
Machine Learning and Modelling Seminar

Optimization of deep neural

networks

Milan Straka

Oct 26, 2023

Charles University in Prague

Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
unless otherwise stated

Journal of Machine Learning Research 21 (2020) 1-76 Submitted 11/17; Revised 6/20; Published 8/20

New Insights and Perspectives on the Natural Gradient
Method

James Martens james.martens@gmail.com

DeepMind

London, United Kingdom

Editor: Léon Bottou

Abstract

Natural gradient descent is an optimization method traditionally motivated from the per-
spective of information geometry, and works well for many applications as an alternative to
stochastic gradient descent. In this paper we critically analyze this method and its proper-
ties, and show how it can be viewed as a type of 2nd-order optimization method, with the
Fisher information matrix acting as a substitute for the Hessian. In many important cases,
the Fisher information matrix is shown to be equivalent to the Generalized Gauss-Newton
matrix, which both approximates the Hessian, but also has certain properties that favor
its use over the Hessian. This perspective turns out to have significant implications for
the design of a practical and robust natural gradient optimizer, as it motivates the use of
techniques like trust regions and Tikhonov regularization. Additionally, we make a series of
contributions to the understanding of natural gradient and 2nd-order methods, including:
a thorough analysis of the convergence speed of stochastic natural gradient descent (and
more general stochastic 2nd-order methods) as applied to convex quadratics, a critical ex-
amination of the oft-used “empirical” approximation of the Fisher matrix, and an analysis
of the (approximate) parameterization invariance property possessed by natural gradient
methods (which we show also holds for certain other curvature matrices, but notably not
the Hessian).

Keywords: natural gradient methods, 2nd-order optimization, neural networks, conver-
gence rate, parameterization invariance

c�2020 James Martens.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/17-678.html.

ar
X

iv
:1

41
2.

11
93

v1
1

 [
cs

.L
G

]
 1

9
S

ep
 2

02
0

New Insights and Perspectives on the Natural Gradient Method

This kind of objective function fits into the general supervised learning framework de-
scribed in Section 3 as follows. We define the learned conditional distribution Py|x(θ) to
be the composition of the deterministic prediction function f(x, θ) (which may be a neural
network), and an “output” conditional distribution Ry|z (with associated density function
r(y|z)), so that

Py|x(θ) = Ry|f(x,θ) .

We then define the loss function as L(y, z) = − log r(y|z).
Given a loss function L which is not explicitly defined this way one can typically still find

a corresponding R to make the definition apply. In particular, if exp(−L(y, z)) has the same
finite integral w.r.t. y for each z, then one can define R by taking r(y|z) ∝ exp(−L(y, z)),
where the proportion is w.r.t. both y and z.

5. Various Definitions of the Natural Gradient and the Fisher
Information Matrix

The Fisher information matrix F of Px,y(θ) w.r.t. θ (aka the “Fisher”) is given by

F = EPx,y

�
∇ log p(x, y|θ)∇ log p(x, y|θ)�

�
(3)

= −EPx,y

�
Hlog p(x,y|θ)

�
. (4)

where gradients and Hessians are taken w.r.t. θ. It can be immediately seen from the first of
these expressions for F that it is positive semi-definite (PSD) (since it’s the expectation of
something which is trivially PSD, a vector outer-product). And from the second expression
we can see that it also has the interpretation of being the negative expected Hessian of
log p(x, y|θ).

The usual definition of the natural gradient (Amari, 1998) which appears in the literature
is

∇̃h = F−1∇h ,

where F is the Fisher and h is the objective function.
Because p(x, y|θ) = p(y|x, θ)q(x), where q(x) doesn’t depend on θ, we have

∇ log p(x, y|θ) = ∇ log p(y|x, θ) +∇ log q(x) = ∇ log p(y|x, θ) ,

and so F can also be written as the expectation (w.r.t. Qx) of the Fisher information matrix
of Py|x(θ) as follows:

F = EQx

�
EPy|x

�
∇ log p(y|x, θ)∇ log p(y|x, θ)�

��
or F = −EQx

�
EPy|x

�
Hlog p(y|x,θ)

��
.

In Amari (1998), this version of F is computed explicitly for a basic perceptron model
(basically a neural network with 0 hidden layers) in the case where Qx = N(0, I). However,
in practice the real q(x) may not be directly available, or it may be difficult to integrate
Hlog p(y|x,θ) over Qx. For example, the conditional Hessian Hlog p(y|x,θ) corresponding to a

9

Martens

multi-layer neural network may be far too complicated to be analytically integrated, even
for a very simple Qx. In such situations Qx may be replaced with its empirical version Q̂x,
giving

F =
1

|S|
�

x∈Sx

EPy|x

�
∇ log p(y|x, θ)∇ log p(y|x, θ)�

�
or F = − 1

|S|
�

x∈Sx

EPy|x

�
Hlog p(y|x,θ)

�
.

This is the version of F considered in Park et al. (2000).
From these expressions we can see that when L(y, z) = − log r(y|z) (as in Section 4),

the Fisher has the interpretation of being the expectation under Px,y of the Hessian of
L(y, f(x, θ)):

F =
1

|S|
�

x∈Sx

EPy|x

�
HL(y,f(x,θ))

�
.

Meanwhile, the Hessian H of h is also given by the expected value of the Hessian of
L(y, f(x, θ)), except under the distribution Q̂x,y instead of Px,y (where Q̂x,y is given by
the density function q̂(x, y) = q̂(y|x)q̂(x)). In other words

H =
1

|S|
�

x∈Sx

EQ̂x,y

�
HL(y,f(x,θ))

�
.

Thus F and H can be seen as approximations of each other in some sense.

6. Geometric Interpretation

The negative gradient −∇h can be interpreted as the steepest descent direction for h in the
sense that it yields the greatest instantaneous rate of reduction in h per unit of change in
θ, where change in θ is measured using the standard Euclidean norm � · �. More formally
we have

−∇h

�∇h� = lim
�→0

1

�
argmin
d:�d�≤�

h(θ + d) .

This interpretation highlights the strong dependence of the gradient on the Euclidean ge-
ometry of the parameter space (as defined by the norm � · �).

One way to motivate the natural gradient is to show that it (or more precisely its
negation) can be viewed as a steepest descent direction, much like the negative gradient
can be, except with respect to a metric that is intrinsic to the distributions being modeled,
as opposed to the default Euclidean metric which is tied to the given parameterization. In
particular, the natural gradient can be derived by adapting the steepest descent formulation
to use an alternative definition of (local) distance based on the “information geometry”
(Amari and Nagaoka, 2000) of the space of probability distributions. The particular distance
function7 which gives rise to the natural gradient turns out to be

KL(Px,y(θ + d)�Px,y(θ)) .

7. Note that this is not a formal “distance” function in the usual sense since it is not symmetric.

10

New Insights and Perspectives on the Natural Gradient Method

To formalize this, one can use the well-known connection between the KL divergence
and the Fisher, given by the Taylor series approximation

KL(Px,y(θ + d)�Px,y(θ)) =
1

2
d�Fd+O(d3) ,

where “O(d3)” is short-hand to mean terms that are order 3 or higher in the entries of
d. Thus, F defines the local quadratic approximation of this distance, and so gives the
mechanism of local translation between the geometry of the space of distributions, and that
of the original parameter space with its default Euclidean geometry.

To make use of this connection, Arnold et al. (2011) proves for general PSD matrices A
that

−A−1∇h

�∇h�A−1

= lim
�→0

1

�
argmin
d:�d�A≤�

h(θ + d) ,

where the notation �v�B is defined by �v�B =
√
v�Bv. Taking A = 1

2F and using the
above Taylor series approximation to establish that

KL(Px,y(θ + d)||Px,y(θ)) →
1

2
d�Fd =

1

2
�d�2F

as � → 0, (Arnold et al., 2011) then proceed to show that

−
√
2

∇̃h

�∇h�F−1

= lim
�→0

1

�
argmin

d : KL(Px,y(θ+d)�Px,y(θ))≤�2
h(θ + d) ,

(where we recall the notation ∇̃h = F−1∇h).

Thus the negative natural gradient is indeed the steepest descent direction in the space of
distributions where distance is measured in small local neighborhoods by the KL divergence.

Note that both F and ∇̃h are defined in terms of the standard basis in θ-space, and
so obviously depend on the parameterization of h. But the KL divergence does not, and
instead only depends on the form of the predictive distribution Py|x. Thus, the direction in

distribution space defined implicitly by ∇̃h will be invariant to our choice of parameteriza-
tion (whereas the direction defined by ∇h will not be, in general).

By using the smoothly varying PSD matrix F to locally define a metric tensor at ev-
ery point in parameter space, a Riemannian manifold can be generated over the space of
distributions. Note that the associated metric of this space won’t be the square root of
the KL divergence (this isn’t even a valid metric), although it will be “locally equivalent”
to it in the sense that the two functions will approximate each other within a small local
neighborhood.

7. 2nd-order Optimization

The basic idea in 2nd-order optimization is to compute the update δ to θ ∈ Rn by minimizing
some local quadratic approximation or “model” Mk(δ) of h(θk + δ) centered around the

11

New Insights and Perspectives on the Natural Gradient Method

of Mk(δ). Examples include Tikhonov regularization/damping and the closely related trust-
region method (e.g. Tikhonov, 1943; Moré and Sorensen, 1983; Conn et al., 2000; Nocedal
and Wright, 2006), and other ones such as the “structural damping” approach of Martens
and Sutskever (2011), or the approach present in Krylov Subspace Descent (Vinyals and
Povey, 2012). See Martens and Sutskever (2012) for an in-depth discussion of these and
other damping techniques in the context of neural network optimization.

This idea is supported by practical experience in neural network optimization. For
example, the Hessian-free optimization approach of Martens (2010) generates its updates
using a Tikhonov damping scheme applied to the exact GGN matrix (which was equivalent
to the Fisher in that work). These updates, which can be applied with a step-size of 1, make
a lot more progress optimizing the objective than updates computed without any damping
(which must instead rely on a carefully chosen step-size to even be feasible).

It is worth pointing out that other interpretations of natural gradient descent can also
motivate the use of damping/regularization terms. In particular, Ollivier et al. (2018) has
shown that online natural gradient descent, with a particular flavor of Tikhonov regulariza-
tion, closely resembles a certain type of extended Kalman filter-based training algorithm for
neural networks (Singhal and Wu, 1989; Ruck et al., 1992), where θ is treated as an evolving
hidden state that is estimated by the filter (using training targets as noisy observations and
inputs as control signals).

11. The Empirical Fisher

An approximation of the Fisher known as the “empirical Fisher” (Schraudolph, 2002), which
we denote by F̄ , is commonly used in practical natural gradient methods. It is obtained
by taking the inner expectation of eqn. 3 over the target distribution Qx,y (or its empirical
surrogate Q̂x,y) instead of the model’s distribution Px,y.

In the case where one uses Q̂x,y, this yields the following simple form:

F̄ = EQ̂x,y

�
∇ log p(x, y|θ)∇ log p(x, y|θ)�

�

= EQ̂x

�
EQ̂y|x

�
∇ log p(y|x, θ)∇ log p(y|x, θ)�

��

=
1

|S|
�

(x,y)∈S
∇ log p(y|x, θ)∇ log p(y|x, θ)� .

This matrix is often incorrectly referred to as the Fisher, or even the Gauss-Newton,
even though it is not equivalent to either of these matrices in general.

11.1 Comparisons to the Standard Fisher

Like the Fisher F , the empirical Fisher F̄ is PSD. But unlike F , it is essentially free to
compute, provided that one is already computing the gradient of h. And it can also be
applied to objective functions which might not involve a probabilistic model in any obvious
way.

Compared to F , which is of rank ≤ |S| rank(FR), F̄ has a rank of ≤ |S|, which can make
it easier to work with in practice. For example, the problem of computing the diagonal (or
various blocks) is easier for the empirical Fisher than it is for higher rank matrices like the

23

Martens

standard Fisher (Martens et al., 2012). This has motivated its use in optimization methods
such as TONGA (Le Roux et al., 2008), and as the diagonal preconditioner of choice in
the Hessian-free optimization method (Martens, 2010). Interestingly however, there are
stochastic estimation methods (Chapelle and Erhan, 2011; Martens et al., 2012) which can
be used to efficiently estimate the diagonal (or various blocks) of the standard Fisher F , and
these work quite well in practice. (These include the obvious method of sampling y’s from
the model’s conditional distribution and computing gradients from them, but also includes
methods based on matrix factorization and random signs. See Martens et al. (2012) for
comparative analysis of the variance of these methods.)

Despite the various practical advantages of using F̄ , there are good reasons to use true
Fisher F instead of F̄ whenever possible. In addition to Amari’s extensive theory developed
for the exact natural gradient (which uses F), perhaps the best reason for using F over F̄
is that F turns out to be a reasonable approximation/substitute to the Hessian H of h in
certain important special cases, which is a property that F̄ lacks in general.

For example, as discussed in Section 5, when the loss is given by − log p(y|x) (as in
Section 4), F can be seen as an approximation of H, because both matrices have the
interpretation of being the expected Hessian of the loss under some distribution. Due to
the similarity of the expression for F in eqn. 3 and the one above for F̄ , it might be tempting
to think that F̄ is given by the expected Hessian of the loss under Q̂x,y (which is actually
the formula for H) in the same way that F is given by eqn. 4. But this is not the case in
general.

And as we saw in Section 9, given certain assumptions about how the GGN is computed,
and some additional assumptions about the form of the loss function L, F turns out to be
equivalent to the GGN. This is very useful since the GGN can be used to define a local
quadratic approximation of h, whereas F normally doesn’t have such an interpretation.
Moreover, Schraudolph (2002) and later Martens (2010) compared F̄ to the GGN and
observed that the latter performed much better as a curvature matrix within various neural
network optimization methods.

