nd.

• Bayesian Network Factorization:
Given a joint probability distribution 𝑃𝑋 and a DAG 𝐺,
𝑃𝑋 factorizes according to G if:

𝑃(𝑿) ≔ 𝑃 𝑋𝑖 𝑖=1
𝐷  = ෑ

𝑖

𝐷

𝑃 𝑥𝑖|𝐩𝐚(𝑋𝑖)
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Recap of Bayesian Networks

𝑋2𝑋5

𝑋1 𝑋6

𝑋3

𝑋4

Fig. 1: DAG over six random variables
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• Minimality assumption:

1. Local Markov condition 𝑋𝑖 ⊥𝑃 nd 𝑋𝑖  | 𝐩𝐚(𝑋𝑖) 
(implies d-separation as global Markov condition)

2. Adjacent nodes in the DAG 𝐺 are dependent 𝑋𝑖  ~ 𝑋𝑗  𝑖𝑛 𝐺 ⟹  𝑋𝑖  ⊥𝑃  𝑋𝑗

(no additional independences)

• Strict causal edge assumption:

Every parent is a direct cause of all its children, i.e. the children are affected by changes in their parents

Charles University | Bayesian Causal Structure Learning

Causal Graphs

Statistical
Independencies

Markov
assumption

Statistical
Dependencies

Minimality
assumption

Causal
Dependencies

Causal edge
assumption

Page 628.03.24



• Functional Causal Model: indexed tuple of 

◦ endogenous variables 𝑿,

◦ exogeneous noise variables 𝝐 with distribution 𝑃𝝐 ,

◦ deterministic functions 𝒈,  s. t. 𝑋𝑖 ≔ 𝑔𝑖 𝐩𝐚𝑮(𝑋𝑖), 𝜖𝑖

• Assumptions:

◦ Acyclic causal relations
→ Direct Acyclic Graph (DAG) 𝑮

◦ Causal sufficiency
→ no latent confounders and mutually independent noise 𝝐

Causal Structure Learning (CSL)

𝑋2𝜖2

𝑋1 𝜖3

𝑋3

𝜖1

Fig. 2: Causal DAG induced by an acyclic FCM
over three observed  random variables
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• Definition
Hard intervention do(𝑋𝑖 = 𝑥) replaces structural function 𝑔𝑖

by the assignment 𝑋𝑖 = 𝑥

• Truncated Factorization

𝑃(𝑿|do(𝑋𝑖 = 𝑥) ≔ 𝛿(𝑋𝑖 = 𝑥) ෑ

𝑗≠𝑖

𝑃 𝑥𝑗|𝐩𝐚(𝑋𝑗)

Charles University | Bayesian Causal Structure Learning

Interventions by the do-Operator (ℒ1)

𝑋2𝜖2

𝑋1 𝜖3

𝑋3

𝜖1

Fig. 2: Causal DAG induced by an acyclic FCM
over three observed  random variables
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• Definition
Hard intervention do(𝑋𝑖 = 𝑥) replaces structural function 𝑔𝑖

by the assignment 𝑋𝑖 = 𝑥

• Truncated Factorization

𝑃(𝑿|do(𝑋𝑖 = 𝑥) ≔ 𝛿(𝑋𝑖 = 𝑥) ෑ

𝑗≠𝑖

𝑃 𝑥𝑗|𝐩𝐚(𝑋𝑗)

• Example:

◦ 𝑃 𝑋1, 𝑋3 = ∫ 𝑃 𝑋3 𝑋1, 𝑋2 𝑃 𝑋2|𝑋1 𝑃 𝑋1  𝑑𝑋2
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Interventions by the do-Operator (ℒ1)

Fig. 2: Causal DAG induced by an acyclic FCM
over three observed  random variables

𝑋2𝜖2

𝑋1 𝜖3

𝑋3

𝜖1
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• Definition
Hard intervention do(𝑋𝑖 = 𝑥) replaces structural function 𝑔𝑖

by the assignment 𝑋𝑖 = 𝑥

• Truncated Factorization

𝑃(𝑿|do(𝑋𝑖 = 𝑥) ≔ 𝛿(𝑋𝑖 = 𝑥) ෑ

𝑗≠𝑖

𝑃 𝑥𝑗|𝐩𝐚(𝑋𝑗)

