Classifier Aggregation using Fuzzy Integral based on Interaction-Sensitive Fuzzy Measures

David Štefka

28. March 2013

Martin Holeňa

David Štefka Classifier Aggr. using Interaction-Sensitive Fuzzy Measures

- 2 Aggregation Operators
 - Weighted Mean
 - Ordered Weighted Average
 - Choquet Integral
 - Sugeno Integral
- 3 Interaction-Sensitive Fuzzy Measures
 - I-ISFM
 - G-ISFM
 - MHM

Dynamic Classifier Systems

- 2 Aggregation Operators
 - Weighted Mean
 - Ordered Weighted Average
 - Choquet Integral
 - Sugeno Integral
- Interaction-Sensitive Fuzzy Measures
 - I-ISFM
 - G-ISFM
 - MHM

Experiments

- **→** → **→**

Classifier Combining

- classification predict to which class a given pattern belongs
- classifier combining/aggregation/fusion/selection/...
 - create a team of classifiers and aggregate their predictions
 - better generalization properties
 - lower error rate
 - better robustness
 - less sensitive to overfitting
 - the resulting system behaves as a single classifier
 - no generally accepted unifying theory
 - how does it work? Bias/variance decomposition (variance is reduced), large margin classifiers (large margin → better generalization)

・ロト ・得ト ・ヨト ・ヨト

Classifier Team Design

- motivation: induce *diversity* to the team
- sampling from the training set (bagging, boosting)
- partitioning the feature space (divide&conquer, mixture of experts)
- using different combinations of features (multiple feature subset, attribute bagging)
- multi-model approaches (e.g., k-NN, neural net, decision tree, and SVM)
- changing parameters of a model (3-NN, 5-NN, 10-NN; neural net topology)
- output coding (error correcting output coding)
- hybrid methods (random forests)

・ロト ・得ト ・ヨト ・ヨト

Classification Confidence

- motivation: measure the degree of reliability of a prediction
- static
 - global accuracy, precision, sensitivity, ...
- dynamic
 - local accuracy
 - local match
 - methods based on d.o.c.
 - statistical methods transduction
 - model-specific methods

同 ト イ ヨ ト イ ヨ ト

Aggregation

- classifier selection (static/dynamic classifier selection, mixture of experts)
- crisp classifiers voting, behavior knowledge space
- class ranking methods Borda count
- soft classifiers artihmetic approaches (mean, median, min, max), probabilistic approaches (product rule, Dempster-Shafer theory), fuzzy logic (fuzzy integral, decision templates)
- second level classifiers stacking

Dynamic Classifier Systems

- framework of classifier combining with classification confidence
- $\mathcal{S} = (\mathcal{T}, \mathcal{K}, \mathcal{A})$ classifier system
- $\mathcal{T} = (\phi_1, \dots, \phi_r)$ classifiers
- $\mathcal{K} = (\kappa_{\phi_1}, \dots, \kappa_{\phi_r})$ confidence measures
- \mathcal{A} aggregator
- 3 types of classifier systems
 - confidence-free
 - static
 - dynamic

Types of classifier systems

Classifier Aggregation

prediction

$$\mathcal{T}(\vec{x}) = \begin{pmatrix} \phi_1(\vec{x}) \\ \phi_2(\vec{x}) \\ \vdots \\ \phi_r(\vec{x}) \end{pmatrix} = \begin{pmatrix} \gamma_{11}(\vec{x}) & \gamma_{12}(\vec{x}) & \dots & \gamma_{1N}(\vec{x}) \\ \gamma_{21}(\vec{x}) & \gamma_{22}(\vec{x}) & \dots & \gamma_{2N}(\vec{x}) \\ & & \ddots & \\ \gamma_{r1}(\vec{x}) & \gamma_{r2}(\vec{x}) & \dots & \gamma_{rN}(\vec{x}) \end{pmatrix}$$

 $\gamma_{ij}(\vec{x}) = \text{degree of classification to class } C_j \text{ given by } \phi_i$ • confidence

$$\mathcal{K}(\vec{x}) = \begin{pmatrix} \kappa_{\phi_1}(\vec{x}) \\ \kappa_{\phi_2}(\vec{x}) \\ \vdots \\ \kappa_{\phi_r}(\vec{x}) \end{pmatrix}$$