As concrete evidence for why the empirical Fisher is, at best, a questionable choice
for the curvature matrix, we will consider the following example. Set n = 1, f(x, θ) = θ,
Ry|z = N (z, 1), and S = {(0, 0)}, so that h(θ) is a simple convex quadratic function of θ,

given by h(θ) = 1
2θ

2. In this example we have that ∇h = θ, F̄ = θ2, while F = 1. If we
use F̄ ξ as our curvature matrix for some exponent 1

2 ≤ ξ ≤ 1, then it is easy to see that an
iteration of the form

θk+1 = θk − αk(F̄ (θk)
ξ)−1∇h(θk) = θk − αk(θ

2
k)

−ξθk = (1− αk|θk|−2ξ)θk

will fail to converge to the minimizer (at θ = 0) unless ξ < 1 and the step-size αk goes to 0
sufficiently fast. And even when it does converge, it will only be at a rate comparable to the
speed at which αk goes to 0, which in typical situations will be either O(1/k) or O(1/

√
k).

Meanwhile, a similar iteration of the form

θk+1 = θk − αkF
−1∇h(θk) = θk − αkθk = (1− αk)θk ,

which uses the exact Fisher F as the curvature matrix, will experience very fast linear
convergence13 with rate |1− α|, for any fixed step-size αk = α satisfying 0 < α < 2.

13. Here we mean “linear” in the classical sense that |θk − 0| ≤ |θ0 − 0||1− α|k.

24

New Insights and Perspectives on the Natural Gradient Method

It is important to note that this example uses a noise-free version of the gradient,
and that this kind of linear convergence is (provably) impossible in most realistic stochas-
tic/online settings. Nevertheless, we would argue that a highly desirable property of any
stochastic optimization method should be that it can, in principle, revert to an optimal (or
nearly optimal) behavior in the deterministic setting. This might matter a lot in practice,
since the gradient may end up being sufficiently well estimated in earlier stages of optimiza-
tion from only a small amount of data (which is a common occurrence in our experience),
or in later stages provided that larger mini-batches or other variance-reducing procedures
are employed (e.g. Le Roux et al., 2012; Johnson and Zhang, 2013). More concretely, the
pre-asymptotic convergence rate of stochastic 2nd-order optimizers can still depend strongly
on the choice of the curvature matrix, as we will show in Section 14.

11.2 A Discussion of Recent Diagonal Methods Based on the Empirical Fisher

Recently, a spate of stochastic optimization methods have been proposed that are all based
on diagonal approximations of the empirical Fisher F̄ . These include the diagonal version
of AdaGrad (Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012), Adam (Ba and
Kingma, 2015), etc. Such methods use iterations of the following form (possibly with some
slight modifications):

θk+1 = θk − αk(Bk + λI)−ξgk(θk) , (10)

where the curvature matrix Bk is taken to be a diagonal matrix diag(uk) with uk adapted
to maintain some kind of estimate of the diagonal of F̄ (possibly using information from
previous iterates/mini-batches), gk(θk) is an estimate of ∇h(θk) produced from the current
mini-batch, αkk is a schedule of step-sizes, and 0 < λ and 0 < ξ ≤ 1 are hyperparameters
(discussed later in this section).

There are also slightly more sophisticated methods (Schaul et al., 2013; Zeiler, 2013)
which use preconditioners that combine the diagonal of F̄ with other quantities (such as
an approximation of the diagonal of the Gauss-Newton/Fisher in the case of Schaul et al.
(2013)) in order to correct for how the empirical Fisher doesn’t have the right “scale” (which
is ultimately the reason why it does poorly in the example given at the end of Section 11.1).

A diagonal preconditioner (Nash, 1985) of the form used in eqn. 10 was also used by
(Martens, 2010) to accelerate the conjugate gradient (CG) sub-optimizations performed
within a truncated-Newton method (using the GGN matrix). In the context of CG, the
improper scale of F̄ is not as serious an issue due to the fact that CG is invariant to the
overall scale of its preconditioner (since it computes an optimal “step-size” at each step
which automatically adjusts for the scale). However, it still makes more sense to use the
diagonal of the true Fisher F as a preconditioner, and thanks to the method proposed by
Chapelle and Erhan (2011), this can be estimated efficiently and accurately.

The idea of using the diagonal of F , F̄ , or the Gauss-Newton as a preconditioner for
stochastic gradient descent (SGD) and was likely first applied to neural networks with the
work of Lecun and collaborators (Becker and LeCun, 1989; LeCun et al., 1998), who pro-
posed an iteration of the form in eqn. 10 with ξ = 1 where uk approximates the diagonal of
the Hessian or the Gauss-Newton matrix (which as shown in Section 9, is actually equiva-
lent to F for the common squared-error loss). Following this work, various neural network

25

AdaHessian: An Adaptive Second Order Optimizer for Machine
Learning

Zhewei Yao∗,1, Amir Gholami∗,1, Sheng Shen1, Mustafa Mustafa2, Kurt Keutzer1,
Michael W. Mahoney1

1University of California, Berkeley, 2NERSC, Lawrence Berkeley National Laboratory
{zheweiy, amirgh, sheng.s, keutzer, mahoneymw}@berkeley.edu, mmustafa@lbl.gov

Abstract

We introduce AdaHessian, a second order stochastic
optimization algorithm which dynamically incorporates
the curvature of the loss function via ADAptive esti-
mates of the Hessian. Second order algorithms are
among the most powerful optimization algorithms with
superior convergence properties as compared to first
order methods such as SGD and Adam. The main dis-
advantage of traditional second order methods is their
heavier per-iteration computation and poor accuracy as
compared to first order methods. To address these, we
incorporate several novel approaches in AdaHessian,
including: (i) a fast Hutchinson based method to ap-
proximate the curvature matrix with low computational
overhead; (ii) a root-mean-square exponential moving
average to smooth out variations of the Hessian diago-
nal across different iterations; and (iii) a block diagonal
averaging to reduce the variance of Hessian diagonal
elements. We show that AdaHessian achieves new
state-of-the-art results by a large margin as compared
to other adaptive optimization methods, including vari-
ants of Adam. In particular, we perform extensive
tests on CV, NLP, and recommendation system tasks
and find that AdaHessian: (i) achieves 1.80%/1.45%
higher accuracy on ResNets20/32 on Cifar10, and 5.55%
higher accuracy on ImageNet as compared to Adam;
(ii) outperforms AdamW for transformers by 0.13/0.33
BLEU score on IWSLT14/WMT14 and 2.7/1.0 PPL
on PTB/Wikitext-103; (iii) outperforms AdamW for
SqueezeBert by 0.41 points on GLUE; and (iv) achieves
0.032% better score than Adagrad for DLRM on the
Criteo Ad Kaggle dataset. Importantly, we show that
the cost per iteration of AdaHessian is comparable to
first-order methods, and that it exhibits robustness to-
wards its hyperparameters. The code for AdaHessian
is open-sourced and publicly-available [1].

Introduction
The high dimensional and non-convex nature of many
machine learning tasks has rendered many classical op-
timization methods inefficient for training and/or eval-
uating Neural Network (NN) models. After decades of
research, first order methods, and in particular variants

∗Equal contribution.
Copyright © 2021, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

of Stochastic Gradient Descent (SGD), have become
the main workhorse for training NN models. However,
they are by no means an ideal solution for training NN
models. There are often a lot of ad-hoc rules that need
to be followed very precisely to converge (hopefully) to
a point with good generalization properties. Even the
choice of the first order optimizer has become an ad-
hoc rule which can significantly affect the performance.
For example, SGD with momentum is typically used
in Computer Vision (CV); Adam is used for training
transformer models for Natural Language Processing
(NLP); and Adagrad is used for Recommendation Sys-
tems (RecSys). Using the wrong SGD variant can lead
to significant performance degradation. Another chal-
lenging ad-hoc rule is the choice of hyperparameters and
hyperparameter tuning methods, even after an optimizer
is chosen. Hyperparameters include learning rate, decay
schedule, choice of momentum parameters, number of
warmup iterations, etc. As a result of these and other
issues, one has to babysit the optimizer to make sure
that training converges to an acceptable training loss,
without any guarantee that a given number of iterations
is enough to reach a local minima.

Importantly, one may not observe the above problems
for certain popular learning tasks, such as ResNet50
training on ImageNet. The reason is that, for these
tasks, years of industrial scale hyperparameter tuning
has lead to what may be called ideal SGD behaviour.
That is, for this problem, hyperparameters have been
brute-force engineered to compensate for the deficiencies
of first order methods. Such a brute force approach is
computationally and financially not possible for many
large scale learning problems—certainly it is not possible
to do routinely—and this has made it challenging to
train and apply NN models reliably.

Many of these issues stem from the fact that first
order methods only use gradient information and do not
consider the curvature properties of the loss landscape,
thereby leading to their suboptimal behaviour. Second
order methods, on the other hand, are specifically de-
signed to capture and exploit the curvature of the loss
landscape and to incorporate both gradient and Hes-
sian information. They are among the most powerful
optimization algorithms, and they have many favorable

ar
X

iv
:2

00
6.

00
71

9v
3

 [
cs

.L
G

]
 2

9
A

p
r

2
02

1

���� ��� ��� ��� ��� ��� ��� ���

�

����

���

���

���

���

���

���

���

�

������������������������������

����������

Figure 1: The trajectory of gradient descent and AdaHes-
sian on a simple 2D quadratic function f(x, y) = 10x2 + y2.
Gradient descent converges very slowly, even though this
problem has a reasonable condition number. However, Ada-
Hessian converges to the optimum in just one step. This
is because second order methods normalize the curvature dif-
ference between x and y axis by preconditioning the gradient
vector before the weight update (by rescaling and rotating the
gradient vector).

number of data points in the training dataset. Further-
more, we denote the gradient of the loss w.r.t. model
parameters as g = 1

NB

�NB

i=1
∂li
∂θ , and the corresponding

second derivative (i.e., Hessian) as H = 1
NB

�NB

i=1
∂2li
∂θ2 ,

where NB is the size of one mini-batch.
Solving Eq. 1 for a real learning problem (and not a

simple model) is a very challenging task. Despite years
of research, we have not yet been able to resolve several
seemingly ad-hoc tricks that are required to converge
(hopefully) to a good solution. Next, we briefly discuss
the different popular optimization methods proposed in
recent years to address the challenges associated with
solving Eq. 1. This is by no means a comprehensive
review, and we refer the interested reader to [8] for a
thorough review.

Adaptive First Order Methods
Due to their simplicity and effectiveness, first order op-
timization methods [20, 29, 34, 41, 49, 71] have become
the de-facto algorithms used in deep learning. There
are multiple variations, but these methods can be repre-
sented using the following general update formula:

θt+1 = θt − ηtmt/vt, (2)

where ηt is the learning rate, and mt, and vt denote the
so called first and second moment terms, respectively.

A simple and popular update method is SGD, originally
proposed in 1951 as a root-solving algorithm [49]:

mt = βmt−1 + (1− β)gt and vt ≡ 1. (3)

Here, gt is the gradient of a mini-batch at t-th iteration
and β is the momentum hyperparameter.

Using SGD to solve Eq. 1 is often very challenging,
as the convergence of the iterative formulae in Eq. 2 is
very sensitive to the right choice of the learning rate,
its decay schedule, and the momentum parameter. To
address this, several methods have been proposed to take
into account the knowledge of the geometry of the data
by scaling gradient coordinates, using the past gradient
information. This can be viewed in one of two equivalent
ways: either as automatically adjusting the learning
rate in Eq. 2; or as an adaptive preconditioning of the
gradient. One notable method is Adagrad [20, 37], which
accumulates all the gradients from the first iteration and
applies the square root of the result to precondition the
current gradient. The update formulae in this case
become1:

mt = gt and vt =

����
t�

i=1

gigi. (4)

While Adagrad works well for sparse settings, its per-
formance significantly degrades for dense settings, which
is the case for many machine learning tasks. In partic-
ular, this stems from the accumulation of all previous
gradients for the preconditioner Eq. 4. This results in a
monotonic increase in the magnitude of the second mo-
ment, vt, which effectively translates into a rapid decay
of the learning rate. To address this, several methods
have been proposed where the intuition is to limit the
accumulation to a small window of past iterations, and
in particular exponentially reduce the weight of earlier
iterations. Notable works incorporating this method are
RMSProp, ADADelta, and Adam [29, 56, 71]. In par-
ticular, for Adam [29], the two moments for the update
rule are the following:

mt =
(1− β1)

�t
i=1 β

t−i
1 gi

1− βt
1

,

vt =

�
(1− β2)

�t
i=1 β

t−i
2 gigi

1− βt
2

,

(5)

where 0 < β1, β2 < 1 are two hyperparameters some-
times referred to as first and second moment coeffi-
cients. In particular, note that the sum over past gradi-
ents is scaled by β2 which exponentially reduces the
contribution of early gradients. A summary of the
different mt and vt used by common first-order opti-
mizers is given in Table 1. A notable variant here is
AdamW [34], which shows that decoupling weight decay

1Throughout the paper, without further notification, for
two vectors, e.g., a and b, we use both ab and a � b to
denote the element-wise product, and �a, b� denotes the
inner product.

3

Layer N

Layer N-1

Layer 2

Layer 1

…

…

Hessian: H ∈ Rd×d

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

✏1

✏2

L
os
s(
L
og
)

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

✏1

✏2

L
os
s(
L
og
)

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

✏1

✏2

L
os
s(
L
og
)

…

Input: x

Output: ŷ

Loss Landscape Gradient: g ∈ Rd

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

✏1

✏2

L
os
s(
L
og
)

Figure 2: A simple model with N layers (first column); with the convolutional blocks of the N-1 layer shown (second column);
and the loss landscape of each block (third column), which can be calculated by perturbing the convolutions’s parameters in two
different eigendirections. (See [66] for details of how to construct loss landscape.) Note the different loss landscape topologies.
First order methods do not explicitly capture this difference. The entries (3D tensors) colored in orange show the components
used for calculating the spatial average of Hessian. The part of the gradient (fourth panel) highlighted in the orange box is the
corresponding gradient of the orange convolution kernel; and the part of the Hessian diagonal (fifth panel) highlighted in the
orange box is used to compute the spatial average.

since we can efficiently incorporate moving averages and
momentum. Ideally, if there was a way to apply the
same moving average method to the Hessian, then that
would help smooth out local curvature noise to get a
better approximation to the non-noisy curvature of the
loss landscape. However, such an approximation is chal-
lenging since the Hessian is a matrix that cannot be
explicitly formed to be averaged, whereas it is easy to
form the gradient vector.