• Example:

◦ 𝑃 𝑋1, 𝑋3 = ∫ 𝑃 𝑋3 𝑋1, 𝑋2 𝑃 𝑋2|𝑋1 𝑃 𝑋1  𝑑𝑋2

◦ 𝑃 𝑋1, 𝑋3|𝑑𝑜(𝑋2 = 𝑥2) = 𝑃 𝑋3 𝑋1, 𝑋2 = 𝑥2 𝑃(𝑋1)
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Interventions by the do-Operator (ℒ1)

Fig. 2: Causal DAG induced by an acyclic FCM
over three observed  random variables

𝑥2

𝑋1 𝜖3

𝑋3

𝜖1
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• Definition
Hard intervention do(𝑋𝑖 = 𝑥) replaces structural function 𝑔𝑖

by the assignment 𝑋𝑖 = 𝑥

• Truncated Factorization

𝑃(𝑿|do(𝑋𝑖 = 𝑥) ≔ 𝛿(𝑋𝑖 = 𝑥) ෑ

𝑗≠𝑖

𝑃 𝑋𝑗|𝐩𝐚(𝑋𝑗)

• Example:

◦ 𝑃 𝑋1, 𝑋3 = ∫ 𝑃 𝑋3 𝑋1, 𝑋2 𝑃 𝑋2|𝑋1 𝑃 𝑋1  𝑑𝑋2

◦ 𝑃 𝑋1, 𝑋3|𝑑𝑜(𝑋2 = 𝑥2) = 𝑃 𝑋3 𝑋1, 𝑋2 = 𝑥2 𝑃(𝑋1)

◦ 𝑃 𝑋1, 𝑋3| 𝑋2 = 𝑥2 =
𝑃(𝑋3|𝑋1, 𝑋2=𝑥2)𝑃(𝑋2=𝑥2|𝑋1)𝑃 𝑋1

𝑃(𝑋2=𝑥2)
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Interventions by the do-Operator (ℒ1)

Fig. 2: Causal DAG induced by an acyclic FCM
over three observed  random variables

𝑥2𝜖2

𝑋1 𝜖3

𝑋3

𝜖1
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The Three Layer Causal Hierarchy by Pearl

Level Typical Quantity Typical Activity Typical Questions

1. Association 𝑃 𝑌|𝑋 = 𝑥 Seeing
What is?
How does observing X change my 
belief in Y?

2. Intervention 𝑃 𝑌|𝑑𝑜(𝑋 = 𝑥) Doing/Intervening What if I do X?

3. Counterfactuals 𝑃 𝑌𝑥|𝑑𝑜 𝑋 = 𝑥′ , 𝑦′ Imagining, 
Retrospection

Why?
Was it X that caused Y?

Page 1228.03.24



𝑋4 ≔ 𝛾𝑋2 + 𝛿𝑋3 = 𝑎𝛾 + 𝛽𝛿
≠0

𝑋1

Charles University | Bayesian Causal Structure Learning

Typical Assumptions for Independence-based CSL

𝑋2

𝑋1

𝑋3

𝑋4

𝛼 𝛽

𝛾 𝛿

• Markov assumption:

𝑋 ⊥𝐺 𝑌  𝑍 ⟹  𝑋 ⊥𝑃 𝑌 𝑍

• Faithfulness:

𝑋 ⊥𝐺 𝑌  𝑍 ⟸  𝑋 ⊥𝑃 𝑌 𝑍
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• Markov assumption:

𝑋 ⊥𝐺 𝑌  𝑍 ⟹  𝑋 ⊥𝑃 𝑌 𝑍

• Faithfulness:

𝑋 ⊥𝐺 𝑌  𝑍 ⟸  𝑋 ⊥𝑃 𝑌 𝑍

• Causal sufficiency:

No unobserved confounders.

