Frequent subsequence mining

Robert Kessl

SUI, 18. March 2010

Outline

(9) Introduction
(2) Frequent subsequence mining
(3) Abstract problem formulation

4 The GSP algorithm
(5) The Spade algorithm

6 The PrefixSpan algorithm

Frequent substructure mining

- We have a database \mathcal{D} of transactions t.
- t can be an arbitrary object.
- For example: itemsets (basket market), time sequences, graphs
- Mining of frequent substructures has exponential complexity (in the worst case)

Frequent subsequence mining

- We denote the set of all items by $\mathcal{I}=\left\{b_{i}\right\}$. We impose some ordering on the items in the set \mathcal{I}, i.e., $b_{1}<b_{2}<\ldots<b_{|\mathcal{I}|}$
- We denote the set of all events by $\mathcal{E}=\mathcal{P}(\mathcal{I})$
- Let $\alpha_{i} \in \mathcal{E}, 1 \leq i \leq n$ be an event.
- A sequence is an ordered list: $\alpha_{1} \rightarrow \alpha_{2} \rightarrow \ldots \rightarrow \alpha_{n}$, e.g., $\mathcal{I}=\{A, B, C, D, E, F\}, A \rightarrow A B \rightarrow B C D \rightarrow E$
Notation: a sequence $\boldsymbol{\&}_{\boldsymbol{\&}}$ contains events $\boldsymbol{\AA}_{i}$, i.e., $\boldsymbol{\&}_{1} \rightarrow \boldsymbol{\&}_{2} \rightarrow \ldots \rightarrow \boldsymbol{\AA}_{n}$.

Subsequence

Definition (subseqence)

Let have two sequences $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{n}$ and
$\beta=\beta_{1} \rightarrow \ldots \rightarrow \beta_{m}, m \leq n$. We call β the subsequence of α, denoted by $\beta \preceq \alpha$ iff there exists one-to-one order preserving function $f: \alpha \rightarrow \beta$ that maps events in β to events in α, that is:
(1) $\alpha_{i} \subseteq \beta_{l}=f\left(\alpha_{i}\right)$
(2) if $\alpha_{i}<\alpha_{j}$ then $f\left(\alpha_{i}\right)<f\left(\alpha_{j}\right)$, i.e., $\beta_{k}=f\left(\alpha_{i}\right), \beta_{l}=f\left(\alpha_{j}\right)$ such that $\beta_{k}<\beta_{l}$

Some subsequences of $A \rightarrow A B \rightarrow B C D \rightarrow E$:

- $A \rightarrow A$
- $A \rightarrow E$
- $A B \rightarrow B \rightarrow E$
- $A E$

Problem formulation

Database \mathcal{D} :

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

- we are searching for subsequence in the transactions $t \in \mathcal{D}$ that occurs in at least min_support transactions.

Problem formulation

Database \mathcal{D} :

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

- we are searching for subsequence in the transactions $t \in \mathcal{D}$ that occurs in at least min_support transactions.
- for example, the sequence $A \rightarrow A$ occurs in 3 transactions.

Prefix and suffix of a sequence

Let have three sequences:

$$
\begin{aligned}
& \alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{n}, \\
& \beta=\beta_{1} \rightarrow \ldots \rightarrow \beta_{m}, m<n, \\
& \gamma=\gamma_{1} \rightarrow \ldots \rightarrow \gamma_{k}, k \leq n .
\end{aligned}
$$

$$
\begin{array}{ccccccc}
\alpha_{1} & \ldots & \alpha_{m-1} & \alpha_{m} & \alpha_{m+1} & \ldots & \alpha_{n} \\
\beta_{1} & \ldots & \beta_{m-1} & \beta_{m} \cup \gamma_{1} & \gamma_{2} & \ldots & \gamma_{k}
\end{array}
$$

Then β is the prefix and γ is the suffix of α.
Denoted by $\alpha=\beta . \gamma$ or $\gamma=\alpha \backslash \beta$ Example, given a sequence $A B \rightarrow A F \rightarrow B C D$:
(1) prefix A, suffix $\quad \quad B \rightarrow A F \rightarrow B C D$.
(2) prefix $A B$, suffix $A F \rightarrow B C D$.

