Frequent subsequence mining

Robert Kessl

SUI, 18. March 2010

Robert Kessl (CS CAS)

Frequent subsequence mining

Image: A matrix

Outline

Introduction

- 2 Frequent subsequence mining
- 3 Abstract problem formulation
- 4 The GSP algorithm
- 5 The Spade algorithm
- 6 The PrefixSpan algorithm

Frequent substructure mining

- We have a database \mathcal{D} of transactions t.
- *t* can be an arbitrary object.
- For example: itemsets (basket market), time sequences, graphs
- Mining of frequent substructures has exponential complexity (in the worst case)

Frequent subsequence mining

- We denote the set of all items by \$\mathcal{I} = {b_i}\$. We impose some ordering on the items in the set \$\mathcal{I}\$, i.e., \$b_1 < b_2 < \ldots < b_{|\mathcal{I}|}\$
- We denote the set of all events by $\mathcal{E} = \mathcal{P}(\mathcal{I})$
- Let $\alpha_i \in \mathcal{E}$, $1 \leq i \leq n$ be an event.
- A sequence is an ordered list: $\alpha_1 \rightarrow \alpha_2 \rightarrow \ldots \rightarrow \alpha_n$, e.g., $\mathcal{I} = \{A, B, C, D, E, F\}, A \rightarrow AB \rightarrow BCD \rightarrow E$

Notation: a sequence \clubsuit contains events \clubsuit_i , i.e., $\clubsuit_1 \to \clubsuit_2 \to \ldots \to \clubsuit_n$.

Subsequence

Definition (subsequence)

Let have two sequences $\alpha = \alpha_1 \rightarrow \ldots \rightarrow \alpha_n$ and

 $\beta = \beta_1 \rightarrow \ldots \rightarrow \beta_m, m \le n$. We call β the subsequence of α , denoted by $\beta \preceq \alpha$ iff there exists one-to-one order preserving function $f : \alpha \rightarrow \beta$ that maps events in β to events in α , that is:

$$\bigcirc \alpha_i \subseteq \beta_l = f(\alpha_i)$$

2 if $\alpha_i < \alpha_j$ then $f(\alpha_i) < f(\alpha_j)$, i.e., $\beta_k = f(\alpha_i)$, $\beta_l = f(\alpha_j)$ such that $\beta_k < \beta_l$

Some subsequences of $A \rightarrow AB \rightarrow BCD \rightarrow E$:

- $A \rightarrow A$
- $A \rightarrow E$
- $AB \rightarrow B \rightarrow E$
- *AE*

Problem formulation

we are searching for subsequence in the transactions *t* ∈ D that occurs in at least *min_support* transactions.

Problem formulation

- we are searching for subsequence in the transactions *t* ∈ D that occurs in at least *min_support* transactions.
- for example, the sequence $A \rightarrow A$ occurs in 3 transactions.

Prefix and suffix of a sequence

Let have three sequences:

$$\begin{array}{l} \alpha = \alpha_1 \to \ldots \to \alpha_n, \\ \beta = \beta_1 \to \ldots \to \beta_m, m < n, \\ \gamma = \gamma_1 \to \ldots \to \gamma_k, k \le n. \end{array}$$

Then β is the prefix and γ is the suffix of α . Denoted by $\alpha = \beta . \gamma$ or $\gamma = \alpha \setminus \beta$ Example, given a sequence $AB \rightarrow AF \rightarrow BCD$:

- prefix A, suffix $_B \rightarrow AF \rightarrow BCD$.
- 2 prefix *AB*, suffix $AF \rightarrow BCD$.

The hyperlattice

Part of the lattice of all sequences L:

- top \top of the lattice *L* is $\top = \infty$.
- bottom \perp of the lattice *L* is an empty sequence \emptyset
- Let α, β be two sequences, then:
 - Meet of α, β is the set of minimal uppper bounds, denoted by $\alpha \wedge \beta$.
 - Join of α, β is the set of all maximal lower bounds, denoted by $\alpha \lor \beta$

The Prefix-Based Equivalence Classes

• DFS algorithms partitions the hyperlattice into smaller

Definition

Let α be a sequence. The prefix-based equivalence class, denoted by $[\alpha]$ is the set of all sequences having α as a prefix.

The prefix-based equivalence class is a sub-hyperlattice of *L*.

Generating sequences

Generating sequences: let *P* be an arbitrary sequence and $a, b, c, d \in \mathcal{I}$. We can combine sequences $P \rightarrow a, P \rightarrow b, Pc, Pd$ in the following ways:

- $P \rightarrow a \rightarrow b$ $P \rightarrow b \rightarrow a$
- $\bigcirc P \to ab$
- O Pcd
- \bigcirc Pc \rightarrow b
- 8 ...