Charles University | Bayesian Causal Structure Learning

Typical Assumptions for Independence-based CSL

𝑋1

𝑊

𝑋2

𝑋1 𝑋2

Projected graph

True graph𝑋1  ⊥  𝑋2 | 𝑊

𝑋1  ⊥  𝑋2∕
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• Markov assumption:

𝑋 ⊥𝐺 𝑌  𝑍 ⟹  𝑋 ⊥𝑃 𝑌 𝑍

• Faithfulness:

𝑋 ⊥𝐺 𝑌  𝑍 ⟸  𝑋 ⊥𝑃 𝑌 𝑍

• Causal sufficiency:

No unobserved common causes

• No selection bias:

No conditioning on unobserved colliders
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Typical Assumptions for Independence-based CSL

𝑋1 𝑋2

True graph

Projected graph

𝑋1 𝑋2

𝐶

𝑋1  ⊥  𝑋2

𝑋1  ⊥  𝑋2 | 𝐶∕
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Review of Unshielded 3-node Structures

𝑍𝑋 𝑌Common effect
𝑋 ⊥ 𝑌
𝑋 ⊥ 𝑌 | 𝑍∕

𝑍𝑋 𝑌Causal trail

𝑍𝑋 𝑌Evidential trail

𝑍𝑋 𝑌Common cause

𝑋 ⊥ 𝑌
𝑋 ⊥ 𝑌 | 𝑍

∕
𝑍𝑋 𝑌
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1) Start with a complete undirected graph

2) Eliminate edges between variables that 

are (conditionally) independent

3) Add arrow marks at colliders in

identified v-structure

4) Propagate arrows such that no additional 

v-structures are formed that were not

detected

Charles University | Bayesian Causal Structure Learning

Sketch of the PC-algorithm

True graph

𝑋5

𝑋1

𝑋4

𝑋2 𝑋3

𝑋7

PCDAG :
skeleton + v-structures

𝑋5

𝑋1

𝑋4

𝑋2 𝑋3

𝑋7
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• Linear Gaussian model with equal or known variance 𝑌 ≔ 𝑎𝑋 + 𝜖 with 𝜖 ∼ 𝒩 𝜇, 𝜎
(Loh & Bühlmann 2014)

• Linear non-Gaussian model (LiNGAM) 𝑌 ≔ 𝑎𝑋 + 𝜖 with 𝜖 ∼ 𝒩 𝜇, 𝜎
(Shimizu et al.. 2006)

• Nonlinear additive noise model (ANL) 𝑌 ≔ 𝑓 𝑋 + 𝜖 where 𝑓 is nonlinear
(Hoyer et al., 2008)

• Post-nonlinear causal model (PNL)  𝑌 ≔ 𝑔 𝑓 𝑋 + 𝜖  where 𝑔 is nonlinear & invertible
(Zhang & Hyvärinen, 2009)

Charles University | Bayesian Causal Structure Learning

Known Identifiable Causal Models

∕
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1) Initialization by an empty graph

2) Forward equivalence search

Add the edge that most increases the score and maps 

the resulting graph then to its MEC

3) Backward equivalence search

Remove the  edge that will most increase the score 

until no further edges can be removed

• Score equivalence:

Graphs of the same MEC are assigned the same score

• Locally consistent scoring criterion:

Score prefers edge additions that remove incorrect 

dependencies and edge deletions that remove 

incorrect dependencies

• Decomposable score function:

𝑆 𝑮, 𝑿 = ෍

𝑑=1

𝐷

𝑆 𝑋𝑖 , 𝒑𝒂𝑮(𝑋𝑖)

Charles University | Bayesian Causal Structure Learning

Greedy Equivalence Search (GES)
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• Converting the combinatorical optimization problem into a continuous program

min
𝑮∈ 𝟎,𝟏 𝑫×𝑫

𝑺(𝑮)  ⟺  min
𝑮∈[𝟎,𝟏]𝑫×𝑫

𝑺(𝑮) 

subject to 𝑮 ∈ 𝑮𝒂𝒄𝒚𝒄𝒍𝒊𝒄 subject to ℎ 𝑮 = 𝟎

• Differentiable DAG-Constraint ℎ 𝑮acyclic = 0 ,  ℎ 𝑮cyclic > 0

◦ ℎ1 𝑮 = tr 𝑒𝑮∘𝑮 − 𝐷 (Zheng et al. , 2018)