The hyperlattice

Part of the lattice of all sequences L :

- top T of the lattice L is $T=\infty$.
- bottom \perp of the lattice L is an empty sequence \emptyset
- Let α, β be two sequences, then:
- Meet of α, β is the set of minimal uppper bounds, denoted by $\alpha \wedge \beta$.
- Join of α, β is the set of all maximal lower bounds, denoted by $\alpha \vee \beta$,

The Prefix-Based Equivalence Classes

- DFS algorithms partitions the hyperlattice into smaller

Definition

Let α be a sequence. The prefix-based equivalence class, denoted by $[\alpha]$ is the set of all sequences having α as a prefix.

The prefix-based equivalence class is a sub-hyperlattice of L.

Generating sequences

Generating sequences: let P be an arbitrary sequence and $a, b, c, d \in \mathcal{I}$. We can combine sequences $P \rightarrow a, P \rightarrow b, P c, P d$ in the following ways:
(1) $P \rightarrow a \rightarrow b$
(2) $P \rightarrow b \rightarrow a$
(3) $P \rightarrow a b$
(1) $P \rightarrow a \rightarrow a$
(0) Pcd
(0) $P c \rightarrow a$
(1) $P c \rightarrow b$
©
...

Generating sequences

Generating sequences: let P be an arbitrary sequence and $a, b, c, d \in \mathcal{I}$. We can combine sequences $P \rightarrow a, P \rightarrow b, P c, P d$ in the following ways:
(1) $P \rightarrow a \rightarrow b$
(2) $P \rightarrow b \rightarrow a$
(3) $P \rightarrow a b$
(4) $P \rightarrow a \rightarrow a$
(5) Pcd
(6) Pc $\rightarrow a$
(1) $P c \rightarrow b$
(8) ...

We must order the operations !!

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\operatorname{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D}. For every superset β of $\alpha(\alpha \preceq \beta)$ holds: $\operatorname{Supp}(\alpha, \mathcal{D}) \geq \operatorname{Supp}(\beta, \mathcal{D})$.

	$A \rightarrow A$
TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\operatorname{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D}. For every superset β of $\alpha(\alpha \preceq \beta)$ holds: $\operatorname{Supp}(\alpha, \mathcal{D}) \geq \operatorname{Supp}(\beta, \mathcal{D})$.
$A \rightarrow A B$

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\operatorname{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D}. For every superset β of $\alpha(\alpha \preceq \beta)$ holds: $\operatorname{Supp}(\alpha, \mathcal{D}) \geq \operatorname{Supp}(\beta, \mathcal{D})$.
$A \rightarrow A B F$

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

Abstract substructure mining

- A database \mathcal{D}, a language \mathcal{L};
- sentences $\varphi, \Phi \in \mathcal{L}$;
- a frequency criterion $q(\varphi) \in\{$ true, false $\}$;
- a monotone specialization/generalization relation: $\varphi \preceq \Phi$
- $q(\Phi)=$ true $\Rightarrow q(\varphi)=$ true

Generalization of the Apriori algorithm

1: $C_{1} \leftarrow\left\{\varphi \in \mathcal{L} \mid\right.$ there is no φ^{\prime} such that $\left.\varphi^{\prime} \prec \varphi\right\}$
2: $i \leftarrow 1$
3: while C_{i} not empty do
4: $\quad F_{i} \leftarrow\left\{\varphi \in C_{i} \mid q(\varphi)=\right.$ true $\}$
5: $\quad C_{i+1} \leftarrow\left\{\varphi \in \mathcal{L} \mid \forall \varphi^{\prime} \prec \varphi\right.$ we have $\left.\varphi^{\prime} \in \bigcup_{j \leq i} F_{j}\right\} \backslash \bigcup_{j \leq i} C_{j}$
6: $\quad i \leftarrow i+1$