Generating sequences

Generating sequences: let *P* be an arbitrary sequence and $a, b, c, d \in \mathcal{I}$. We can combine sequences $P \rightarrow a, P \rightarrow b, Pc, Pd$ in the following ways:

- $\bigcirc P \to a \to b$
- $P \rightarrow b \rightarrow a$
- $\bigcirc P \to ab$
- $P \to a \to a$
- Pcd
- $\bigcirc Pc \to a$
- $\bigcirc Pc \to b$

8 ...

We must order the operations !!

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\text{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D} . For every superset β of α ($\alpha \leq \beta$) holds: $\text{Supp}(\alpha, \mathcal{D}) \geq \text{Supp}(\beta, \mathcal{D})$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\text{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D} . For every superset β of α ($\alpha \leq \beta$) holds: $\text{Supp}(\alpha, \mathcal{D}) \geq \text{Supp}(\beta, \mathcal{D})$.

Robert Kessl (CS CAS)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support $\text{Supp}(\alpha, \mathcal{D})$ in database \mathcal{D} . For every superset β of α ($\alpha \leq \beta$) holds: $\text{Supp}(\alpha, \mathcal{D}) \geq \text{Supp}(\beta, \mathcal{D})$.

イロト イポト イヨト イヨト

Abstract substructure mining

- A database \mathcal{D} , a language \mathcal{L} ;
- sentences $\varphi, \Phi \in \mathcal{L}$;
- a frequency criterion $q(\varphi) \in {\text{true}, \text{false}};$
- a monotone specialization/generalization relation: $\varphi \preceq \Phi$
- $q(\Phi) = \text{true} \Rightarrow q(\varphi) = \text{true}$

Generalization of the Apriori algorithm

- 1: $C_1 \leftarrow \{\varphi \in \mathcal{L} | \text{there is no } \varphi' \text{ such that } \varphi' \prec \varphi\}$
- 2: *i* ← 1
- 3: while C_i not empty do

4:
$$F_i \leftarrow \{\varphi \in C_i | q(\varphi) = true\}$$

- 5: $C_{i+1} \leftarrow \{\varphi \in \mathcal{L} | \forall \varphi' \prec \varphi \text{ we have } \varphi' \in \bigcup_{j < i} F_j\} \setminus \bigcup_{j < i} C_j$
- 6: *i* ← *i* + 1
- 7: end while
- 8: return $F_1 \cup F_2 \cup \ldots \cup F_{k-1}$

- The GSP algorithm: an Apriory like algorithm
- The Spade algorithm: DFS algorithm that uses TID lists
- The PrefixSpan algorithm: DFS algorithm that uses *projected database*

The GSP algorithm

- BFS algorithm.
- Generate&test approach.
- Let α be the longest sequence in \mathcal{D} with length k, denoted by $|\alpha| = k$. The GSP algorithm can make k scans of \mathcal{D}

A *candidate* sequence α , $|\alpha| = k$:

- Support of α is unknown.
- all $\beta \leq \alpha, |\beta| = k 1$ are frequent, i.e., $Supp(\beta) \geq min_support$.

The GSP algorithm contd.

GSP(In: Database D,In: Integer *min_supp*, In/Out: Set F)

1: $\mathcal{F}_1 \leftarrow \{\text{frequent 1-sequences}\}$ 2: for $k \leftarrow 2$; $\mathcal{F}_{k-1} \neq 0$; $k \leftarrow k+1$ do

3: $\mathcal{F}_k \leftarrow \emptyset$

- 4: $C_k \leftarrow \text{candidates created from } \mathcal{F}_{k-1}$
- 5: for all $\beta \in C_k$ do
- 6: β .*support* \leftarrow support of β in \mathcal{D}
- 7: **if** β .*support* \geq *min_supp* **then**
- 8: $\mathcal{F}_k \leftarrow \mathcal{F}_k \bigcup \beta$
- 9: end if
- 10: **end for**
- 11: $F \leftarrow F \bigcup \mathcal{F}_k$
- 12: end for

- DFS algorithm.
- Oses TID lists.
- Similar algorithm as the Eclat algorithm.
- Oreated by the author of the Eclat algorithm (M.J. Zaki).