 $\kappa_{\phi_i}(\vec{x}) = \text{confidence of } \phi_i \text{ on } \vec{x}$

• usually, aggregate *j*-th column of $\mathcal{T}(\vec{x})$ by an aggregation operator, parametrized by $\mathcal{K}(\vec{x})$

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Dynamic Classifier Systems

- 2 Aggregation Operators
 - Weighted Mean
 - Ordered Weighted Average
 - Choquet Integral
 - Sugeno Integral

3 Interaction-Sensitive Fuzzy Measures

- I-ISFM
- G-ISFM
- MHM

Experiments

▲ 同 ▶ → 三 ▶

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Information Fusion

- (X_1, \ldots, X_N) information sources (sensors, experts, etc.)
- $(a_1,\ldots,a_N)\in D^N$ outputs in domain D, e.g. $D=\mathcal{R}$
- $\mathbb{C}: D^N o D$ aggregation operator
- $\mathbb{C}(a_1, \ldots, a_N)$ aggregated value (consensus)
- arithmetic mean, weighted mean, median, minimum, maximum, ...

イロト イポト イヨト イヨト 二日

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Desired Properties

• unanimity

$$orall a:\mathbb{C}(a,\ldots,a)=a$$

- monotonicity
 - $\forall i: a_i \geq a_i' \Rightarrow \mathbb{C}(a_1, \dots, a_N) \geq \mathbb{C}(a_1', \dots, a_N')$
- (unanimity) + (monotonicity) ⇒ internality min_i a_i ≤ C(a₁,..., a_N) ≤ max_i a_i
- symmetry (no source is distinguishable) $\forall \pi \in \Pi_{1,...,N} : \mathbb{C}(a_1,...,a_N) = \mathbb{C}(a_{\pi(1)},...,a_{\pi(N)})$
- robustness (influence of outliers) arithmetic mean vs. median
- applicability numeric / ordinal / nominal domains

(日)

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Weighted Mean

- $WM_p(a_1,\ldots,a_N) = \sum_i p_i a_i$
- weighting vector: $\mathbf{p} = (p_1, \dots, p_N) \in [0, 1]^N, \ \sum_i p_i = 1$
- p_i importance (reliability) of *i*-th source
- properties
 - special case arithmetic mean $(p_i = 1/N)$
 - not symmetric
 - dictatorship of the *i*-th source $(p_i = 1, p_j = 0 \ j \neq i)$
 - unbounded influence of outliers

(日)

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Ordered Weighted Average (OWA)

- $OWA_w(a_1,\ldots,a_N) = \sum_i w_i a_{<i>}$
- weighting vector **w**, (·) indicating nondecreasing permutation, i.e. $a_{<i>} \ge a_{<i-1>}$
- w_i importance of *i*-th largest output
- properties
 - can reduce (or ignore) extreme values, e.g. $\mathbf{w} = (0, 1/3, 1/3, 1/3, 0) \text{commitee}$
 - special cases minimum, maximum, median, arithmetic mean
 - symmetric

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Fuzzy Measure

- $\mu: \mathcal{P}(\mathcal{U}) \rightarrow [0,1]$ is called a fuzzy measure on \mathcal{U} iff:
 - (boundary condition) $\mu(\emptyset) = 0$, $\mu(\mathcal{U}) = 1$
 - 2 (monotonicity) $A \subseteq B \Rightarrow \mu(A) \le \mu(B)$
- generalization of additive measures (probability)
- can model interaction between the elements example: 3 subjects (math, physics, literature); $\mu(\emptyset) = 0$, $\mu(M) = 0.45$, $\mu(P) = 0.45$, $\mu(L) = 0.3$, $\mu(M, L) = 0.9$, $\mu(P, L) = 0.9$, $\mu(M, P) = 0.5$, $\mu(M, P, L) = 1$
- classifier aggregation: aggregate the integrand (predictions of the classifiers) with respect to the fuzzy measure (represents the confidence)
- no general definition of fuzzy integral; Choquet and Sugeno used most often

Choquet Integral

i	support; $A_{\langle i \rangle}$	d.o.clevel; $f_{\langle i \rangle}$	measure of support; $\mu(A_{})$
4	ϕ_3	0.9	0.1
3	ϕ_3, ϕ_4	0.4	0.3
2	ϕ_1, ϕ_3, ϕ_4	0.3	0.7
1	$\phi_1, \phi_2, \phi_3, \phi_4$	0.2	1
0		0	

$$\int_{C} f \, d\mu = \sum_{i=1}^{r} (f_{} - f_{}) \mu(A_{})$$
$$= 0.5 \cdot 0.1 + 0.1 \cdot 0.3 + 0.1 \cdot 0.7 + 0.2 \cdot 1 = 0.35$$