7: end while

8: return $F_{1} \cup F_{2} \cup \ldots \cup F_{k-1}$

Algorithms

- The GSP algorithm: an Apriory like algorithm
- The Spade algorithm: DFS algorithm that uses TID lists
- The PrefixSpan algorithm: DFS algorithm that uses projected database

The GSP algorithm

- BFS algorithm.
- Generate\&test approach.
- Let α be the longest sequence in \mathcal{D} with length k, denoted by $|\alpha|=k$. The GSP algorithm can make k scans of \mathcal{D}
A candidate sequence $\alpha,|\alpha|=k$:
- Support of α is unknown.
- all $\beta \preceq \alpha,|\beta|=k-1$ are frequent, i.e., $\operatorname{Supp}(\beta) \geq$ min_support.

The GSP algorithm contd.

GSP(In: Database \mathcal{D}, $\mathbf{I n}$: Integer min_supp, $\mathbf{I n} /$ Out: Set F)
1: $\mathcal{F}_{1} \leftarrow$ \{frequent 1-sequences $\}$
2: for $k \leftarrow 2 ; \mathcal{F}_{k-1} \neq 0 ; k \leftarrow k+1$ do
3: $\quad \mathcal{F}_{k} \leftarrow \emptyset$
4: $\quad C_{k} \leftarrow$ candidates created from \mathcal{F}_{k-1}
5: \quad for all $\beta \in C_{k}$ do
6: $\quad \beta$.support \leftarrow support of β in \mathcal{D}
7: \quad if β.support \geq min_supp then $\mathcal{F}_{k} \leftarrow \mathcal{F}_{k} \bigcup \beta$
end if
10: end for
11: $\quad F \leftarrow F \bigcup \mathcal{F}_{k}$
12: end for

The Spade algorithm

© DFS algorithm.
(2) Uses TID lists.
(0) Similar algorithm as the Eclat algorithm.
(0) Created by the author of the Eclat algorithm (M.J. Zaki).

TID lists

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

TID	EID	Event
1	1	A
1	2	AB
1	3	BCD
1	4	E
2	1	CE
2	2	AB
2	3	F
2	4	CDE
3	1	BE
3	2	B
3	3	AF
3	4	ACE
4	1	A
4	2	E
4	3	BF
5	1	BCD
5	2	AF
5	3	ABF

TID lists contd.

TID	Transaction				
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$				
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$				
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$				
4	$A \rightarrow E \rightarrow B F$				
5	$B C D \rightarrow A F \rightarrow A B F$	\quad	TID	EID	Event
:---:	:---:	:---:			
1	1	A			
1	2	AB			
2	2	AB			
3	3	AF			
3	4	ACE			
4	1	A			
5	2	AF			
5	3	ABF			

TID lists contd.

		B's TID list		
		TID	EID	Event
TID	Transaction	1	2	AB
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$	1	3	BCD
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$	2	2	AB
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$	3	1	BE
4	$A \rightarrow E \rightarrow B F$	3	2	B
5	$B C D \rightarrow A F \rightarrow A B F$	4	3	BF
		5	1	BCD
		5	3	ABF

TID lists contd.

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

C's TID list		
TID EID Event 1 3 BCD 2 1 CE 2 4 CDE 3 4 ACE 5 1 BCD		

TID lists contd.

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

D's TID list	
TID EID Event 1 3 BCD 2 4 CDE 5 1 BCD	

TID lists contd.

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

E's TID list		
TID EID Event		
1	4	E
2	1	CE
2	4	CDE
3	1	BE
3	4	ACE
4	2	E

TID lists contd.