As we show below, AdaHessian addresses this prob-
lem by incorporating the Hutchinson’s method along
with spatial averaging to reduce the impact of the
stochastic noise. The result exceeds the performance of
all the above methods for machine learning tasks. Next,
we formally introduce the AdaHessian algorithm.

Methodological Approach
Here, we first provide the formulation for the full New-
ton method in Section . Then, we describe the three
components of AdaHessian, namely Hessian diagonal
approximation (Section), spatial averaging (Section),
and Hessian momentum (Section). Finally, we discuss
the overall formulation of AdaHessian in Section .

A General Hessian Based Descent Direction
For the loss function f(w) : Rd → R, let us denote the
corresponding gradient and Hessian of f(wt) at iteration
t as gt, and Ht, respectively.3 A general descent direc-

3Without confusion, we use the same gradient and Hessian
notations for f(w) and L(θ). Furthermore, when there is no
confusion we will drop subscript t.

tion can then be written as follows for a positive-definite
Hessian:

Δwt = H−k
t gt, where H−k

t = UT
t Λ−k

t Ut. (6)

Here, we refer to 0 ≤ k ≤ 1 as Hessian power, and
UT
t ΛtUt is the eigendecomposition of Ht. Note that for

k = 0, we recover the gradient descent method; and for
k = 1, we recover the Newton method. In our empirical
tests we consider non-convex machine learning prob-
lems, but we provide a standard convergence behaviour
of Eq. 6 in Appendix for a simple strongly convex and
strictly smooth function f(w). (We emphasize that the
proof is very standard and we are only including it for
completeness.)

The basic idea of Hessian based methods is to precon-
dition the gradient with the H−k and use H−kg for the
update direction, instead of using the bare gradient g
vector. The preconditioner automatically rotates and
rescales the gradient vector. This is important since the
loss landscape curvature is generally different across dif-
ferent directions/layers and since these directions need
not correspond to the canonical axes. This is illustrated
in Figure 2, where we show a 2D schematic plot of the
loss landscape for different convolution channels [66].
Each channel can have a different loss landscape topol-
ogy. For example, the last channel has a much flatter
loss landscape, as compared to other layers. As a result,
it is preferable to take a larger step size for the last chan-
nel than for the first channel, which has a very “sharp”
loss landscape. Problems that exhibit this behaviour are
ill-conditioned. The role of the Hessian is to automati-
cally normalize this ill-conditionedness by stretching and

5

� � � � � � �

�

�

�

�

�

�

�
�
�
�

�����������������������������

��������������������������

Figure 3: Local versus global curvature. Illustration of the
local curvature which can be noisy, and the global curvature
with a simple 1D problem f(x) = x2 +0.1x sin(20πx). Using
the exponential moving average of Eq. 12 is key to avoid
the misleading local curvature information. To demonstrate
this we test AdaHessian without moving average (orange
trajectory) which does not converge even after 1000 iterations.
On the other hand, AdaHessian converges in 7 iterations
with the moving average enabled.

contracting different directions to accommodate for the
curvature differences (full Newton method also rotates
the gradient vector along with adjusting the step size).

However, there are two major problems with this ap-
proach. The first problem is that a naïve use of the
Hessian preconditioner comes at the prohibitively high
cost of applying Hessian inverse to the gradient vector
at every iteration (H−kg term). The second and more
challenging problem is that local Hessian (curvature)
information can be very misleading for a noisy loss land-
scape. A simple example is illustrated in Figure 3, where
we plot a simple parabola with a small sinusoidal noise
as the loss landscape (shown in green). As one can see,
the local Hessian (curvature) information is completely
misleading, as it computes the curvature of the sinu-
soidal noise instead of global Hessian information for the
parabola. Applying such misleading information as the
preconditioner would actually result in very small steps
to converge to one of the many local minima created
by the sinusoidal noise. The same problem exists for
the gradient as well, but that can be alleviated by using
gradient momentum instead of local gradient informa-
tion. However, as mentioned before it is computationally
infeasible to compute (naïvely) a Hessian momentum.
The reason is that we cannot form the Hessian matrix
and average it throughout different iterations, as such
an approach has quadratic memory complexity in the
number of parameters along with a prohibitive com-
putational cost. However, one could use Randomized
Numerical Linear Algebra to get a sketch of the Hessian
matrix [22, 66, 67]. In particular, we show how this can
be done to approximate the Hessian diagonal. However,
as we discuss next, both problems can be resolved by
using Hessian diagonal instead of the full Hessian.

Hessian Diagonal Approximation
To address the issue that applying the inverse Hessian to
the gradient vector at every iteration is computationally
infeasible, one could use an inexact Newton method,
where an approximate Hessian operator is used instead
of the full Hessian [6, 16, 63, 64, 69]. The most simple
and computationally efficient approach is to approximate
the Hessian as a diagonal operator in Eq. 6:

Δw = diag(H)−kg, (7)

where diag(H) is the Hessian diagonal, which we denote
as D.4 We show that using Eq. 7 has the same conver-
gence rate as using Eq. 6 for simple strongly convex and
strictly smooth function f(w) (see Appendix). Note
that we only include the proof for completeness, and
our algorithm AdaHessian can be applied for general
machine learning problems.

The Hessian diagonal D can be efficiently computed
using the Hutchinson’s method. The two techniques
we use for this approximation are: (i) a Hessian-free
method [67]; and (ii) a randomized numerical linear
algebra (RandNLA) method [5, Figure 1]. In particular,
the Hessian-free method is an oracle to compute the
multiplication between the Hessian matrix H with a
random vector z, i.e.,

∂gT z

∂θ
=

∂gT

∂θ
z + gT ∂z

∂θ
=

∂gT

∂θ
z = Hz. (8)

Here, the first equality is the chain rule, and the second
equality is since z is independent of θ. Eq. 8 effec-
tively allows us to compute the Hessian times a vector
z, without having to form explicitly the Hessian, by
backpropotating the gT z term. This has the same cost
as ordinary gradient backpropogation [67]. Then, with
the Hessian matvec oracle, one can compute the Hessian
diagonal using Hutchinson’s method:

D = diag(H) = E[z � (Hz)], (9)

where z is a random vector with Rademacher distribu-
tion, and Hz is computed by the Hessian matvec oracle
given in Eq. 8. This process is illustrated in Figure 4.
It can be proved that the expectation of z� (Hz) is the
Hessian diagonal [5].

Another important advantage, besides computational
efficiency, of using the Hessian diagonal is that we can
compute its moving average to resolve the local noisy
Hessian as mentioned at the end of Section . This allows
us to smooth out noisy local curvature information, and
to obtain estimates that use global Hessian information
instead. We incorporate both spatial averaging and
momentum (temporal averaging) to smooth out this
noisy Hessian estimate as described next.

Spatial Averaging
The Hessian diagonal can vary significantly for each
single parameter dimension of the problem. We found it

4Note that D can be viewed as a vector, in which case
D−kg is an element-wise product of vectors. Without clari-
fication, D is treated as a vector for the rest of the paper.

6

Figure 4: Illustration of the diagonal Hessian estimation
with Hutchinson’s method.

helpful to perform spatial averaging of Hessian diagonal
and use the average to smooth out spatial variations.
For example, for a convolutional layer, each convolution
parameter can have a very different Hessian diagonal.
In AdaHessian we compute the average of the Hessian
diagonal for each convolution kernel (3×3) as illustrated
in Figure 5. Mathematically, we perform a simple spatial
averaging on the Hessian diagonal as follows:

D(s)[ib+ j] =

�b
k=1 D[ib+ k]

b
, for 1 ≤ j ≤ b, 0 ≤ i ≤ d

b
−1,

(10)
where D ∈ Rd is the Hessian diagonal, D(s) ∈ Rd is the
spatially averaged Hessian diagonal, D[i] (D(s)[i]) refers
to the i-th element of D (D(s)), b is the spatial average
block size, and d is the number of model parameters di-
visible by b. We show that replacing D in Eq. 7 by D(s)

in Eq. 10, the update direction has the same conver-
gence rate as using Eq. 6 for simple strongly convex and
strictly smooth function f(w) (see Appendix). Note
that we only include the proof for completeness, and
our algorithm AdaHessian can be applied for general
machine learning problems.

Figure 5 provides illustration of spatial averaging for
both convolutional and matrix kernels. In general, the
block size b is a hyperparameter that can be tuned for
different tasks. While this is a new hyperparameter that
can help the performance, the performance of AdaHes-
sian is not very sensitive to it (we provide sensitivity
results in Section).

Next we describe momentum which is another use-
ful method to smooth out Hessian noise over different
iterations.

Hessian Momentum
We can easily apply momentum to Hessian diagonal
since it is a vector instead of a quadratically large matrix.
This enables us to adopt momentum for Hessian diagonal
in AdaHessian. More specifically, let D̄t denote the
Hessian diagonal with momentum that is calculated as:

D̄t =

�
(1− β2)

�t
i=1 β

t−i
2 D

(s)
i D

(s)
i

1− βt
2

, (11)

where D(s) is the spatially averaged Hessian diagonal
(defined in Eq. 10), and 0 < β2 < 1 is the second moment

Algorithm 1: AdaHessian
Require: Initial Parameter: θ0
Require: Learning rate: η
Require: Exponential decay rates: β1, β2

Require: Block size: b
Require: Hessian Power: k
Set: m0 = 0, v0 = 0
for t = 1, 2, . . . do // Training Iterations

gt ← current step gradient
Dt ← current step estimated diagonal Hessian
Compute D

(s)
t based on Eq. 10

Update D̄t based on Eq. 11
Update mt, vt based on Eq. 12
θt = θt−1 − ηmt/vt

hyperparameter. Note that this is exactly the same as
the momentum term in Adam [29] or RMSProp [56]
except that we are using the spatial averaging Hessian
diagonal instead of the gradient.

To illustrate the importance of Hessian momentum,
we provide a simple example in 1D by considering f(x) =
x2 + 0.1xsin(20πx), as shown in Figure 3. It can be
clearly seen that the method without the second order
momentum gets trapped at a local minima even with
more than 1000 iterations (orange trajectory). On the
contrary, the optimization converges within 7 iterations
with Hessian momentum (blue trajectory). (While this
example is over-simplified in certain ways, we are using
it here only to convey the importance of momentum.)

AdaHessian
To summarize, instead of only applying momentum
for gradient, AdaHessian uses spatial averaging and
Hessian momentum to smooth out local variations in
Hessian diagonal. More specifically, the first and sec-
ond order moments (mt and vt) for AdaHessian are
computed as follows:

mt =
(1− β1)

�t
i=1 β

t−i
1 gi

1− βt
1

,

vt = (D̄t)
k =

�

(1− β2)
�t

i=1 β
t−i
2 D

(s)
i D

(s)
i

1− βt
2

k

,

(12)

where 0 < β1, β2 < 1 are the first and second moment
hyperparameters that are also used in Adam. Note
that Adam uses the same formulation except that the
spatial averaging Hessian diagonal D(s)

i is replaced with
gradient.

The main overhead of AdaHessian is the Hutchin-
son’s method to approximate Hessian diagonal, D. We
use one Hutchinson step per iteration to approximate the
Hessian diagonal (i.e., one random Rademacher vector
z in Eq. 9). The cost of this estimation is one Hessian
matvec (to compute Hz), which is equivalent to one
gradient backpropagation [66, 67].

7

Figure 5: Illustration of the block size used to average the Hessian diagonal to smooth spatial variations. For a convolution
layer, we average each channel (groups of 9 parameters); and for multi-head attention, we average consecutive elements along
the rows (attention dimension). We found that using block averaging helps, although AdaHessian is not very sensitive to this
hyperparameter as illustrated in Table 7.

Also note that it is possible to get a more accurate ap-
proximation to Hessian diagonal by using more Hutchin-
son steps per iteration. However, we found that one
step per iteration performs well in practice since the
multiple calculations could be performed as Hessian mo-
mentum (Section). In fact, as we discuss in Section ,
it is possible to skip the Hutchinson calculation for few
iterations to reduce further its computational overhead,
without significant impact on final accuracy.

Results
Experiment Setup
One of the problems with several formerly proposed
optimization methods is that the methods were origi-
nally tested with very simple models on very few tasks.
When those methods were later tested by the community
on more complex models the results were often worse
than popular optimization methods. To avoid such a
scenario, we extensively test AdaHessian on a wide
range of learning tasks, including image classification,
neural machine translation (NMT), language modeling
(LM), and recommendation system (RecSys). We com-
pare the AdaHessian performance with SGD, Adam,
AdamW [34], and Adagrad. Moreover, to enable a fair
comparison we will use the same β1 and β2 parame-
ters in AdaHessian as in Adam/AdamW for each task,
even though those default values may favor Adam (or
AdamW) and disfavor AdaHessian. Furthermore, we
will use the exact same weight decay and learning rate
schedule in AdaHessian as that used by other optimiz-
ers. Below we briefly explain each of the learning tasks
tested.

Image Classification We experiment on both Ci-
far10 (using ResNet20/32) and ImageNet (using
ResNet18) datasets. Cifar10 consists of 50k training
images and 10k testing images. ImageNet has 1.2M

Table 2: Results of ResNet20/32 on Cifar10 (left two
columns) and ResNet18 on ImageNet (last column). On Ci-
far10: Adam performs consistently worse than SGD; AdamW
has slightly worse performance than SGD; and AdaHessian
outperforms AdamW and even gets accuracy comparable to
SGD. On ImageNet: AdaHessian has significantly better
accuracy than Adam (5.53%), AdamW (2.67%), and has
similar performance to SGD.