Weighted Mean Ordered Weighted Average **Choquet Integral** Sugeno Integral

Choquet Integral ctnd

- for additive measures, Choquet integral conincides with Lebesgue integral
- satisfies unanimity, monotonicity, internality (i.e., it is a proper aggregation operator)
- generalizes weighted mean, OWA, WOWA

(日) (同) (三) (三)

Dynamic Classifier Systems	Weighted Mean
Aggregation Operators	Ordered Weighted Average
Interaction-Sensitive Fuzzy Measures	Choquet Integral
Experiments	Sugeno Integral

Sugeno Integral

i	support; $A_{\langle i \rangle}$	d.o.clevel; $f_{\langle i \rangle}$	measure of support; $\mu(A_{})$
4	ϕ_3	0.9	0.1
3	ϕ_3, ϕ_4	0.4	0.3
2	ϕ_1, ϕ_3, ϕ_4	0.3	0.7
1	$\phi_1, \phi_2, \phi_3, \phi_4$	0.2	1
0		0	

$$(S) \int f \ d\mu = \max_{i=1}^{r} \min(f_{\langle i \rangle}, \mu(A_{\langle i \rangle}))$$
$$= \max(0.1, 0.3, 0.3, 0.2) = 0.3$$

David Štefka Classifier Aggr. using Interaction-Sensitive Fuzzy Measures

æ

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Sugeno Integral ctnd

- satisfies unanimity, monotonicity, internality (i.e., it is a proper aggregation operator)
- generalizes weighted minimum and maximum

(日) (同) (三) (三)

Weighted Mean Ordered Weighted Average Choquet Integral Sugeno Integral

Aggregation Operators - summary

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I-ISFM G-ISFM MHM

Dynamic Classifier Systems Aggregation Operators Weighted Mean

- Ordered Weighted Average
- Choquet Integral
- Sugeno Integral

Interaction-Sensitive Fuzzy Measures

- I-ISFM
- G-ISFM
- MHM

4 Experiments

- **→** → **→**

Fuzzy Integral

- aggregate the integrand w.r.t. fuzzy measure
- integrand \sim degrees of classification (d.o.c.) to C_j given by ϕ_1, \ldots, ϕ_r
- ullet fuzzy measure \sim confidences of the individual classifiers
- integral \sim aggregated d.o.c. to class C_j

(日)

I-ISFM G-ISFM MHM

Fuzzy Measure

- $\mu: \mathcal{P}(X) \rightarrow [0,1]$ is called a fuzzy measure on X iff:
 - (boundary condition) $\mu(\emptyset) = 0, \ \mu(X) = 1$
 - (monotonicity) $A \subseteq B \Rightarrow \mu(A) \le \mu(B)$
- generalization of additive measures (probability)
- can model interaction between the elements example: 3 subjects (math, physics, literature); $\mu(\emptyset) = 0$, $\mu(M) = 0.45$, $\mu(P) = 0.45$, $\mu(L) = 0.3$, $\mu(M, L) = 0.9$, $\mu(P, L) = 0.9$, $\mu(M, P) = 0.5$, $\mu(M, P, L) = 1$
- hard to define (needs $2^N 2$ parameters)
- additive measures need only N 1 parameters (for the singletons) fuzzy densities μ(φ_i)

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I-ISFM G-ISFM MHM

Common Fuzzy Measures

- additive: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B
 - correspond to probabilistic measures
- symmetric: $|A| = |B| \Rightarrow \mu(A) = \mu(B)$
 - $\mu(A)$ depends only on the number of elements in A
 - leads to confidence-free aggregation
- \perp -decomposable: $\mu(A \cup B) = \mu(A) \perp \mu(B)$ for disjoint A, B
 - special case: Sugeno λ-measure (used most often in classifier aggregation using FI); μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B)
 μ(A ∪ B) fully determined by μ(A), μ(B), ⊥
- neither of these can model interactions between the classifiers