TID lists

TID	EID	Evont
ПD		Lven
1	1	A
1	2	AB
1	3	BCD
1	4	E
2	1	CE
2	1	UL
2	2	AB
2	3	F
2	4	CDE
2	4	DE
3	1	DE
3	2	B
3	3	AF
3	4	ACE
4	1	Α
4	2	E
4	2	DE
4	3	
5	1	BCD
5	2	AF
5	3	ABF

3

イロン イ理 とくほ とくほ とう

Robert Kessl (CS CAS)

TID	Transaction
1	$A \rightarrow AB \rightarrow BCD \rightarrow E$
2	$CE \rightarrow AB \rightarrow F \rightarrow CDE$
3	$BE \to B \to \mathbf{A}F \to \mathbf{A}CE$
4	$A \rightarrow E \rightarrow BF$
5	BCD ightarrow AF ightarrow ABF

18. March 2010 19 / 30

2

TID	Transaction
1	$A \to A\mathbf{B} \to \mathbf{B}CD \to E$
2	$CE \rightarrow AB \rightarrow F \rightarrow CDE$
3	$BE \rightarrow B \rightarrow AF \rightarrow ACE$
4	$A \to E \to \mathbf{B}F$
5	$BCD \rightarrow AF \rightarrow ABF$

Robert Kessl (CS CAS)

18. March 2010 19 / 30

2

イロト イヨト イヨト イヨト

C's TID list		
TID	EID	Event
1	3	BCD
2	1	CE
2	4	CDE
3	4	ACE
5	1	BCD

Robert Kessl (CS CAS)

18. March 2010 19 / 30

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D's TID list			
TID	EID Event		
1	3	BCD	
2	4	CDE	
5	1	BCD	

Robert Kessl (CS CAS)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Robert Kessl (CS CAS)

18. March 2010 19 / 30

イロト イポト イヨト イヨト 二日

F's TID list			
TID	EID	Event	
2	3	F	
3	3	AF	
4	3	BF	
5	2	AF	
5	3	ABF	

Robert Kessl (CS CAS)

18. March 2010 19 / 30

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

≌) २ () / 30

The hyperlattice

2

< 17 ▶

- 3 >

Temporal TID list join

Example:

A's TID list

1	1	A
1	2	AB
2	2	AB
3	3	AF
3	4	ACE
4	1	A
5	2	AF
5	3	ABF

BSTIDIIS		
1	2	AB
1	3	BCD
2	2	AB
3	1	BE
3	2	В
4	3	BF
5	1	BCD
5	3	ABF

$$A \rightarrow B'$$
 TID list

1	2	AB
1	3	BCD
4	3	BF
5	3	ABF

Temporal TID list join

Example:

A's TID list

1	1	A
1	2	AB
2	2	AB
3	3	AF
3	4	ACE
4	1	A
5	2	AF
5	3	ABF

D 3 11D 113t		
2	AB	
3	BCD	
2	AB	
1	BE	
2	В	
3	BF	
1	BCD	
3	ABF	
	2 3 2 1 2 3 1 3 3	

R'e TID liet

 $B \rightarrow A$'s TID list

3	3	AF
3	4	ACE
5	2	AF
5	3	ABF

Temporal TID list join

Example:

A's TID list

1	1	A
1	2	AB
2	2	AB
3	3	AF
3	4	ACE
4	1	Α
5	2	AF
5	3	ABF

B's TID list				
2	AB			
3	BCD			
2	AB			
1	BE			
2	В			
3	BF			
1	BCD			
3	ABF			
	rs 2 3 2 1 2 3 1 3 1 3			

AB's TID list

1	2	AB
2	2	AB

SPADE(In: AtomSet ϵ ,In: Integer min_supp, In/Out: Set \mathcal{F})

The Spade algorithm

- 1: for all atoms $A_i \in \epsilon$ do
- 2: $T_i \leftarrow \{\}$
- 3: for all atoms $A_j \in \epsilon, j \ge i$ and all combinations α of A_i, A_j do
- 4: $\mathcal{L}(\alpha) = \text{temporal TID list join of } \mathcal{L}(A_i) \text{ with } \mathcal{L}(A_j)$
- 5: if $Supp(\alpha) \ge min_supp$ then
- 6: $T_i \leftarrow T_i \bigcup \{\alpha\}$
- 7: $F = F \bigcup \alpha$
- 8: end if
- 9: end for
- 10: Spade(T_i , min_supp, \mathcal{F})
- 11: end for

- DFS algorithm.
- ② Uses database projection.
- Pattern-growth algorithm
- Reduced candidate generation.
- Oreated by the author of the FPGrowth algorithm (J. Han).

Database Projection

Collecting of suffixes projected from sequences by following a given prefix.