Dataset Cifar10 ImageNet
ResNet20 ResNet32 ResNet18

SGD [51] 92.08 ± 0.08 93.14 ± 0.10 70.03
Adam [29] 90.33 ± 0.13 91.63 ± 0.10 64.53
AdamW [34] 91.97 ± 0.15 92.72 ± 0.20 67.41

AdaHessian 92.13 ± 0.18 93.08 ± 0.10 70.08

training images and 50k validation images. We follow
the settings described in [25] for training. We run each
experiment 5 times on Cifar10 and report the mean and
standard deviation of the results.

Neural Machine Translation (NMT) We use
IWSLT14 German-to-English (De-En) and WMT14
English-to-German (En-De) datasets. Transformer base
architecture is used for WMT14 (4.5M sentence pairs),
and small architecture is used for IWSLT14 (0.16M
sentence pairs). We follow the settings reported in [43]
and use pre-normalization described in [59]. The length
penalty is set to 0.6/1.0 and the beam size is set to 4/5
for WMT/IWSLT [42]. We report the average results
of the last 10/5 checkpoints respectively. For NMT,
BLEU score is used [44]. In particular, we report to-
kenized case-sensitive BLEU on WMT14 En-De and
case-insensitive BLEU IWSLT14 De-En. Furthermore,
we use AdamW for this task instead of Adam since the
former is the standard optimizer (Adam consistently

8

Table 3: NMT performance (BLEU) on IWSLT14 De-
En and WMT14 En-De testsets (higher is better). Unlike
in Table 2, SGD has significantly worse results than AdamW.
Note that AdaHessian outperforms the default and heavily
tuned optimizer AdamW by 0.13 and 0.33 on IWSLT14 and
WMT14, which is significant for this task.

Model IWSLT14 WMT14
small base

SGD 28.57 ± .15 26.04
AdamW [34] 35.66 ± .11 28.19

AdaHessian 35.79 ± .06 28.52

scores lower).

Language Modeling We use PTB [39] and Wikitext-
103 [38] datasets, which contain 0.93M and 100M tokens,
respectively. Following [35], a three-layer tensorized
transformer core-1 for PTB and a six-layer tensorized
transformer core-1 for Wikitext-103 are used in the
experiments. We apply the multi-linear attention mech-
anism with masking and report the perplexity (PPL) on
the test set with the best validation model.

Natural Language Understanding We use the
GLUE task [58] to evaluate the fine-tuning performance
of SqueezeBERT [27]. More specifically, we use 8 differ-
ent tasks in GLUE and report and final average perfor-
mance on the validation dataset.

Recommendation System The Criteo Ad Kaggle
dataset contains approximately 45 million samples over
7 days. We follow the standard setting and use the first
6 days as the training set and the last day as the test set.
Furthermore, we use DLRM, a novel recommendation
model that has been recently released by Facebook [40].
The testing metric for Recommendation Systems is Click
Through Rate (CTR), measured on training and test
sets.

We refer the interested reader to Appendix for more
detailed experimental settings. Next we report the ex-
perimental results on each of these tasks.

Image Classification
The results on Cifar10 are shown in Table 2. First,
note the significantly worse performance of Adam, as
compared to SGD even on this simple image classifi-
cation dataset. Particularly, Adam has 1.75%/1.51%
lower accuracy for ResNet20/32 than SGD. AdamW
achieves better results than Adam, but its performance
is still slightly worse than SGD. However, AdaHes-
sian achieves significantly better results as compared
to Adam (1.80%/1.45% for ResNet20/32), even though
we use the same β1 and β2 parameters in AdaHessian
as in Adam. That is, we did not tune these two hyper-
parameters, even though tuning them could potentially

Table 4: LM performance (PPL) on PTB and Wikitext-
103 test datasets (lower is better). The PPL of AdaHessian
is 2.7 and 1.0 lower than that of AdamW.

Model PTB Wikitext-103
Three-Layer Six-Layer

SGD 59.9 ± 3.0 78.5
AdamW [34] 54.2 ± 1.6 20.9

AdaHessian 51.5 ± 1.2 19.9

lead to even better performance.5 Compared with SGD,
AdaHessian achieves comparable accuracy for both
ResNet20 (0.05% higher) and ResNet32 (0.06% lower).
The training and testing curves of different optimizers
for ResNet20/32 on Cifar10 are shown in Figure .7.

Next, we use the best learning rate obtained by train-
ing ResNet20/32 on Cifar10 to optimize ResNet18 on
ImageNet for all four optimizers. We try two different
learning rate schedules for all four optimizers, and we
use the one with the better result. The two learning
rate schedules are quite standard, i.e., the step decay
schedule and the plateau based schedule [46]. The final
result is reported in Table 2. Again note that the final
performances of Adam and AdamW are much worse than
that of SGD and AdaHessian. We plot the training
and testing curve in Figure .8.

It is worthwhile to note that our learning rate tuning
is performed at an academic scale, but AdaHessian
still significantly exceeds other adaptive methods and
reaches the same performance level as SGD which has
been tuned at the industrial scale.

Neural Machine Translation
We use BLEU [44] as the evaluation metric for NMT.
Following standard practice, we measure tokenized case-
sensitive BLEU and case-insensitive BLEU for WMT14
En-De and IWSLT14 De-En, respectively. For a fair
comparison, we do not include other external datasets.

The NMT results are shown in Table 3. The first
interesting observation is that here SGD performs much
worse than AdamW (which is opposite to its behaviour
for image classification problems where SGD has supe-
rior performance; see Appendix). As pointed out in
the introduction, even the choice of the optimizer has
become another hyperparameter. In particular, note
that the BLEU scores of SGD are 7.09 and 2.15 lower
than AdamW on IWSLT14 and WMT14, which is quite
significant. Similar observations about SGD were also
reported in [72].

Despite this, AdaHessian achieves state-of-the-art
performance for NMT with transformers. In particular,
AdaHessian outperforms AdamW by 0.13 BLEU score

5In fact, in Table 8 we achieve 92.40 for ResNet20 which
is higher than what we report in Table 2. This is to em-
phasize that we only tuned learning rate in Table 2. Still
AdaHessian achieves significantly better results than Adam.

9

Table 5: Comparison of AdamW and AdaHessian for SqueezeBERT on the development set of the GLUE benchmark. As
can be seen, the average performance of AdaHessian is 0.41 higher as compared to AdamW. The result of AdamW+ is directly
from [27] and the result of AdamW∗ is reproduced by us.

RTE MPRC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm Avg.

AdamW+ [27] 71.8 89.8 89.4 92.0 90.5 89.4 82.9 82.3 86.01

AdamW∗ 79.06 90.69 90.00 91.28 90.30 89.49 82.61 81.84 86.91
AdaHessian 80.14 91.94 90.59 91.17 89.97 89.33 82.78 82.62 87.32

on IWSLT14. Furthermore, the accuracy of AdaHes-
sian on WMT14 is 28.52, which is 0.33 higher than that
of AdamW. We also plot the training losses of AdamW
and AdaHessian on IWSLT14/WMT14 in Figure .9.
As one can see, AdaHessian consistently achieves lower
training loss. These improvements are quite signifi-
cant for NMT, and importantly these are achieved even
though AdaHessian directly uses the same β1 and β2,
as well as the same number of warmup iterations as in
AdamW.

Language Modeling
We report the language modeling results in Table 4,
using the tensorized transformer proposed in [35]. Simi-
lar to NMT, note that the perplexity (PPL) of SGD is
more than 57 points worse than AdamW on Wikitext-
103. That is, similar to the NMT task, SGD performs
worse than AdamW. However, AdaHessian achieves
more than 1.8/1.0 better PPL than that of AdamW on
PTB/Wikitext-103, respectively.

We also show the detailed training loss curves in Fig-
ure .10. AdaHessian achieves consistently lower loss
values than AdamW throughout the training process
on both PTB and Wikitext-103. Similar to NMT, the
β1/β2 as well as the warmup phase of AdaHessian are
kept the same as AdamW.

Natural Language Understanding
We report the NLU results in Table 5, using the Squeeze-
BERT model [26] tested on GLUE datasets [58]. As
can be seen, AdaHessian has better performance than
AdamW on 5 out of 8 tasks. Particularly, on RTE and
MPRC, AdaHessian achieves more than 1 point as
compared to AdamW. On average, AdaHessian out-
performs AdamW by 0.41 points. Note that similar
to NMT and LM, except learning rate and block size,
AdaHessian directly uses the same hyperparameters as
AdamW. Interestingly, note that these results are better
than those reported in SqueezeBERT [27], even though
we only change the optimizer to AdaHessian instead
of AdamW.

Recommendation System
We solely focus on modern recommendation systems,
and in particular on the DLRM model widely adopted
in industry [40]. These systems include a large embed-
ding layer followed by a series of dense FC layers. In
training, a sparse set of rows of the embedding layer

� ����� ������ ������ ������ ������ ������

���������

����

����

����

����

����

����

�
�
�
�
��
�
�

���������������������

����������������

���������������

�������������������

������������������

Figure 6: Training and Testing Accuracy curves of Ada-
grad and AdaHessian on Criteo Ad Kaggle dataset. As can
be seen, the test accuracy of AdaHessian is better (0.032%)
than that of Adagrad. This is quite significant for this task.

is used and only those rows are updated. These rows
do change from one iteration to the next. For such a
sparse setting, we use Adagrad to update the embedding
table, and we use AdaHessian to update the rest of
the FC network in the experiments. (Pytorch currently
does not support second order backpropagation for the
sparse gradient to the embedding.) AdaHessian uses
the same hyperparameters for updating the embedding
table as in the Adagrad experiment without tuning. The
training and testing accuracy curves are reported in Fig-
ure 6. The testing accuracy of AdaHessian is 79.167%,
which is 0.032% higher than Adagrad. It should be
noted that this is a quite significant accuracy increase
for Recommendation Systems [60].

Discussion
As reported in the previous section, AdaHessian
achieves state-of-the-art performance on a wide range
of tasks. Two important issues are the sensitivity of
AdaHessian to the hyperparameters of learning rate
and block size. This is discussed next.

Learning Rate and Block Size Effects
Here, we explore the effects of the learning rate and block
size b on AdaHessian. We first start with the effect of
learning rate, and test the performance of AdaHessian
and AdamW with different learning rates. The results

10

Table 6: Robustness of AdamW and AdaHessian to the learning rate on IWSLT14. We scale the base learning rate used
in Section . As can be seen, AdaHessian is much more robust to large learning rate variability as compared to AdamW.

LR Scaling 0.5 1 2 3 4 5 6 10

AdamW 35.42 ± .09 35.66 ± .11 35.37 ± .07 35.18 ± .07 34.79 ± .15 14.41 ± 13.25 0.41 ± .32 Diverge
AdaHessian 35.33 ± .10 35.79 ± .06 35.21 ± .14 34.74 ± .10 34.19 ± .06 33.78 ± .14 32.70 ± .10 32.48 ± .83

Table 7: Block Size effect of AdaHessian on IWSLT14. With various block sizes, the performance of AdaHessian is very
stable and no worse than that of AdamW (35.66 ± .11).

Block Size 1 2 4 8 16 32 64 128

AdaHessian 35.67 ± .10 35.66 ± .07 35.78 ± .07 35.77 ± .08 35.67 ± .08 35.79 ± .06 35.72 ± .06 35.67 ± .11

are reported in Table 6 for IWSLT14 dataset, where we
scale the original learning rate with a constant factor,
ranging from 0.5 to 20 (the original learning rate is the
same as in Section). It can be seen that AdaHessian
is more robust to the large learning rates. Even with
10× learning rate scaling, AdaHessian still achieves
32.48 BLEU score, while AdamW diverges even with 6×
learning rate scaling. This is a very desirable property
of AdaHessian, as it results in reasonable performance
for such a wide range of learning rates.

We also test the effect of the spatial averaging block
size (parameter b in Eq. 10). As a reminder, this param-
eter is used for spatially averaging the Hessian diagonal
as illustrated in Figure 5. The sensitivity results are
shown in Table 7 where we vary the block size from
1 to 128. While the best performance is achieved for
the block size of 32, the performance variation for other
block sizes is rather small. Moreover, all the results are
still no worse than the result with AdamW.

AdaHessian Overhead
Here, we discuss and measure the overhead of Ada-
Hessian. In terms of computational complexity, Ada-
Hessian requires twice the flops as compared to SGD.
This 2× overhead comes from the cost of computing
the Hessian diagonal, when one Hutchinson step is per-
formed per optimization iteration. Each Hutchinson
step requires computing one Hessian matvec (the Hz
term in Eq. 9). This step requires one more gradient
backpropagation, hence leading to twice the theoretical
complexity.

We have also measured the actual runtime of Ada-
Hessian in PyTorch on a single RTX Titan GPU ma-
chine, as reported in the second column of Table 8. For
ResNet20, AdaHessian is 2.42× slower than SGD (and
2.27× slower than Adam). As one can see, AdaHessian
is not orders of magnitude slower than first order meth-
ods. The gap between the measured and theoretical
speed is likely due to the fact that Pytorch [45] (and
other existing frameworks) are highly optimized for first
order methods. Even then, if one considers the fact that
SGD needs a lot of tuning, this overhead may not be
large.

It is also possible to reduce the AdaHessian overhead.
One simple idea is to reduce the Hutchinson calculation

frequency from 1 Hessian matvec per iteration to every
multiple iterations. For example, for a frequency of 2, we
perform the Hutchinson step at every other optimization
iteration. This reduces the theoretical computational
cost to 1.5× from 2×. One can also further reduce the
frequency to 5, for which this cost reduces to 1.2×.