◦ ℎ2 𝑮 = tr (𝑰 +
𝟏

𝑫
𝑮 ∘ 𝑮 )𝐷 (Yu et al., 2019)

◦ ℎ3 𝑮 = log det 𝑠𝑰 − 𝑮 ∘ 𝑮 + 𝐷 log 𝑠 (Bello et al. , 2023)

Charles University | Bayesian Causal Structure Learning

Continuous Relaxation of the Discrete Graph Structure & Acyclicity
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• Relaxing assumptions

◦ No assumed causal sufficiency : FCI algorithm (Spirtes et al., 2001)

◦ No assumed acyclicity CCD algorithm (Richardson, 1996)

◦ Neither of both: SAT-based causal discovery (Hyttinen et. al., 2013)

Charles University | Bayesian Causal Structure Learning

Research Areas in Causal Structure Learning
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• Relaxing assumptions

• Improving computational scalability

◦ Limiting the number of potential parents: PNS-algorithm (Bühlmann et al., 2014)

◦ Omitting some CI test: RFCI-algorithm  (Colombo et al, 2012)

◦ Considering only one edge change at a time: GES-algorithm  (Chickering, 2002) 

◦ Continuous relaxation of the binary adjacency matrix: NOTEARS-algorithm  (Zheng et al., 2018)

Charles University | Bayesian Causal Structure Learning

Research Areas in Causal Structure Learning
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• Relaxing assumptions

• Improving computational scalability

• Increasing robustness:

◦ Additional CI-tests: Order-independent PC/FCI (Colombo & Maathuis, 2014)

Charles University | Bayesian Causal Structure Learning

Research Areas in Causal Structure Learning
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• Relaxing assumptions

• Improving computational scalability

• Increasing robustness

• Identifiable functional models

• Focus only on local structure relevant for downstream task

• Modeling uncertainty in the prediction

• Combining with interventional data

Charles University | Bayesian Causal Structure Learning

Research Areas in Causal Structure Learning (non-exhaustive)
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• Based on Conditional Independence (CI) tests  

• Additional assumption of faithfulness

• Iterative restriction of CI test to avoid all

pairwise combinations

• Point estimate as output

• Sound in the large sample limit

𝑝 𝑮, 𝚯|𝑿 ∝ 𝑝 𝑮 𝑝 𝚯 𝑮 𝑝 𝑿 𝑮, 𝚯

• Quantifying the uncertainty in the posterior

• Incorporation of probabilistic

domain knowledge via prior

• Sound in the large sample limit

Independence-based CSL Bayesian CSL

Fig. 2: Generative model
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𝑝 𝑮, 𝚯, 𝑿 = 𝑝 𝑮 𝑝 𝚯|𝑮 𝑝 𝑿|𝑮, 𝚯

𝑝 𝑿|𝑮, 𝚯 = ෑ

𝑛=1

𝑁

ෑ

𝑑=1

𝐷

𝑝 𝑋𝑑
(𝑛)

pa𝑮 𝑋𝑑
(𝑛)

, 𝚯  
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Generative Model

Fig. 2: Generative model
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p 𝑮, 𝑿 = 𝑝 𝑮 න 𝑝 𝚯|𝑮 𝑝 𝑿|𝑮, 𝚯 𝒅𝚯

 ≤ 𝑝 𝑮 𝒑𝚯∗ 𝑿|𝑮

 where 𝚯∗ ≔  arg max
𝚯

𝑝 𝑿|𝑮, 𝚯

Charles University | Bayesian Causal Structure Learning

Marginalized Generative Model

Fig. 2: Generative model

Page 2728.03.24



𝑝𝚯∗ 𝑮|𝑿 =
𝑝𝚯∗ 𝑮, 𝑿

𝑝 𝑿
∝ 𝑝𝚯∗ 𝑮, 𝑿

 where 𝚯∗ ≔  arg max
𝚯

𝑝 𝑿|𝑮, 𝚯

Charles University | Bayesian Causal Structure Learning

Graph Posterior

Fig. 2: Generative model
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• Independent Bernoulli distributed RV models each edge
𝐺𝑖𝑗 ∼ Bern 𝜙𝑖𝑗