Definition (Sequence projection)

Let α, β, γ be three sequences. We say that γ is α -projected sequence in β iff $\alpha.\gamma$ is a maximal subsequence of β , denoted by $\beta|_{\alpha}$.

$$\begin{array}{l} \beta = (\textbf{A} \rightarrow \textbf{B} \rightarrow \textbf{A} \rightarrow \textbf{B} \rightarrow \textbf{AC} \rightarrow \textbf{D}) \\ \alpha = (\textbf{A} \rightarrow \textbf{B}) \\ \alpha \text{-projected sequence in } \beta \text{, i.e., } \beta|_{\alpha} \text{, is } \gamma = (\textbf{A} \rightarrow \textbf{B} \rightarrow \textbf{AC} \rightarrow \textbf{D}). \\ \beta = (\textbf{A} \rightarrow \textbf{BC} \rightarrow \textbf{B} \rightarrow \textbf{AC}) \Rightarrow \beta|_{\alpha} = (_\textbf{C} \rightarrow \textbf{B} \rightarrow \textbf{AC}) \end{array}$$

The PrefixSpan algorithm

Database Projection example

$\ensuremath{\mathcal{D}}$ - a database we project from

TID	Transaction
1	$A \rightarrow AB \rightarrow BCD \rightarrow E$
2	$CE \rightarrow AB \rightarrow F \rightarrow CDE$
3	$BE \rightarrow B \rightarrow AF \rightarrow ACE$
4	$A \rightarrow E \rightarrow BF$
5	$BCD \rightarrow AF \rightarrow ABF$

 \Rightarrow Support of *C* ?

The PrefixSpan algorithm Database Projection example

 \Rightarrow Support Supp $(AB \rightarrow C, D) = Supp(C, D|_{\alpha})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prefixspan Pseudocode

PREFIXSPAN-RECURSIVE(In: Database D_{α} , In: Sequence α , In: Integer min_supp, In/Out: Set \mathcal{F})

- 1: $\mathcal{F}_1 \leftarrow \{ \text{frequent items in } \mathcal{D}_{\alpha} \}$
- 2: for all items $b_i \in \mathcal{F}_1$ do
- 3: $\beta = (\alpha_1 \rightarrow \cdots \rightarrow (\alpha_n \bigcup \{b_i\}))$
- 4: $\gamma = (\alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow (b_i))$
- 5: **if** $Supp(\beta, \mathcal{D}_{\alpha}) \geq \min_{\alpha}$ supp **then**

6:
$$\mathcal{F} \leftarrow \mathcal{F} \bigcup \{\beta\}$$

7:
$$\mathcal{D}' \leftarrow (\mathcal{D}_{\alpha})|_{\beta}$$

- 8: Prefixspan-Recursive($\mathcal{D}', \beta, \min_$ supp, \mathcal{F})
- 9: end if
- 10: if $Supp(\gamma, D_{\alpha}) \ge \min_{\alpha} supp$ then

11:
$$\mathcal{F} \leftarrow \mathcal{F} \bigcup \{\gamma\}$$

12:
$$\mathcal{D}' \leftarrow (\mathcal{D}_{lpha})|_{\gamma}$$

- 13: Prefixspan-Recursive($\mathcal{D}', \gamma, \min_{supp}, \mathcal{F}$)
- 14: end if
- 15: end for

Mining sequential patterns with constraints

The PrefixSpan algorithm

- Event time let T : I → R, the function t assignes timestamp to each event in the sequence.
- For each sequence α it holds that $T(\alpha_i) < T(\alpha_j), i < j$.

Let α, β , be two sequences such that α is subsequence of β . A constraint *C* is:

- Anti-monotonic: iff $C(\beta)$ implies $C(\alpha)$
- Monotonic: iff $C(\alpha)$ implies $C(\beta)$

Timing constraints - the maxspan/minspan

Maxspan/Minspan: the maximum/minimum allowed time difference between the latest and earliest occurances of events in α in the transaction *t*:

$t = \textbf{A} \rightarrow \textbf{AB} \rightarrow \textbf{BCD} \rightarrow \textbf{E}$

- maxspan=2, supports: $A \rightarrow A$, $A \rightarrow B$, $A \rightarrow BC$.
- maxspan=2, does not supports: $A \rightarrow E$.
- minspan=2, does not supports: $A \rightarrow A$, $A \rightarrow B$, $A \rightarrow BC$.
- minspan=2, supports: $A \rightarrow E$.
- the maxspan is anti-monotonic.
- the minspan is monotonic.

Mingap/Maxgap

Mingap/Maxgap: is the *minimum/maximum* time difference of occurences of events from α in a transaction *t*.

$$t = A \rightarrow AB \rightarrow BCD \rightarrow E$$

• mingap=2, t supports:
$$A \rightarrow E$$
.

- mingap=2, *t* does not supports: $A \rightarrow A$.
- maxgap=1, *t* supports: $A \rightarrow C$.
- maxgap=1, t does not supports: $A \rightarrow E$.
- mingap/maxgap is anti-monotnic.

Regular expressions

- Regular expression: each regular expression \mathcal{R} can be represented by a finite state automaton.
- Each event in the sequence α must contain exactly one item.
- A frequent sequence α is valid if it matches a state of the finite state automaton representing *R*.