We studied how such reduced Hutchinson calculation
frequency approach would impact the performance. We
report the results for training ResNet20/ResNet32 on
the Cifar10 in Table 8, when we vary the Hutchinson
frequency from 1 to 5. As one can see, there is a small
performance variation, but the AdaHessian overhead
significantly decreases as compared to SGD and Adam.

Conclusions
In this work, we proposed AdaHessian, an adaptive
Hessian based optimizer. AdaHessian incorporates an
approximate Hessian diagonal, with spatial averaging
and momentum to precondition the gradient vector.
This automatically rescales the gradient vector resulting
in better descent directions. One of the key novelties
in our approach is the incorporation spatial averaging
for Hessian diagonal along with an exponential moving
average in time. These enable us to smooth noisy local
Hessian information which could be highly misleading.

We extensively tested AdaHessian on various
datasets and tasks, using state-of-the-art models. These
include IWSLT14 and WMT14 for neural machine trans-
lation, PTB and Wikitext-103 for language modeling,
GLUE for natural language understanding, Cifar10
and ImageNet for image classification (provided in Ap-
pendix), and Criteo Ad Kaggle for recommendation
system (provided in Appendix). AdaHessian con-
sistently achieves comparable or higher generalization
performance as compared to the highly tuned default
optimizers used for these different tasks.

Stepping back, it is important for every work to state
its limitations (in general, but in particular in this area).
The current limitation of AdaHessian is that it is
2−3× slower than first order methods such as SGD and
Adam. We briefly explored how this overhead could be
reduced, but more work is needed in this area. However,
AdaHessian consistently achieves comparable or bet-
ter accuracy. For example, for LM task, AdaHessian

11

Table 8: Comparison between AdaHessian theoretical and measured speed, as compared to Adam and SGD, tested on Cifar10.
We also measured the speed up for different Hessian computation frequencies. As one can see, AdaHessian is not orders of
magnitude slower than SGD, despite the widely-held incorrect belief about the efficiency of Hessian based methods. Furthermore,
by increasing the Hessian computation frequency, the run time can improve from 3.23× to 1.45×, as compared to SGD for
ResNet32. The real measurement is performed on one RTX Titan GPU.

Hessian Computation Frequency 1 2 3 4 5

Theoretical Per-iteration Cost (×SGD) 2× 1.5× 1.33× 1.25× 1.2×
ResNet20 (Cifar10) 92.13 ± .08 92.40 ± .04 92.06 ± .18 92.17 ± .21 92.16 ± .12
Measured Per-iteration Cost (×SGD) 2.42× 1.71× 1.47× 1.36× 1.28×
Measured Per-iteration Cost (×Adam) 2.27× 1.64× 1.42× 1.32× 1.25×
ResNet32 (Cifar10) 93.08 ± .10 92.91 ± .14 92.95 ± .17 92.93 ± .24 93.00 ± .10
Measured Per-iteration Cost (×SGD) 3.23× 2.12× 1.74× 1.56× 1.45×
Measured Per-iteration Cost (×Adam) 2.91× 1.96× 1.64× 1.48× 1.38×

achieves up to 2.7 better PPL, as compared to AdamW,
which is significant for this task.

Finally, from a higher-level perspective, we should
note that there has been significant development within
second order methods, both theory and practice, even
though these methods were widely viewed as being in-
applicable for machine learning even just a few years
ago. Some examples include Hessian based model com-
pression [18, 19, 24, 31], adversarial attacks [68], and
studies of the loss landscape topology for different NN
architectures [52, 66], to name just a few. AdaHes-
sian is an important step in this area, and we expect
that it will enable still further progress. We have open
sourced AdaHessian and we hope that it would help
this progress [1].

Acknowledgments
This work was supported by a gracious fund from Ama-
zon Machine Learning Research Award (MLRA). The
UC Berkeley team also acknowledges gracious support
from Intel corporation, Intel VLAB team, Google Cloud,
Google TFTC team, and Nvidia. Amir Gholami was sup-
ported through funding from Samsung SAIT. Michael
Mahoney would like to acknowledge the DARPA, NSF,
and ONR via its BRC on RandNLA for providing partial
support of this work. Our conclusions do not necessarily
reflect the position or the policy of our sponsors, and
no official endorsement should be inferred.

References
[1] 2020. https://github.com/amirgholami/ADAHESSIAN.git.

[2] Agarwal, N.; Allen-Zhu, Z.; Bullins, B.; Hazan, E.; and
Ma, T. 2016. Finding approximate local minima for
nonconvex optimization in linear time. arXiv preprint
arXiv:1611.01146 .

[3] Agarwal, N.; Bullins, B.; and Hazan, E. 2016. Second-
order stochastic optimization in linear time. Journal of
Machine Learning Research 1050: 15.

[4] Aghazadeh, A.; Gupta, V.; DeWeese, A.; Koyluoglu,
O. O.; and Ramchandran, K. 2020. BEAR: Sketch-
ing BFGS Algorithm for Ultra-High Dimensional Fea-

ture Selection in Sublinear Memory. arXiv preprint
arXiv:2010.13829 .

[5] Bekas, C.; Kokiopoulou, E.; and Saad, Y. 2007. An es-
timator for the diagonal of a matrix. Applied numerical
mathematics 57(11-12): 1214–1229.

[6] Bollapragada, R.; Byrd, R. H.; and Nocedal, J. 2019.
Exact and inexact subsampled Newton methods for
optimization. IMA Journal of Numerical Analysis 39(2):
545–578.

[7] Bollapragada, R.; Mudigere, D.; Nocedal, J.; Shi, H.-
J. M.; and Tang, P. T. P. 2018. A progressive batching
L-BFGS method for machine learning. arXiv preprint
arXiv:1802.05374 .

[8] Bottou, L.; Curtis, F. E.; and Nocedal, J. 2018. Op-
timization methods for large-scale machine learning.
SIAM Review 60(2): 223–311.

[9] Boyd, S.; and Vandenberghe, L. 2004. Convex optimiza-
tion. Cambridge university press.

[10] Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995.
A limited memory algorithm for bound constrained
optimization. SIAM Journal on scientific computing
16(5): 1190–1208.

[11] Carmon, Y.; Duchi, J. C.; Hinder, O.; and Sidford, A.
2018. Accelerated methods for nonconvex optimization.
SIAM Journal on Optimization 28(2): 1751–1772.

[12] Chaudhari, P.; Choromanska, A.; Soatto, S.; LeCun,
Y.; Baldassi, C.; Borgs, C.; Chayes, J.; Sagun, L.; and
Zecchina, R. 2019. Entropy-sgd: Biasing gradient de-
scent into wide valleys. Journal of Statistical Mechanics:
Theory and Experiment 2019(12): 124018.

[13] Chen, C.; Reiz, S.; Yu, C.; Bungartz, H.-J.; and Biros, G.
2019. Fast Evaluation and Approximation of the Gauss-
Newton Hessian Matrix for the Multilayer Perceptron.
arXiv preprint arXiv:1910.12184 .

[14] Conn, A. R.; Gould, N. I.; and Toint, P. L. 2000. Trust
region methods. Series on Optimization. SIAM.

[15] Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J. G.; Le, Q.;
and Salakhutdinov, R. 2019. Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context. In
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, 2978–2988.

12

Sharpness-Aware Minimization for Efficiently Improving

Generalization

Pierre Foret∗∗ Ariel Kleiner Hossein Mobahi Behnam Neyshabur

{pierreforet,akleiner,hmobahi,neyshabur}@google.com
Google Research, Mountain View, CA, USA

Abstract

In today’s heavily overparameterized models, the value of the training loss provides few guar-
antees on model generalization ability. Indeed, optimizing only the training loss value, as is com-
monly done, can easily lead to suboptimal model quality. Motivated by the connection between
geometry of the loss landscape and generalization—including a generalization bound that we prove
here—we introduce a novel, effective procedure for instead simultaneously minimizing loss value
and loss sharpness. In particular, our procedure, Sharpness-Aware Minimization (SAM), seeks
parameters that lie in neighborhoods having uniformly low loss; this formulation results in a min-
max optimization problem on which gradient descent can be performed efficiently. We present
empirical results showing that SAM improves model generalization across a variety of benchmark
datasets (e.g., CIFAR-{10, 100}, ImageNet, finetuning tasks) and models, yielding novel state-of-
the-art performance for several. Additionally, we find that SAM natively provides robustness to
label noise on par with that provided by state-of-the-art procedures that specifically target learn-
ing with noisy labels. We open source our code at https://github.com/google-research/sam.

1 Introduction

Modern machine learning’s success in achieving ever better performance on a wide range of tasks has
relied in significant part on ever heavier overparameterization, in conjunction with developing ever
more effective training algorithms that are able to find parameters that generalize well. Indeed, many
modern neural networks can easily memorize the training data and have the capacity to readily overfit
(Zhang et al., 2016). Such heavy overparameterization is currently required to achieve state-of-the-art
results in a variety of domains (Tan and Le, 2019; Kolesnikov et al., 2020; Huang et al., 2018). In
turn, it is essential that such models be trained using procedures that ensure that the parameters
actually selected do in fact generalize beyond the training set.

Unfortunately, simply minimizing commonly used loss functions (e.g., cross-entropy) on the train-
ing set is typically not sufficient to achieve satisfactory generalization. The training loss landscapes of
today’s models are commonly complex and non-convex, with a multiplicity of local and global minima,
and with different global minima yielding models with different generalization abilities (Shirish Keskar
et al., 2016). As a result, the choice of optimizer (and associated optimizer settings) from among the
many available (e.g., stochastic gradient descent (Nesterov, 1983), Adam (Kingma and Ba, 2014),
RMSProp (Hinton et al., 2012), and others (Duchi et al., 2011; Dozat, 2016; Martens and Grosse,
2015)) has become an important design choice, though understanding of its relationship to model
generalization remains nascent (Shirish Keskar et al., 2016; Wilson et al., 2017; Shirish Keskar and
Socher, 2017; Agarwal et al., 2020; Jacot et al., 2018). Relatedly, a panoply of methods for modifying

∗Work done as part of the Google AI Residency program.

1

ar
X

iv
:2

01
0.

01
41

2v
2

 [
cs

.L
G

]
 4

 D
ec

 2
02

0

� �� ��

�������������������

��������

�������

��������

����������

�����
��������

�����������

Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset
/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD
converged. (right) A wide minimum to which the same ResNet trained with SAM converged.

the training process have been proposed, including dropout (Srivastava et al., 2014), batch normal-
ization (Ioffe and Szegedy, 2015), stochastic depth (Huang et al., 2016), data augmentation (Cubuk
et al., 2018), and mixed sample augmentations (Zhang et al., 2017; Harris et al., 2020).

The connection between the geometry of the loss landscape—in particular, the flatness of minima—
and generalization has been studied extensively from both theoretical and empirical perspectives
(Shirish Keskar et al., 2016; Dziugaite and Roy, 2017; Jiang et al., 2019). While this connection
has held the promise of enabling new approaches to model training that yield better generalization,
practical efficient algorithms that specifically seek out flatter minima and furthermore effectively
improve generalization on a range of state-of-the-art models have thus far been elusive (e.g., see
(Chaudhari et al., 2016; Izmailov et al., 2018); we include a more detailed discussion of prior work in
Section 5).

We present here a new efficient, scalable, and effective approach to improving model generalization
ability that directly leverages the geometry of the loss landscape and its connection to generalization,
and is powerfully complementary to existing techniques. In particular, we make the following contri-
butions:

• We introduce Sharpness-Aware Minimization (SAM), a novel procedure that improves model
generalization by simultaneously minimizing loss value and loss sharpness. SAM functions by
seeking parameters that lie in neighborhoods having uniformly low loss value (rather than pa-
rameters that only themselves have low loss value, as illustrated in the middle and righthand
images of Figure 1), and can be implemented efficiently and easily.

• We show via a rigorous empirical study that using SAM improves model generalization abil-
ity across a range of widely studied computer vision tasks (e.g., CIFAR-{10, 100}, ImageNet,
finetuning tasks) and models, as summarized in the lefthand plot of Figure 1. For example, ap-
plying SAM yields novel state-of-the-art performance for a number of already-intensely-studied
tasks, such as CIFAR-100, SVHN, Fashion-MNIST, and the standard set of image classification
finetuning tasks (e.g., Flowers, Stanford Cars, Oxford Pets, etc).

• We show that SAM furthermore provides robustness to label noise on par with that provided
by state-of-the-art procedures that specifically target learning with noisy labels.

• Through the lens provided by SAM, we further elucidate the connection between loss sharpness
and generalization by surfacing a promising new notion of sharpness, which we termm-sharpness.

Section 2 below derives the SAM procedure and presents the resulting algorithm in full detail.
Section 3 evaluates SAM empirically, and Section 4 further analyzes the connection between loss

2

sharpness and generalization through the lens of SAM. Finally, we conclude with an overview of
related work and a discussion of conclusions and future work in Sections 5 and 6, respectively.

2 Sharpness-Aware Minimization (SAM)

Throughout the paper, we denote scalars as a, vectors as a, matrices as A, sets as A, and equality
by definition as �. Given a training dataset S � ∪n

i=1{(xi,yi)} drawn i.i.d. from distribution D , we
seek to learn a model that generalizes well. In particular, consider a family of models parameterized
by w ∈ W ⊆ Rd; given a per-data-point loss function l : W × X × Y → R+, we define the training
set loss LS(w) � 1

n

�n
i=1 l(w,xi,yi) and the population loss LD(w) � E(x,y)∼D[l(w,x,y)]. Having

observed only S, the goal of model training is to select model parameters w having low population
loss LD(w).

Utilizing LS(w) as an estimate of LD(w) motivates the standard approach of selecting parameters
w by solving minw LS(w) (possibly in conjunction with a regularizer on w) using an optimization
procedure such as SGD or Adam. Unfortunately, however, for modern overparameterized models such
as deep neural networks, typical optimization approaches can easily result in suboptimal performance
at test time. In particular, for modern models, LS(w) is typically non-convex in w, with multiple local
and even global minima that may yield similar values of LS(w) while having significantly different
generalization performance (i.e., significantly different values of LD(w)).