• Score function gradient estimator for its parameters

𝜂 = 𝜵𝝓 𝔼𝑝Θ∗ 𝑋
𝑓(𝑿) = 𝜵𝝓  න 𝑝Θ∗ 𝑿 𝑓 𝑿 𝐝𝑿 = න 𝑓 𝑿 𝜵𝝓𝑝Θ∗ 𝑿 𝐝𝑿 = න 𝑓 𝑿 𝑝Θ∗ 𝑿  𝜵𝝓 log 𝑝Θ∗ 𝑿 𝐝𝑿 =

 = 𝔼𝑝Θ∗ 𝑋
𝑓 𝑿 𝜵𝝓 log 𝑝Θ∗ 𝑿

 ො𝜂𝑁 =
1

𝑁
෍

𝑛=1

𝑁

𝑓 ෡𝑿(𝒏) 𝜵𝝓 log 𝑝Θ∗ ෡𝑿(𝒏)  where ෡𝑿(𝒏) ∼ 𝑝Θ∗ 𝑿

Charles University | Bayesian Causal Structure Learning

Probabilistic Graph: REINFORCE estimator [1]

Page 29[1] Rezende et al. , ‘MC Gradient Estimation in Machine Learning’, in the Journal of Machine Learning

Research, (2020)
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• Independent perturbed Gumbel distributed RV models each edge

𝐺𝑖 ∼ Gumbel 0, 1  , 𝜙𝑖 + 𝐺𝑖 ∼ Gumbel(𝜙𝑖 , 1)

• Perturbed Gumbel-Softmax samples

arg max
𝑖∈𝕀

𝜙𝑖 + 𝐺𝑖  ~
exp 𝜙𝑖

σ𝑗∈𝕀 exp 𝜙𝑗

 

• 𝐒𝐨𝐟𝐭𝐦𝐚𝐱 as continuous, differentiable relaxation of the 𝐚𝐫𝐠 𝐦𝐚𝐱 operator (equivalence for 𝝉 → 𝟎)

𝑍𝑖 =
exp 𝜙𝑖 + 𝐺𝑖 /𝜏

σ𝑗∈𝕀 exp 𝜙𝑖 + 𝐺𝑖 /𝜏

Charles University | Bayesian Causal Structure Learning

Probabilistic Graph: Pathwise Gradient Estimator [2]

Page 30[2] Maddison et al. , ‘The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables’,
in Proceedings of the International Conference on Learning Representations, (2017)

28.03.24



• Straight-through estimator

discrete samples (arg max) in the forward pass and continuous samples (𝑠oftmax) in the backward pass

• Logistic samples for binary RV

𝐺1 + 𝜙1 > 𝐺0 + 𝜙0 = [ 𝐺1 − 𝐺0

≐𝐿

+ 𝜙1 − 𝜙0

=: 𝜙 

> 0 ] ,               where 𝐿 ∼ Logistic(0,1)

• Sigmoid as 2-dim version of Softmax

𝑍𝑖 = 1 + exp −
𝐿𝑖 + 𝜙𝑖

𝜏

−1

Charles University | Bayesian Causal Structure Learning

Probabilistic Graph: Pathwise Gradient Estimator 
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1) Permuted upper triangular matrix [3]

𝑝 𝑮 = ෍

𝚷∈𝒫𝐷(𝑮)

𝑝 𝑮, 𝚷

Mean-field approximation:      𝑝 𝑮, 𝚷 = 𝑝 𝑼 𝑝(𝚷)

2) Differentiable acyclicity constraint [4]

ℎ 𝑮cyclic > 0 , ℎ 𝑮acyclic = 0

𝑝 𝑮 ∝ 𝑒−𝜆ℎ(𝑮)

𝑝 𝑮cyclic
𝜆→∞

0 , 𝑝 𝑮acyclic
𝜆→∞

1

𝔾𝒂𝒄𝒚𝒄𝒍𝒊𝒄

Enforcing Acyclicity

[3] Charpentier  et al. , ‘Differentiable DAG sampling’, in Proceedings of the International Conference of
Learning Representations, (2022)