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

F's TID list		
TID	EID	Event
2	3	F
3	3	AF
4	3	BF
5	2	AF
5	3	ABF

The hyperlattice

Temporal TID list join

Example:

A's TID list			B's TID list		
1	1	A	1	2	AB
1	2	AB	1	3	BCD
2	2	AB	2	2	AB
3	3	AF	3	1	BE
3	4	ACE	3	2	B
4	1	A	4	3	BF
5	2	AF	5	1	BCD
5	3	ABF	5	3	ABF

1	2	AB
1	3	BCD
4	3	BF
5	3	ABF

Temporal TID list join

Example:

A's TID list			B's TID list		
1	1	A	1	2	AB
1	2	AB	1	3	BCD
2	2	AB	2	2	AB
3	3	AF	3	1	BE
3	4	ACE	3	2	B
4	1	A	4	3	BF
5	2	AF	5	1	BCD
5	3	ABF	5	3	ABF

$B \rightarrow A$'s TID list

3	3	AF
3	4	ACE
5	2	AF
5	3	ABF

Temporal TID list join

Example:

A's TID list			B's TID list		
1	1	A	1	2	AB
1	2	AB	1	3	BCD
2	2	AB	2	2	AB
3	3	AF	3	1	BE
3	4	ACE	3	2	B
4	1	A	4	3	BF
5	2	AF	5	1	BCD
5	3	ABF	5	3	ABF

AB's TID list

1	2	AB
2	2	AB

The Spade algorithm

SPADE(In: AtomSet ϵ, In: Integer min_supp, In/Out: Set \mathcal{F})
1: for all atoms $A_{i} \in \epsilon$ do
2: $\quad T_{i} \leftarrow\{ \}$
3: for all atoms $A_{j} \in \epsilon, j \geq i$ and all combinations α of A_{i}, A_{j} do
4: $\quad \mathcal{L}(\alpha)=$ temporal TID list join of $\mathcal{L}\left(A_{i}\right)$ with $\mathcal{L}\left(A_{j}\right)$
5: if $\operatorname{Supp}(\alpha) \geq$ min_supp then
6: $\quad T_{i} \leftarrow T_{i} \bigcup\{\alpha\}$
7: $\quad F=F \bigcup \alpha$
8: \quad end if
9: end for
10: $\operatorname{Spade}\left(T_{i}\right.$, min_supp, $\left.\mathcal{F}\right)$
11: end for

The PrefixSpan algorithm

(1) DFS algorithm.
(2) Uses database projection.
(3) Pattern-growth algorithm
(4) Reduced candidate generation.
(5) Created by the author of the FPGrowth algorithm (J. Han).

Database Projection

Collecting of suffixes projected from sequences by following a given prefix.

Definition (Sequence projection)

Let α, β, γ be three sequences. We say that γ is α-projected sequence in β iff $\alpha . \gamma$ is a maximal subsequence of β, denoted by $\left.\beta\right|_{\alpha}$.
$\beta=(A \rightarrow B \rightarrow A \rightarrow B \rightarrow A C \rightarrow D)$
$\alpha=(A \rightarrow B)$
α-projected sequence in β, i.e., $\left.\beta\right|_{\alpha}$, is $\gamma=(A \rightarrow B \rightarrow A C \rightarrow D)$.
$\beta=\left.(A \rightarrow B C \rightarrow B \rightarrow A C) \Rightarrow \beta\right|_{\alpha}=\left(_C \rightarrow B \rightarrow A C\right)$

Database Projection example

\mathcal{D} - a database we project from

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

\Rightarrow Support of C ?

Database Projection example

\mathcal{D} - a database we project from

TID	Transaction
1	$A \rightarrow A B \rightarrow B C D \rightarrow E$
2	$C E \rightarrow A B \rightarrow F \rightarrow C D E$
3	$B E \rightarrow B \rightarrow A F \rightarrow A C E$
4	$A \rightarrow E \rightarrow B F$
5	$B C D \rightarrow A F \rightarrow A B F$

$\left.\mathcal{D}\right|_{\alpha}-\alpha$-projected database

\Rightarrow Support $\operatorname{Supp}(A B \rightarrow C, \mathcal{D})=\operatorname{Supp}\left(C,\left.\mathcal{D}\right|_{\alpha}\right)$