Motivated by the connection between sharpness of the loss landscape and generalization, we pro-
pose a different approach: rather than seeking out parameter values w that simply have low training
loss value LS(w), we seek out parameter values whose entire neighborhoods have uniformly low train-
ing loss value (equivalently, neighborhoods having both low loss and low curvature). The following
theorem illustrates the motivation for this approach by bounding generalization ability in terms of
neighborhood-wise training loss (full theorem statement and proof in Appendix A):

Theorem (stated informally) 1. For any ρ > 0, with high probability over training set S generated
from distribution D ,

LD(w) ≤ max
���2≤ρ

LS(w + �) + h(
�w�22
ρ2

),

where h : R+ → R+ is a strictly increasing function (under some technical conditions on LD(w)).

To make explicit our sharpness term, we can rewrite the right hand side of the inequality above as

[max
���2≤ρ

LS(w + �)− LS(w)] + LS(w) + h(
�w�22
ρ2

).

The term in square brackets captures the sharpness of LS at w by measuring how quickly the training
loss can be increased by moving from w to a nearby parameter value; this sharpness term is then
summed with the training loss value itself and a regularizer on the magnitude of w. Given that the
specific function h is heavily influenced by the details of the proof, we substitute the second term with
λ�w�22/ρ2 for a hyperparameter λ, yielding a standard L2 regularization term. Thus, inspired by the
terms from the bound, we propose to select parameter values by solving the following Sharpness-Aware
Minimization (SAM) problem:

min
w

LSAM
S (w) + λ||w||22 where LSAM

S (w) � max
||�||p≤ρ

LS(w + �), (1)

where ρ ≥ 0 is a hyperparameter and p ∈ [1,∞] (we have generalized slightly from an L2-norm to
a p-norm in the maximization over �, though we show empirically in appendix C.5 that p = 2 is
typically optimal). Figure 1 shows1 the loss landscape for a model that converged to minima found by

1Figure 1 was generated following Li et al. (2017) with the provided ResNet56 (no residual connections) checkpoint,
and training the same model with SAM.

3

minimizing either LS(w) or LSAM
S (w), illustrating that the sharpness-aware loss prevents the model

from converging to a sharp minimum.
In order to minimize LSAM

S (w), we derive an efficient and effective approximation to ∇wLSAM
S (w)

by differentiating through the inner maximization, which in turn enables us to apply stochastic gradi-
ent descent directly to the SAM objective. Proceeding down this path, we first approximate the inner
maximization problem via a first-order Taylor expansion of LS(w + �) w.r.t. � around 0, obtaining

�∗(w) � argmax
���p≤ρ

LS(w + �) ≈ argmax
���p≤ρ

LS(w) + �T∇wLS(w) = argmax
���p≤ρ

�T∇wLS(w).

In turn, the value �̂(w) that solves this approximation is given by the solution to a classical dual norm
problem (| · |q−1 denotes elementwise absolute value and power) 2:

�̂(w) = ρ sign (∇wLS(w))
|∇wLS(w)|q−1

�
�∇wLS(w)�qq

�1/p
, (2)

where 1/p+ 1/q = 1. Substituting back into equation (1) and differentiating, we then have

∇wLSAM
S (w) ≈ ∇wLS(w + �̂(w)) =

d(w + �̂(w))

dw
∇wLS(w)|w+�̂(w)

= ∇wLS(w)|w+�̂(w) +
d�̂(w)

dw
∇wLS(w)|w+�̂(w).

This approximation to ∇wLSAM
S (w) can be straightforwardly computed via automatic differentiation,

as implemented in common libraries such as JAX, TensorFlow, and PyTorch. Though this computa-
tion implicitly depends on the Hessian of LS(w) because �̂(w) is itself a function of ∇wLS(w), the
Hessian enters only via Hessian-vector products, which can be computed tractably without materializ-
ing the Hessian matrix. Nonetheless, to further accelerate the computation, we drop the second-order
terms. obtaining our final gradient approximation:

∇wLSAM
S (w) ≈ ∇wLS(w)|w+�̂(w). (3)

As shown by the results in Section 3, this approximation (without the second-order terms) yields an
effective algorithm. In Appendix C.4, we additionally investigate the effect of instead including the
second-order terms; in that initial experiment, including them surprisingly degrades performance, and
further investigating these terms’ effect should be a priority in future work.

We obtain the final SAM algorithm by applying a standard numerical optimizer such as stochastic
gradient descent (SGD) to the SAM objective LSAM

S (w), using equation 3 to compute the requisite
objective function gradients. Algorithm 1 gives pseudo-code for the full SAM algorithm, using SGD
as the base optimizer, and Figure 2 schematically illustrates a single SAM parameter update.

3 Empirical Evaluation

In order to assess SAM’s efficacy, we apply it to a range of different tasks, including image classification
from scratch (including on CIFAR-10, CIFAR-100, and ImageNet), finetuning pretrained models, and
learning with noisy labels. In all cases, we measure the benefit of using SAM by simply replacing the
optimization procedure used to train existing models with SAM, and computing the resulting effect
on model generalization. As seen below, SAM materially improves generalization performance in the
vast majority of these cases.

2In the case of interest p = 2, this boils down to simply rescaling the gradient such that its norm is ρ.

4

Input: Training set S � ∪n
i=1{(xi,yi)}, Loss function

l : W ×X × Y → R+, Batch size b, Step size
η > 0, Neighborhood size ρ > 0.

Output: Model trained with SAM
Initialize weights w0, t = 0;
while not converged do

Sample batch B = {(x1,y1), ...(xb,yb)};
Compute gradient ∇wLB(w) of the batch’s training
loss;

Compute �̂(w) per equation 2;
Compute gradient approximation for the SAM
objective (equation 3): g = ∇wLB(w)|w+�̂(w);

Update weights: wt+1 = wt − ηg;
t = t+ 1;

end
return wt

Algorithm 1: SAM algorithm

��

����

�
���
���

����

�����

�� ��������
�����

�������

Figure 2: Schematic of the SAM param-
eter update.

3.1 Image Classification From Scratch

We first evaluate SAM’s impact on generalization for today’s state-of-the-art models on CIFAR-10
and CIFAR-100 (without pretraining): WideResNets with ShakeShake regularization (Zagoruyko and
Komodakis, 2016; Gastaldi, 2017) and PyramidNet with ShakeDrop regularization (Han et al., 2016;
Yamada et al., 2018). Note that some of these models have already been heavily tuned in prior
work and include carefully chosen regularization schemes to prevent overfitting; therefore, signifi-
cantly improving their generalization is quite non-trivial. We have ensured that our implementations’
generalization performance in the absence of SAM matches or exceeds that reported in prior work
(Cubuk et al., 2018; Lim et al., 2019)

All results use basic data augmentations (horizontal flip, padding by four pixels, and random
crop). We also evaluate in the setting of more advanced data augmentation methods such as cutout
regularization (Devries and Taylor, 2017) and AutoAugment (Cubuk et al., 2018), which are utilized
by prior work to achieve state-of-the-art results.

SAM has a single hyperparameter ρ (the neighborhood size), which we tune via a grid search over
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5} using 10% of the training set as a validation set. Please see appendix C.1
for the values of all hyperparameters and additional training details. We observed that a default value
of ρ = 0.05 is often satisfactory, and we also report in appendix C.3 the test accuracy obtained for
this value of ρ without additional tuning. As each SAM weight update requires two backpropagation
operations (one to compute �̂(w) and another to compute the final gradient), we allow each non-SAM
training run to execute twice as many epochs as each SAM training run, and we report the best score
achieved by each non-SAM training run across either the standard epoch count or the doubled epoch
count 3. We run five independent replicas of each experimental condition for which we report results
(each with independent weight initialization and data shuffling), reporting the resulting mean error
(or accuracy) on the test set, and the associated 95% confidence interval. Our implementations utilize
JAX (Bradbury et al., 2018), and we train all models on a single host having 8 Nvidia V100 GPUs. To
compute the SAM update when parallelizing across multiple accelerators, we divide each data batch
evenly among the accelerators, independently compute the SAM gradient on each accelerator, and
average the resulting sub-batch SAM gradients to obtain the final SAM update.

As seen in Table 1, SAM improves generalization across all settings evaluated for CIFAR-10 and
CIFAR-100. For example, SAM enables a simple WideResNet to attain 1.6% test error, versus 2.2%
error without SAM. Such gains have previously been attainable only by using more complex model

3Training for longer generally did not improve accuracy significantly, except for the models previously trained for
only 200 epochs and for the largest, most regularized model (PyramidNet + ShakeDrop).

5

architectures (e.g., PyramidNet) and regularization schemes (e.g., Shake-Shake, ShakeDrop); SAM
provides an easily-implemented, model-independent alternative. Furthermore, SAM delivers improve-
ments even when applied atop complex architectures that already use sophisticated regularization:
for instance, applying SAM to a PyramidNet with ShakeDrop regularization yields 10.3% error on
CIFAR-100, which is, to our knowledge, a new state of the art on this dataset without the use of
additional data.

CIFAR-10 CIFAR-100

Model Augmentation SAM SGD SAM SGD

WRN-28-10 (200 epochs) Basic 2.7±0.1 3.5±0.1 16.5±0.2 18.8±0.2

WRN-28-10 (200 epochs) Cutout 2.3±0.1 2.6±0.1 14.9±0.2 16.9±0.1

WRN-28-10 (200 epochs) AA 2.1±<0.1 2.3±0.1 13.6±0.2 15.8±0.2

WRN-28-10 (1800 epochs) Basic 2.4±0.1 3.5±0.1 16.3±0.2 19.1±0.1

WRN-28-10 (1800 epochs) Cutout 2.1±0.1 2.7±0.1 14.0±0.1 17.4±0.1

WRN-28-10 (1800 epochs) AA 1.6±0.1 2.2±<0.1 12.8±0.2 16.1±0.2

Shake-Shake (26 2x96d) Basic 2.3±<0.1 2.7±0.1 15.1±0.1 17.0±0.1

Shake-Shake (26 2x96d) Cutout 2.0±<0.1 2.3±0.1 14.2±0.2 15.7±0.2

Shake-Shake (26 2x96d) AA 1.6±<0.1 1.9±0.1 12.8±0.1 14.1±0.2

PyramidNet Basic 2.7±0.1 4.0±0.1 14.6±0.4 19.7±0.3

PyramidNet Cutout 1.9±0.1 2.5±0.1 12.6±0.2 16.4±0.1

PyramidNet AA 1.6±0.1 1.9±0.1 11.6±0.1 14.6±0.1

PyramidNet+ShakeDrop Basic 2.1±0.1 2.5±0.1 13.3±0.2 14.5±0.1

PyramidNet+ShakeDrop Cutout 1.6±<0.1 1.9±0.1 11.3±0.1 11.8±0.2

PyramidNet+ShakeDrop AA 1.4±<0.1 1.6±<0.1 10.3±0.1 10.6±0.1

Table 1: Results for SAM on state-of-the-art models on CIFAR-{10, 100} (WRN = WideResNet; AA
= AutoAugment; SGD is the standard non-SAM procedure used to train these models).

Beyond CIFAR-{10, 100}, we have also evaluated SAM on the SVHN (Netzer et al., 2011) and
Fashion-MNIST datasets (Xiao et al., 2017). Once again, SAM enables a simple WideResNet to
achieve accuracy at or above the state of the art for these datasets: 0.99% error for SVHN, and 3.59%
for Fashion-MNIST. Details are available in appendix B.1.

To assess SAM’s performance at larger scale, we apply it to ResNets (He et al., 2015) of different
depths (50, 101, 152) trained on ImageNet (Deng et al., 2009). In this setting, following prior work
(He et al., 2015; Szegedy et al., 2015), we resize and crop images to 224-pixel resolution, normalize
them, and use batch size 4096, initial learning rate 1.0, cosine learning rate schedule, SGD optimizer
with momentum 0.9, and weight decay 0.0001. When applying SAM, we use ρ = 0.05 (determined via
a grid search on ResNet-50 trained for 100 epochs). We train all models on ImageNet for up to 400
epochs using a Google Cloud TPUv3 and report top-1 and top-5 test error rates for each experimental
condition (mean and 95% confidence interval across 5 independent runs).

As seen in Table 2, SAM again consistently improves performance, for example improving the
ImageNet top-1 error rate of ResNet-152 from 20.3% to 18.4%. Furthermore, note that SAM enables
increasing the number of training epochs while continuing to improve accuracy without overfitting. In
contrast, the standard training procedure (without SAM) generally significantly overfits as training
extends from 200 to 400 epochs.

3.2 Finetuning

Transfer learning by pretraining a model on a large related dataset and then finetuning on a smaller
target dataset of interest has emerged as a powerful and widely used technique for producing high-
quality models for a variety of different tasks. We show here that SAM once again offers considerable
benefits in this setting, even when finetuning extremely large, state-of-the-art, already high-performing
models.

6

Model Epoch
SAM Standard Training (No SAM)

Top-1 Top-5 Top-1 Top-5

ResNet-50 100 22.5±0.1 6.28±0.08 22.9±0.1 6.62±0.11

200 21.4±0.1 5.82±0.03 22.3±0.1 6.37±0.04

400 20.9±0.1 5.51±0.03 22.3±0.1 6.40±0.06

ResNet-101 100 20.2±0.1 5.12±0.03 21.2±0.1 5.66±0.05

200 19.4±0.1 4.76±0.03 20.9±0.1 5.66±0.04

400 19.0±<0.01 4.65±0.05 22.3±0.1 6.41±0.06

ResNet-152 100 19.2±<0.01 4.69±0.04 20.4±<0.0 5.39±0.06

200 18.5±0.1 4.37±0.03 20.3±0.2 5.39±0.07

400 18.4±<0.01 4.35±0.04 20.9±<0.0 5.84±0.07

Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.