[4] Lorch et al. , ‘DiBS: Differentiable Bayesian structure learning’, in Advances in Neural Information
Processing Systems, volume 34, pp. 24111-2413, (2021)
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Variational Posterior Not Constrained to DAGs

𝑝𝜆 𝑮 ∝ exp −𝜆ℎ(𝑮)

𝐷KL 𝑝𝝓 𝑮 𝑝𝜆 𝑮
DAG 𝑮1 𝐵𝐴 𝐶 𝑝1

DAG 𝑮2 𝐵𝐴 𝐶 𝑝2

Cyclic 𝑮3 𝐵𝐴 𝐶 𝑝3

𝑝𝝓 𝑮 = ෑ

𝑖≠𝑗

𝑝𝜙𝑖𝑗
(𝑮𝑖𝑗)

Posterior [5] Prior

KL-Divergence

Charles University | Bayesian Causal Structure Learning [5] Geffner et al. , ‘Deep end-to-end causal inference’, in NeurIPS Workshop on Causality for Real-world
Impact, (2022)
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• Number of expected causes for every node [3]

◦ Erdös-Renyi graphs

𝑝 𝑮 ∝ 𝑝 𝑮 1 1 − 𝑝 𝐸− 𝑮 1

◦ Scale-free graphs

𝑝 𝑮 ∝ ෑ

𝑖=1

𝐷

1 + 𝐺𝑖
T

1

−3

• Additional sparsity regularization [4]

𝑝 𝑮 ∝ 𝛽 𝑮 𝐹
2

• Prior over a single edge 𝒑𝒊𝒋

𝑝 𝑮 ∝ 𝑞𝑖𝑗𝑮𝑖𝑗 + 1 − 𝑞𝑖𝑗 1 − 𝑮𝑖𝑗

𝑝 𝑮 ∈ 𝔾𝑖𝑗 =
𝑞𝑖𝑗

𝑝𝑖𝑗 + 1 − 𝑝𝑖𝑗

 = 𝑞𝑖𝑗 ≔
𝑝𝑖𝑗

𝔾𝑖𝑗

Incorporating Probabilistic Knowledge in a Gibbs Prior

Charles University | Bayesian Causal Structure Learning

[4] Lorch et al. , ‘DiBS: Differentiable Bayesian structure learning’, in Advances in Neural Information
Processing Systems, volume 34, pp. 24111-2413, (2021)

[5] Geffner et al. , ‘Deep end-to-end causal inference’, in NeurIPS Workshop on Causality for Real-world
Impact, (2022)
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Differentiable Probabilistic DAG (DP-DAG) [3]

1)  𝚷 ∼  𝑝𝝍 𝜫  Gumbel-Softsort

2)  𝐔 ∼ 𝑝𝝓(𝑼) Gumbel-Softmax

3)  𝐆 = 𝐔(𝚷) = 𝚷𝑇𝐔 𝚷

𝑝𝝍,𝝓 𝑮, 𝜫 = 𝑝𝝍 𝚷 ෑ

𝑖≠𝑗

𝒑𝝓𝒊𝒋
𝐔𝑖𝑗

𝚷
𝐔𝑖𝑗

𝚷
= 𝐆ij

𝑋5 

𝑋1

𝑋2

𝑋4

𝑋3 

Charles University | Bayesian Causal Structure Learning [3] Charpentier et al. , ‘Differentiable DAG sampling’, in in Proceedings of the International Conference of
Learning  Representations, (2022)
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Differentiable Probabilistically Masked DAG (DPM-DAG) [6]

1)  𝚷 ∼  𝑝𝝍 𝜫  Gumbel-Softsort

2)  𝐌(Π) = 𝚷𝑇𝑀 𝚷

3)  𝐀 ∼ 𝑝𝝓(𝑨) Gumbel-Softmax

4)  𝐆 =  𝐌(𝚷) ∘ 𝐀

𝑝𝝍,𝝓 𝑮, 𝜫 = 𝑝𝝍(𝚷) ෑ

𝑖≺𝑗 in 𝚷

𝑝𝝓 𝑨𝑖𝑗 = 𝑮𝑖𝑗 ෑ

𝑗≺𝑖 in 𝚷

[0 = 𝑮𝑖𝑗]