・ロト ・得ト ・ヨト ・ヨト

Interaction-Sensitive Fuzzy Measures

- motivation: model the confidence of a set of classifiers, but take mutual classifier similarities (\sim interactions) into account
- similar classifiers: small increase in the measure
- different classifiers: big increase in the measure
- diversity of the classifier team is taken into account in the aggregation process (not processed a priori)
- not limited to classifier aggregation only

Induced Interaction-Sensitive Fuzzy Measure (I-ISFM)

- at each step, classifier $\phi_{<i>}$ is added to a set of classifiers $(\phi_{<i+1>}),\ldots,\phi_{<r>})$
- increase of the measure is controlled by the similarity

$$\begin{split} \mu(\emptyset) &= 0\\ \mu(A_{< r>}) &= \mu(\{\phi_{< r>}\}) = \kappa_{< r>}\\ \mu(A_{< i>}) &= \mu(\{\phi_{< i>}, \dots, \phi_{< r>}\}) = \\ &= \mu(A_{< i+1>}) + [1 - \max_{k=i+1}^{r} S(\phi_{< i>}, \phi_{< k>})]\kappa_{< i>}\\ \text{for } i = r - 1, \dots, 1, \end{split}$$

- I-ISFM: μ normalized to [0,1]
- theoretical weakness: tightly connected to the ordering $<\cdot>$ induced by f

・ 同 ト ・ ヨ ト ・ ヨ ト

Global Interaction-Sensitive Fuzzy Measure (G-ISFM)

- fuzzy measure on the whole universe; regardless of the integrand
- take the classifier confidences and transform them into new fuzzy densities

$$\mu(\phi_k) = \kappa_k \rightsquigarrow \widetilde{\mu}(\phi_k)$$

- classifiers are sorted w.r.t. confidences $[\cdot]$
- with decreasing confidence, the similarity to elements with higher confidence is taken into account

$$\widetilde{\mu}(\phi_{[k]}) = \kappa_{[k]} \left(1 - \max_{j=k+1}^{r} s_{[k],[j]}\right), \ k = 1, \dots, r$$

• use $\widetilde{\mu}(\phi_{[k]})$ to build an additive measure

I-ISFM G-ISFM MHM

Modified Hüllermeier Measure (MHM)

- Cho-k-NN: use similarities of neighbors in k-NN classifier
- base measure ν (e.g., additive, based on the confidences)
- use diversity of a set of classifiers to adjust the base measure

$$div(A) = rac{2}{|A|^2 - |A|} \sum_{u_i, u_j \in A: j < i} (1 - s_{i,j}) \in [0, 1]$$

$$\begin{aligned} \textit{rdiv}(A) &= \frac{2\textit{div}(A)}{\max(1 - s_{i,j})} - 1 \in [-1, 1] \\ \mu_h(A) &= \nu(A)(1 + \alpha\textit{rdiv}(A)), \ \alpha \geq 0 \end{aligned}$$

- not necessarilly monotone
 - enforce monotonicity using μ_h(A) = max_{B⊆A} μ_h(B) is practically impossible
 - use the idea from I-ISFM: compute μ_h only for the r values actually needed for the integration, i.e., sets $A_{<i>}$

I-ISFM G-ISFM MHM

Example - similar classifiers

$$\begin{aligned} \mathcal{T}_{*,j}(\vec{x}) &= [0.5, 0.4, 0.8]^T \\ \mathcal{K}(\vec{x}) &= [0.3, 0.4, 0.6]^T \\ (s_{i,j}) &= \begin{pmatrix} 1 & 0.9 & 0.2 \\ 0.9 & 1 & 0.2 \\ 0.2 & 0.2 & 1 \end{pmatrix} \end{aligned}$$

i	support	d.o.clevel	$\mu(A_{\langle i \rangle})$						
	$A_{\langle i \rangle}$	$f_{\langle i \rangle}$	additive	Sugeno λ	I-ISFM	G-ISFM	MHM		
3	ϕ_3	0.8	0.462	0.6	0.682	0.632	0.325		
2	ϕ_1, ϕ_3	0.5	0.693	0.791	0.955	0.663	0.977		
1	ϕ_1,ϕ_2,ϕ_3	0.4	1	1	1	1	1		