In particular, we apply SAM to finetuning EfficentNet-b7 (pretrained on ImageNet) and EfficientNet-
L2 (pretrained on ImageNet plus unlabeled JFT; input resolution 475) (Tan and Le, 2019; Kornblith
et al., 2018; Huang et al., 2018). We initialize these models to publicly available checkpoints4 trained
with RandAugment (84.7% accuracy on ImageNet) and NoisyStudent (88.2% accuracy on ImageNet),
respectively. We finetune these models on each of several target datasets by training each model start-
ing from the aforementioned checkpoint; please see the appendix for details of the hyperparameters
used. We report the mean and 95% confidence interval of top-1 test error over 5 independent runs for
each dataset.

As seen in Table 3, SAM uniformly improves performance relative to finetuning without SAM.
Furthermore, in many cases, SAM yields novel state of the art performance, including 0.30% error on
CIFAR-10, 3.92% error on CIFAR-100, and 11.39% error on ImageNet.

Dataset
EffNet-b7
+ SAM

EffNet-b7
Prev. SOTA

(ImageNet only)
EffNet-L2
+ SAM

EffNet-L2 Prev. SOTA

FGVC Aircraft 6.80±0.06 8.15±0.08 5.3 (TBMSL-Net) 4.82±0.08 5.80±0.1 5.3 (TBMSL-Net)
Flowers 0.63±0.02 1.16±0.05 0.7 (BiT-M) 0.35±0.01 0.40±0.02 0.37 (EffNet)
Oxford IIIT Pets 3.97±0.04 4.24±0.09 4.1 (Gpipe) 2.90±0.04 3.08±0.04 4.1 (Gpipe)
Stanford Cars 5.18±0.02 5.94±0.06 5.0 (TBMSL-Net) 4.04±0.03 4.93±0.04 3.8 (DAT)
CIFAR-10 0.88±0.02 0.95±0.03 1 (Gpipe) 0.30±0.01 0.34±0.02 0.63 (BiT-L)
CIFAR-100 7.44±0.06 7.68±0.06 7.83 (BiT-M) 3.92±0.06 4.07±0.08 6.49 (BiT-L)
Birdsnap 13.64±0.15 14.30±0.18 15.7 (EffNet) 9.93±0.15 10.31±0.15 14.5 (DAT)
Food101 7.02±0.02 7.17±0.03 7.0 (Gpipe) 3.82±0.01 3.97±0.03 4.7 (DAT)
ImageNet 15.14±0.03 15.3 14.2 (KDforAA) 11.39±0.02 11.8 11.45 (ViT)

Table 3: Top-1 error rates for finetuning EfficientNet-b7 (left; ImageNet pretraining only) and
EfficientNet-L2 (right; pretraining on ImageNet plus additional data, such as JFT) on various down-
stream tasks. Previous state-of-the-art (SOTA) includes EfficientNet (EffNet) (Tan and Le, 2019),
Gpipe (Huang et al., 2018), DAT (Ngiam et al., 2018), BiT-M/L (Kolesnikov et al., 2020), KDforAA
(Wei et al., 2020), TBMSL-Net (Zhang et al., 2020), and ViT (Dosovitskiy et al., 2020).

3.3 Robustness to Label Noise

The fact that SAM seeks out model parameters that are robust to perturbations suggests SAM’s
potential to provide robustness to noise in the training set (which would perturb the training loss
landscape). Thus, we assess here the degree of robustness that SAM provides to label noise.

In particular, we measure the effect of applying SAM in the classical noisy-label setting for CIFAR-
10, in which a fraction of the training set’s labels are randomly flipped; the test set remains unmodified

4https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

7

Method Noise rate (%)
20 40 60 80

Sanchez et al. (2019) 94.0 92.8 90.3 74.1
Zhang and Sabuncu (2018) 89.7 87.6 82.7 67.9
Lee et al. (2019) 87.1 81.8 75.4 -
Chen et al. (2019) 89.7 - - 52.3
Huang et al. (2019) 92.6 90.3 43.4 -
MentorNet (2017) 92.0 91.2 74.2 60.0
Mixup (2017) 94.0 91.5 86.8 76.9
MentorMix (2019) 95.6 94.2 91.3 81.0
SGD 84.8 68.8 48.2 26.2
Mixup 93.0 90.0 83.8 70.2
Bootstrap + Mixup 93.3 92.0 87.6 72.0
SAM 95.1 93.4 90.5 77.9
Bootstrap + SAM 95.4 94.2 91.8 79.9

Table 4: Test accuracy on the clean test set for models trained on CIFAR-10 with noisy labels. Lower
block is our implementation, upper block gives scores from the literature, per Jiang et al. (2019).

(i.e., clean). To ensure valid comparison to prior work, which often utilizes architectures specialized to
the noisy-label setting, we train a simple model of similar size (ResNet-32) for 200 epochs, following
Jiang et al. (2019). We evaluate five variants of model training: standard SGD, SGD with Mixup
(Zhang et al., 2017), SAM, and ”bootstrapped” variants of SGD with Mixup and SAM (wherein the
model is first trained as usual and then retrained from scratch on the labels predicted by the initially
trained model). When applying SAM, we use ρ = 0.1 for all noise levels except 80%, for which we use
ρ = 0.05 for more stable convergence. For the Mixup baselines, we tried all values of α ∈ {1, 8, 16, 32}
and conservatively report the best score for each noise level.

As seen in Table 4, SAM provides a high degree of robustness to label noise, on par with that
provided by state-of-the art procedures that specifically target learning with noisy labels. Indeed,
simply training a model with SAM outperforms all prior methods specifically targeting label noise
robustness, with the exception of MentorMix (Jiang et al., 2019). However, simply bootstrapping
SAM yields performance comparable to that of MentorMix (which is substantially more complex).

4 Sharpness and Generalization Through the Lens of SAM

4.1 m-sharpness

Though our derivation of SAM defines the SAM objective over the entire training set, when utilizing
SAM in practice, we compute the SAM update per-batch (as described in Algorithm 1) or even by
averaging SAM updates computed independently per-accelerator (where each accelerator receives a
subset of size m of a batch, as described in Section 3). This latter setting is equivalent to modifying
the SAM objective (equation 1) to sum over a set of independent � maximizations, each performed
on a sum of per-data-point losses on a disjoint subset of m data points, rather than performing the
� maximization over a global sum over the training set (which would be equivalent to setting m
to the total training set size). We term the associated measure of sharpness of the loss landscape
m-sharpness.

To better understand the effect of m on SAM, we train a small ResNet on CIFAR-10 using SAM
with a range of values of m. As seen in Figure 3 (middle), smaller values of m tend to yield models
having better generalization ability. This relationship fortuitously aligns with the need to parallelize
across multiple accelerators in order to scale training for many of today’s models.

Intriguingly, the m-sharpness measure described above furthermore exhibits better correlation
with models’ actual generalization gaps as m decreases, as demonstrated by Figure 3 (right)5. In

5We follow the rigorous framework of Jiang et al. (2019), reporting the mutual information between the m-sharpness

8

� �� �� ��

�
�
�
�
�
��
� ��������

���� �����

���

� � ��

�
�
�
�
�
��
�
�

��������

���� �����

� �� ��

�� �

�
�
�
�
�
��
�
�
�

��������

���� ������

� �� �� ��

��������

���� �����

���

� � ��

�������

���� �����

� �� ��

�� �

�������

���� �����

���� ���� ���� ����

����

����

����

����

����

�
��
�
��
��
��
��
�
�

�

�

�

��

��

���

� � �� �� ���

�

�����

�����

�����

�����

�����

�
�
��
�
��
��
��
��

�
��
�
�

������

������

����

����

����

����

�
�
��
�
��
��
��
��

�
��
�
�

Figure 3: (left) Evolution of the spectrum of the Hessian during training of a model with standard
SGD (lefthand column) or SAM (righthand column). (middle) Test error as a function of ρ for different
values of m. (right) Predictive power of m-sharpness for the generalization gap, for different values of
m (higher means the sharpness measure is more correlated with actual generalization gap).

particular, this implies that m-sharpness with m < n yields a better predictor of generalization than
the full-training-set measure suggested by Theorem 1 in Section 2 above, suggesting an interesting
new avenue of future work for understanding generalization.

4.2 Hessian Spectra

Motivated by the connection between geometry of the loss landscape and generalization, we con-
structed SAM to seek out minima of the training loss landscape having both low loss value and low
curvature (i.e., low sharpness). To further confirm that SAM does in fact find minima having low
curvature, we compute the spectrum of the Hessian for a WideResNet40-10 trained on CIFAR-10 for
300 steps both with and without SAM (without batch norm, which tends to obscure interpretation
of the Hessian), at different epochs during training. Due to the parameter space’s dimensionality, we
approximate the Hessian spectrum using the Lanczos algorithm of Ghorbani et al. (2019).

Figure 3 (left) reports the resulting Hessian spectra. As expected, the models trained with SAM
converge to minima having lower curvature, as seen in the overall distribution of eigenvalues, the
maximum eigenvalue (λmax) at convergence (approximately 25 without SAM, 1.0 with SAM), and the
bulk of the spectrum (the ratio λmax/λ5, commonly used as a proxy for sharpness (Jastrzebski et al.,
2020); up to 11.4 without SAM, and 2.6 with SAM).

5 Related Work

The idea of searching for “flat” minima can be traced back to Hochreiter and Schmidhuber (1995),
and its connection to generalization has seen significant study (Shirish Keskar et al., 2016; Dziugaite
and Roy, 2017; Neyshabur et al., 2017; Dinh et al., 2017). In a recent large scale empirical study, Jiang
et al. (2019) studied 40 complexity measures and showed that a sharpness-based measure has highest
correlation with generalization, which motivates penalizing sharpness. Hochreiter and Schmidhuber
(1997) was perhaps the first paper on penalizing the sharpness, regularizing a notion related to Min-
imum Description Length (MDL). Other ideas which also penalize sharp minima include operating
on diffused loss landscape (Mobahi, 2016) and regularizing local entropy (Chaudhari et al., 2016),
which has also been connected to generalization bounds (Dziugaite and Roy, 2019). The notion of

measure and generalization on the two publicly available tasks from the Predicting generalization in deep learning
NeurIPS2020 competition. https://competitions.codalab.org/competitions/25301

9

A Appendix

A.1 PAC Bayesian Generalization Bound

Below, we state a generalization bound based on sharpness.

Theorem 2. For any ρ > 0 and any distribution D , with probability 1 − δ over the choice of the
training set S ∼ D ,

LD(w) ≤ max
���2≤ρ

LS(w + �) +

������
k log

�
1 +

�w�2
2

ρ2

�
1 +

�
log(n)

k

�2
�

+ 4 log n
δ + Õ(1)

n− 1
(4)

where n = |S|, k is the number of parameters and we assumed LD(w) ≤ E�i∼N (0,ρ)[LD(w + �)].

The condition LD(w) ≤ E�i∼N (0,ρ)[LD(w + �)] means that adding Gaussian perturbation should
not decrease the test error. This is expected to hold in practice for the final solution but does not
necessarily hold for any w.

Proof. First, note that the right hand side of the bound in the theorem statement is lower bounded
by

�
k log(1 + �w�22/ρ2)/(4n) which is greater than 1 when �w�22 > ρ2(exp(4n/k)− 1). In that case,

the right hand side becomes greater than 1 in which case the inequality holds trivially. Therefore, in
the rest of the proof, we only consider the case when �w�22 ≤ ρ2(exp(4n/k)− 1).

The proof technique we use here is inspired from Chatterji et al. (2020). Using PAC-Bayesian
generalization bound McAllester (1999) and following Dziugaite and Roy (2017), the following gener-
alization bound holds for any prior P over parameters with probability 1 − δ over the choice of the
training set S, for any posterior Q over parameters:

Ew∼Q[LD(w)] ≤ Ew∼Q[LS(w)] +

�
KL(Q||P) + log n

δ

2(n− 1)
(5)

Moreover, if P = N (µP ,σ
2
P I) and Q = N (µQ,σ

2
QI), then the KL divergence can be written as

follows:

KL(P||Q) =
1

2

�
kσ2

Q + �µP − µQ�22
σ2
P

− k + k log

�
σ2
P

σ2
Q

��
(6)

Given a posterior standard deviation σQ, one could choose a prior standard deviation σP to minimize
the above KL divergence and hence the generalization bound by taking the derivative7 of the above
KL with respect to σP and setting it to zero. We would then have σ∗

P
2 = σ2

Q + �µP − µQ�22/k.
However, since σP should be chosen before observing the training data S and µQ,σQ could depend on
S, we are not allowed to optimize σP in this way. Instead, one can have a set of predefined values for
σP and pick the best one in that set. See Langford and Caruana (2002) for the discussion around this
technique. Given fixed a, b > 0, let T = {c exp((1− j)/k)|j ∈ N} be that predefined set of values for
σ2
P . If for any j ∈ N, the above PAC-Bayesian bound holds for σ2

P = c exp((1− j)/k) with probability
1−δj with δj =

6δ
π2j2 , then by the union bound, all above bounds hold simultaneously with probability

at least 1−�∞
j=1

6δ
π2j2 = 1− δ.

Let σQ = ρ, µQ = w and µP = 0. Therefore, we have:

σ2
Q + �µP − µQ�22/k ≤ ρ2 + �w�22/k ≤ ρ2(1 + exp(4n/k)) (7)

7Despite the nonconvexity of the function here in σ2
P , it has a unique stationary point which happens to be its

minimizer.