Prefixspan Pseudocode

Prefixspan-Recursive(In: Database \mathcal{D}_{α}, $\mathbf{I n}$: Sequence α, $\mathbf{I n}$: Integer min_supp, In/Out: Set \mathcal{F})
1: $\mathcal{F}_{1} \leftarrow$ \{frequent items in $\left.\mathcal{D}_{\alpha}\right\}$
2: for all items $b_{i} \in \mathcal{F}_{1}$ do
3: $\quad \beta=\left(\alpha_{1} \rightarrow \cdots \rightarrow\left(\alpha_{n} \bigcup\left\{b_{i}\right\}\right)\right)$
4: $\quad \gamma=\left(\alpha_{1} \rightarrow \cdots \rightarrow \alpha_{n} \rightarrow\left(b_{i}\right)\right)$
5: if $\operatorname{Supp}\left(\beta, \mathcal{D}_{\alpha}\right) \geq$ min_supp then
6: $\quad \mathcal{F} \leftarrow \mathcal{F} \bigcup\{\beta\}$
7: $\left.\quad \mathcal{D}^{\prime} \leftarrow\left(\mathcal{D}_{\alpha}\right)\right|_{\beta}$
8: $\quad \operatorname{Prefixspan-Recursive~}\left(\mathcal{D}^{\prime}, \beta\right.$, min_supp, $\left.\mathcal{F}\right)$
9: end if
10: if $\operatorname{Supp}\left(\gamma, \mathcal{D}_{\alpha}\right) \geq$ min_supp then
11: $\quad \mathcal{F} \leftarrow \mathcal{F} \bigcup\{\gamma\}$
12: $\left.\quad \mathcal{D}^{\prime} \leftarrow\left(\mathcal{D}_{\alpha}\right)\right|_{\gamma}$
13: $\quad \operatorname{Prefixspan-Recursive~}\left(\mathcal{D}^{\prime}, \gamma\right.$, min_supp, $\left.\mathcal{F}\right)$
14: end if

Mining sequential patterns with constraints

- Event time - let $T: \mathcal{I} \rightarrow \mathbf{R}$, the function t assignes timestamp to each event in the sequence.
- For each sequence α it holds that $T\left(\alpha_{i}\right)<T\left(\alpha_{j}\right), i<j$.

Let α, β, be two sequences such that α is subsequence of β. A constraint C is:

- Anti-monotonic: iff $\boldsymbol{C}(\beta)$ implies $C(\alpha)$
- Monotonic: iff $\boldsymbol{C}(\alpha)$ implies $\boldsymbol{C}(\beta)$

Timing constraints - the maxspan/minspan

Maxspan/Minspan: the maximum/minimum allowed time difference between the latest and earliest occurances of events in α in the transaction t :

$$
t=A \rightarrow A B \rightarrow B C D \rightarrow E
$$

- maxspan=2, supports: $A \rightarrow A, A \rightarrow B, A \rightarrow B C$.
- maxspan=2, does not supports: $A \rightarrow E$.
- minspan=2, does not supports: $A \rightarrow A, A \rightarrow B, A \rightarrow B C$.
- minspan=2, supports: $A \rightarrow E$.
- the maxspan is anti-monotonic.
- the minspan is monotonic.

Mingap/Maxgap

Mingap/Maxgap: is the minimum/maximum time difference of occurences of events from α in a transaction t.

$$
t=A \rightarrow A B \rightarrow B C D \rightarrow E
$$

- mingap $=2, t$ supports: $A \rightarrow E$.
- mingap=2, t does not supports: $A \rightarrow A$.
- maxgap=1, t supports: $A \rightarrow C$.
- maxgap=1, t does not supports: $A \rightarrow E$.
- mingap/maxgap is anti-monotnic.

Regular expressions

- Regular expression: each regular expression \mathcal{R} can be represented by a finite state automaton.
- Each event in the sequence α must contain exactly one item.
- A frequent sequence α is valid if it matches a state of the finite state automaton representing \mathcal{R}.