<ロ> <同> <同> < 回> < 回>

э

I-ISFM G-ISFM MHM

Example - similar classifiers

同 ト イ ヨ ト イ ヨ ト

I-ISFM G-ISFM MHM

Example - dissimilar classifiers

$$\begin{aligned} \mathcal{T}_{*,j}(\vec{x}) &= [0.5, 0.4, 0.8]^T \\ \mathcal{K}(\vec{x}) &= [0.3, 0.4, 0.6]^T \\ (s_{i,j}) &= \begin{pmatrix} 1 & 0.3 & 0.2 \\ 0.3 & 1 & 0.2 \\ 0.2 & 0.2 & 1 \end{pmatrix} \end{aligned}$$

i	support	d.o.clevel	$\mu(A_{})$						
	$A_{\langle i \rangle}$	$f_{\langle i \rangle}$	additive	Sugeno λ	I-ISFM	G-ISFM	MHM		
3	ϕ_3	0.8	0.462	0.6	0.536	0.531	0.240		
2	ϕ_1, ϕ_3	0.5	0.693	0.791	0.75	0.814	0.722		
1	ϕ_1,ϕ_2,ϕ_3	0.4	1	1	1	1	1		

<ロト <部ト < 注ト < 注ト

э

I-ISFM G-ISFM MHM

Example - dissimilar classifiers

□ > < = > <

- **→** → **→**

Experiments

- compare non-interaction sensitive measures (additive, Sugeno $\lambda\text{-measure})$ to ISFM (I-ISFM, G-ISFM, MHM)
- 3 different classifier systems (Random Forest, k-NN ensemble, QDC ensemble)
- 23 datasets
- $\bullet~{\rm Choquet/Sugeno}$ integral with Sugeno $\lambda{\rm -measure}$ and ISFM
- ullet reference: single best, weighted mean (\sim additive measure)

Experimental results

Number of datasets (out of 69), for which the aggregator obtained the best results among all aggregators.

< A >

- ₹ 🖬 🕨

< ∃⇒

Experimental results

\downarrow superior to \rightarrow	SB	WMean	CI			SI				all	
(out of 69)			λ	I-ISFM	G-ISFM	MHM	λ	I-ISFM	G-ISFM	MHM	
SB	-	32 (4)	19 (1)	9	9	11	18 (3)	9	12	12 (1)	3
WMean	37 (16)	-	15 (2)	5	15	7	18 (2)	7	22 (2)	10 (1)	2
CI- λ	50 (18)	54 (6)	-	9	20	13	41	13	28 (1)	15 (1)	4
CI-I-ISFM	60 (23)	64 (19)	60 (7)	-	45 (2)	38	57 (7)	45 (1)	49 (7)	47 (1)	18
CI-G-ISFM	61 (24)	54 (18)	49 (7)	24	-	28 (1)	53 (10)	32 (1)	48	36 (2)	7
CI-MHM	58 (24)	62 (17)	56 (7)	31	43 (2)	-	57 (7)	42 (1)	48 (6)	41 (1)	13
SI-λ	51 (17)	51 (6)	30	12	16	12	-	13	28 (1)	18 (1)	3
SI-I-ISFM	61 (24)	62 (17)	56 (6)	27	39 (2)	28	56 (8)	-	48 (4)	39 (1)	6
SI-G-ISFM	58 (23)	47 (14)	41 (5)	20	21	21	41 (7)	23 (1)	-	27	7
SI-MHM	58 (23)	59 (13)	54 (6)	22	33 (2)	28	51 (8)	30 (1)	43 (4)	-	6

Number of datasets (out of 69), on which aggregator i obtained better results than aggregator j, including significant improvements in parentheses.

- 4 同 6 4 日 6 4 日 6

Experimental results

- ISFMs generally outperform traditional fuzzy measures (often significantly)
- CI obtained better results than SI
- I-ISFM and MHM slightly superior to G-ISFM

- 4 同 ト 4 ヨ ト 4 ヨ ト

Conclusions

- dynamic classifier systems aggregated using fuzzy integral
- traditional fuzzy measures (additive, symmetric, ⊥-decomposable) do not take classifier similarities into account
- ISFM: use classifier similarities in the fuzzy measure to further improve the fuzzy integral-based aggregation
- three novel fuzzy measures: I-ISFM, G-ISFM, MHM
- diversity is processed directly in the aggregation
- fast evaluation
- not limited to classifier aggregation only
- experimental results: ISFMs outperform traditional fuzzy measures

・ロト ・同ト ・ヨト ・ヨト

Thank you for your attention

David Štefka stefka@insophy.cz

Classifier Aggregation using Fuzzy Integral based on Interaction-Sensitive Fuzzy Measures