Charles University | Bayesian Causal Structure Learning Page 36[6] Rittel and Tschiatschek, ‘Specifying Prior Beliefs over DAGs in Deep Bayesian Causal Structure Learning’, in 
Proceedings of the European Conference on Artificial Intelligence, (2023)
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• Gumbel-SoftSort is equal in distribution to the Plackett-Luce distribution

arg max
𝑖∈𝕀∖𝕊

𝜓𝑖 + 𝑔𝑖  ~ 𝑝
exp 𝜓𝑖

σ𝑗∈𝕀∖𝕊 exp 𝜓𝑗

 ⟹  𝑝 PL 𝑖 ≺ 𝑗 = 𝑝(𝐌𝑖𝑗
𝚷

= 1) =
𝑤𝑖

𝑤𝑖 + 𝑤𝑗

• Prior over permutation

𝐷KL 𝑝𝝍 𝚷 𝑝𝝎 𝚷 ≈ ෍

𝑖

𝐷

𝑤𝑖 log 𝑤𝑖 − log 𝜔𝑖

• Prior over unmasked part of A

𝐷KL 𝑝𝝍,𝝓 𝑮 𝚷 𝑝𝜸 𝑮 𝚷 = ෍

𝚷

෍

𝑖≺𝑗 in 𝚷

𝑎𝑖𝑗

log 𝑎𝑖𝑗

log 𝛾𝑖𝑗
+ 1 − 𝑎𝑖𝑗

log 1 − 𝑎𝑖𝑗

log 1 − 𝛾𝑖𝑗

Prior specification

Charles University | Bayesian Causal Structure Learning Page 3728.03.24



• Maximizing evidence lower bound (ELBO) max
𝝍,𝝓,𝚯

ℒ

• DP-DAG ℒ = 𝔼𝐆~p𝝍,𝝓(𝑮) log 𝑝𝚯 𝒙|𝑮 − 𝛽 𝐷KL 𝑝𝝓 𝑨 𝑝𝝓 𝐀 𝑝 𝐀

ς𝑖≠𝑗 𝐷KL 𝑝𝝓𝒊𝒋
𝑨𝑖𝑗 𝑝

• DPM-DAG ℒ = 𝔼𝐆~p𝝍,𝝓(𝑮) log 𝑝𝚯 𝑿|𝑮 − 𝐷KL 𝑝𝝓 𝑮 𝚷 𝑝𝜸 𝑮 𝚷 − 𝐷KL 𝑝𝝍 𝚷 𝑝𝝎 𝚷

Variational Loss for Bayesian CSL

Fig. 3: Generative model of DPM-DAG

Charles University | Bayesian Causal Structure Learning Page 3828.03.24



Probabilistic knowledge of 

true causal graph 𝑮∗

• For 𝐺𝑖𝑗
∗ = 1 :

𝑝 𝐴𝑖𝑗 = 1 ≔ 𝑎𝑖𝑗

• For 𝐺𝑖𝑗
∗ = 0 :

𝑝 𝐴𝑖𝑗 = 1 ≔ 1 − 𝑎𝑖𝑗

Influence of the prior over unmasked edges 𝑝𝛾 on AUROC (↑)  & AUCPR (↑) 

Charles University | Bayesian Causal Structure Learning Page 3928.03.24



• Favorable order:

Decreasing permutation 

weights 𝒘𝑖 1
𝐷

according to a total 

order admitting 𝑮∗

• Uninformative order:

same permutation 

weight 𝒘𝑖 for each 𝑿𝑖

• Adverse order:

reversed favorable order

Influence of the prior over the order 𝑝𝜔 on AUROC (↑)  & AUCPR (↑)  

Charles University | Bayesian Causal Structure Learning Page 4028.03.24



• Introduction to CSL and Bayesian models for it

• Probability distribution over DAGs that enables differentiable sampling (DPM-DAG)

• Edge-wise priors in Bayesian CSL can speed up convergence w.r.t sample efficiency

• Using DPM-DAG for both models allows to reuse the posterior as the next prior

Conclusion

Charles University | Bayesian Causal Structure Learning Page 4128.03.24



Thank you very much for your Attention & Interest
Invited Talk on Bayesian Causal Structure Learning
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