15

We now consider the bound that corresponds to j = �1 − k log((ρ2 + �w�22/k)/c)�. We can ensure
that j ∈ N using inequality equation 7 and by setting c = ρ2(1 + exp(4n/k)). Furthermore, for
σ2
P = c exp((1− j)/k), we have:

ρ2 + �w�22/k ≤ σ2
P ≤ exp(1/k)

�
ρ2 + �w�22/k

�
(8)

Therefore, using the above value for σP , KL divergence can be bounded as follows:

KL(P||Q) =
1

2

�
kσ2

Q + �µP − µQ�22
σ2
P

− k + k log

�
σ2
P

σ2
Q

��
(9)

≤ 1

2

�
k(ρ2 + �w�22/k)
ρ2 + �w�22/k

− k + k log

�
exp(1/k)

�
ρ2 + �w�22/k

�

ρ2

��
(10)

=
1

2

�
k log

�
exp(1/k)

�
ρ2 + �w�22/k

�

ρ2

��
(11)

=
1

2

�
1 + k log

�
1 +

�w�22
kσ2

Q

��
(12)

Given the bound that corresponds to j holds with probability 1 − δj for δj = 6δ
π2j2 , the log term in

the bound can be written as:

log
n

δj
= log

n

δ
+ log

π2j2

6

≤ log
n

δ
+ log

π2k2 log2(c/(ρ2 + �w�22/k))
6

≤ log
n

δ
+ log

π2k2 log2(c/ρ2)

6

≤ log
n

δ
+ log

π2k2 log2(1 + exp(4n/k))

6

≤ log
n

δ
+ log

π2k2(2 + 4n/k)2

6

≤ log
n

δ
+ 2 log (6n+ 3k)

Therefore, the generalization bound can be written as follows:

E�i∼N (0,σ)[LD(w + �)] ≤ E�i∼N (0,σ)[LS(w + �)] +

���� 1
4k log

�
1 +

�w�2
2

kσ2

�
+ 1

4 + log n
δ + 2 log (6n+ 3k)

n− 1
(13)

In the above bound, we have �i ∼ N (0,σ). Therefore, ���22 has chi-square distribution and by Lemma
1 in Laurent and Massart (2000), we have that for any positive t:

P (���22 − kσ2 ≥ 2σ2
√
kt+ 2tσ2) ≤ exp(−t) (14)

Therefore, with probability 1− 1/
√
n we have that:

���22 ≤ σ2(2 ln(
√
n) + k + 2

�
k ln(

√
n)) ≤ σ2k

�
1 +

�
ln(n)

k

�2

≤ ρ2

16

Substituting the above value for σ back to the inequality and using theorem’s assumption gives us
following inequality:

LD(w) ≤ (1− 1/
√
n) max

���2≤ρ
LS(w + �) + 1/

√
n

+

������
1
4k log

�
1 +

�w�2
2

ρ2

�
1 +

�
log(n)

k

�2
�

+ log n
δ + 2 log (6n+ 3k)

n− 1

≤ max
���2≤ρ

LS(w + �)+

+

������
k log

�
1 +

�w�2
2

ρ2

�
1 +

�
log(n)

k

�2
�

+ 4 log n
δ + 8 log (6n+ 3k)

n− 1

B Additional Experimental Results

B.1 SVHN and Fashion-MNIST

We report in table 5 results obtained on SVHN and Fashion-MNIST datasets. On these datasets,
SAM allows a simple WideResnet to reach or push state of the art accuracy (0.99% error rate for
SVHN, 3.59% for Fashion-MNIST).

For SVHN, we used all the available data (73257 digits for training set + 531131 additional
samples). For auto-augment, we use the best policy found on this dataset as described in (Cubuk
et al., 2018) plus cutout (Devries and Taylor, 2017). For Fashion-MNIST, the auto-augmentation line
correspond to cutout only.

Table 5: Results on SVHN and Fashion-MNIST.

SVHN Fashion-MNIST
Model Augmentation SAM Baseline SAM Baseline
Wide-ResNet-28-10 Basic 1.42±0.02 1.58±0.03 3.98±0.05 4.57±0.07

Wide-ResNet-28-10 Auto augment 0.99±0.01 1.14±0.04 3.61±0.06 3.86±0.14

Shake-Shake (26 2x96d) Basic 1.44±0.02 1.58±0.05 3.97±0.09 4.37±0.06

Shake-Shake (26 2x96d) Auto augment 1.07±0.02 1.03±0.02 3.59±0.01 3.76±0.07

C Experiment Details

C.1 Hyperparameters for Experiments

We report in table 6 the hyper-parameters selected by gridsearch for the CIFAR experiments, and the
ones for SVHN and Fashion-MNIST in 7. For CIFAR10, CIFAR100, SVHN and Fashion-MNIST, we
use a batch size of 256 and determine the learning rate and weight decay used to train each model
via a joint grid search prior to applying SAM; all other model hyperparameter values are identical to
those used in prior work.

For the Imagenet results (Resnet models), the models are trained for 100, 200 or 400 epochs on
Google Cloud TPUv3 32 cores with a batch size of 4096. The initial learning rate is set to 1.0 and

17

Cifar10 Cifar100
Model Augmentation ρ = 0.05 SGD rho=0.05 SGD
WRN-28-10 (200 epochs) Basic 2.7 3.5 16.5 18.8
WRN-28-10 (200 epochs) Cutout 2.3 2.6 14.9 16.9
WRN-28-10 (200 epochs) AA 2.1 2.3 13.6 15.8
WRN-28-10 (1800 epochs) Basic 2.4 3.5 16.3 19.1
WRN-28-10 (1800 epochs) Cutout 2.1 2.7 14.0 17.4
WRN-28-10 (1800 epochs) AA 1.6 2.2 12.8 16.1
WRN 26-2x6 ss Basic 2.4 2.7 15.1 17.0
WRN 26-2x6 ss Cutout 2.0 2.3 14.2 15.7
WRN 26-2x6 ss AA 1.7 1.9 12.8 14.1
PyramidNet Basic 2.1 4.0 15.4 19.7
PyramidNet Cutout 1.6 2.5 13.1 16.4
PyramidNet AA 1.4 1.9 12.1 14.6
PyramidNet+ShakeDrop Basic 2.1 2.5 13.3 14.5
PyramidNet+ShakeDrop Cutout 1.6 1.9 11.3 11.8
PyramidNet+ShakeDrop AA 1.4 1.6 10.3 10.6

Table 10: Results for the Cifar10/Cifar100 experiments, using ρ = 0.05 for all mod-
els/datasets/augmentations

Dataset
Efficientnet-b7

+ SAM (optimal)
Efficientnet-b7

+ SAM (ρ = 0.05)
Efficientnet-b7

FGVC Aircraft 6.80 7.06 8.15
Flowers 0.63 0.81 1.16

Oxford IIIT Pets 3.97 4.15 4.24
Stanford Cars 5.18 5.57 5.94

cifar10 0.88 0.88 0.95
cifar100 7.44 7.56 7.68
Birdsnap 13.64 13.64 14.30
Food101 7.02 7.06 7.17

Table 11: Results for the the finetuning experiments, using ρ = 0.05 for all datasets.

reaches a lower test error, showing that the most efficient method is also the one providing the best
generalization on this example. The reason for this is quite unclear and should be analyzed in follow
up work.

C.5 Choice of p-norm

Our theorem is derived for p = 2, although generalizations can be considered for p ∈ [1,+∞] (the
expression of the bound becoming way more involved). Empirically, we validate that the choice
p = 2 is optimal by training a wide resnet on cifar10 with SAM for p = ∞ (in which case we have
�̂(w) = ρ sign (∇wLS(w))) and p = 2 (giving �̂(w) = ρ

||∇wLS(w)||22
(∇wLS(w))). We do not consider

the case p = 1 which would give us a perturbation on a single weight. As an additional ablation study,
we also use random weight perturbations of a fixed Euclidean norm: �̂(w) = ρ

||z||22
z with z ∼ N (0, Id).

We report the test accuracy of the model in figure 6.
We observe that adversarial perturbations outperform random perturbations, and that using p = 2

yield superior accuracy on this example.

20

��
� ��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�
��
�
��
��
��

����������

�� ��� �

�� �� �

� ���� ��

������ �

Figure 6: Test accuracy for a wide resnet trained on CIFAR10 with SAM, for different perturbation
norms.

����� ����� �����

�������

����

����

����

����

����

�
�
�
�
��

�
�

�
��

�

�������

�������

�������

�������

�������

����� ����� �����

�������

����

����

����

����

�
�
�
�
��

�
�

�
��

�
��������

�������

�������

�������

�������

Figure 7: Evolution of max� L(w+ �)−L(w) vs. training step, for different numbers of inner projected
gradient steps.

C.6 Several Iterations in the Inner Maximization

To empirically verify that the linearization of the inner problem is sensible, we trained a WideResnet
on the CIFAR datasets using a variant of SAM that performs several iterations of projected gradient
ascent to estimate max� L(w + �). We report the evolution of max� L(w + �) − L(w) during training
(where L stands for the training error rate computed on the current batch) in Figure 7, along with the
test accuracy and the estimated sharpness (max� L(w+ �)−L(w)) at the end of training in Table 12;
we report means and standard deviations across 20 runs.

For most of the training, one projected gradient step (as used in standard SAM) is sufficient to
obtain a good approximation of the � found with multiple inner maximization steps. We however
observe that this approximation becomes weaker near convergence, where doing several iterations of
projected gradient ascent yields a better � (for example, on CIFAR-10, the maximum loss found on
each batch is about 3% more when doing 5 steps of inner maximization, compared to when doing a
single step). That said, as seen in Table 12, the test accuracy is not strongly affected by the number
of inner maximization iterations, though on CIFAR-100 it does seem that several steps outperform a
single step in a statistically significant way.

21

When Vision Transformers Outperform ResNets
without Pretraining or Strong Data Augmentations

Xiangning Chen1,2∗ Cho-Jui Hsieh2 Boqing Gong1

1Google Research 2UCLA

Abstract

Vision Transformers (ViTs) and MLPs signal further efforts on replacing hand-
wired features or inductive biases with general-purpose neural architectures. Exist-
ing works empower the models by massive data, such as large-scale pretraining
and/or repeated strong data augmentations, and still report optimization-related
problems (e.g., sensitivity to initialization and learning rate). Hence, this paper
investigates ViTs and MLP-Mixers from the lens of loss geometry, intending to
improve the models’ data efficiency at training and generalization at inference. Vi-
sualization and Hessian reveal extremely sharp local minima of converged models.
By promoting smoothness with a recently proposed sharpness-aware optimizer, we
substantially improve the accuracy and robustness of ViTs and MLP-Mixers on
various tasks spanning supervised, adversarial, contrastive, and transfer learning
(e.g., +5.3% and +11.0% top-1 accuracy on ImageNet for ViT-B/16 and Mixer-
B/16, respectively, with the simple Inception-style preprocessing). We show that
the improved smoothness attributes to sparser active neurons in the first few lay-
ers. The resultant ViTs outperform ResNets of similar size and throughput when
trained from scratch on ImageNet without large-scale pretraining or strong data
augmentations. They also possess more perceptive attention maps.

1 Introduction

Transformers [56] have become the de-facto model of choice in natural language processing
(NLP) [19, 44]. In computer vision, there has recently been a surge of interest in end-to-end
Transformers [1, 2, 5, 20, 22, 38, 55] and MLPs [37, 40, 53, 54], prompting the efforts to replace
hand-wired features or inductive biases with general-purpose neural architectures powered by data-
driven training. We envision these efforts may lead to a unified knowledge base that produces
versatile representations for different data modalities, simplifying the inference and deployment of
deep learning models in various application scenarios.

Despite the appealing potential of moving toward general-purpose neural architectures, the lack
of convolution-like inductive bias also challenges the training of vision Transformers (ViTs) and
MLPs. When trained on ImageNet [18] with the conventional Inception-style data preprocessing [51],
Transformers “yield modest accuracies of a few percentage points below ResNets of comparable
size” [20]. To boost the performance, existing works resort to large-scale pre-training [1, 2, 20] and
repeated strong data augmentations [55], resulting in excessive demands of data, computing, and
sophisticated tuning of many hyper-parameters. For instance, Dosovitskiy et al. [20] pre-train ViTs
using 304M labeled images, and Touvron et al. [55] repeatedly stack four strong image augmentations.

∗Work done as a student researcher at Google.

Preprint. Under review.

ar
X

iv
:2

10
6.

01
54

8v
1

 [
cs

.C
V

]
 3

 J
un

 2
0

2
1

(a) ResNet (b) ViT (c) Mixer (d) ViT-SAM (e) Mixer-SAM
Figure 1: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, and Mixer-B/16. ViT and MLP-
Mixer converge to sharper regions than ResNet when trained on ImageNet with the basic Inception-
style preprocessing. SAM, a sharpness-aware optimizer, significantly smooths the landscapes.

Table 1: Number of parameters, NTK condition number κ, Hessian dominate eigenvalue λmax,
accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent
κ and converge to sharp regions of big λmax; SAM rescues that and leads to better generalization.

ResNet-50 ResNet-152 ViT-B/16 ViT-B/16-
SAM Mixer-B/16 Mixer-B/16-

SAM

#Params 25M 60M 87M 59M
NTK κ 2801.6 2801.6 4205.3 14468.0
Hessian λmax 122.9 179.8 738.8 20.9 1644.4 22.5
ImageNet (%) 76.0 78.5 74.6 79.9 66.4 77.4
ImageNet-C (%) 44.6 50.0 46.6 56.5 33.8 48.8

We focus on ViTs and MLP-Mixers in this paper. We denote by “S” and “B” the small and base
model sizes, respectively, and by an integer the image patch resolution. For instance, ViT-B/16 is the
base ViT model taking as input a sequence of 16× 16 patches. Appendices contain more details.

3 ViTs and MLP-Mixers Converge to Sharp Local Minima

The current training recipe of ViTs, MLP-Mixers, and related convolution-free architectures relies
heavily on massive pretraining [1, 2, 20] or a bag of strong data augmentations [16, 17, 53, 55, 63, 65].
It highly demands data and computing, and leads to many hyper-parameters to tune. Existing works
report that ViTs yield inferior accuracy to the ConvNets of similar size and throughput when
trained from scratch on ImageNet without the combination of those advanced data augmentations,
despite using various regularization techniques (e.g., large weight decay, Dropout [49], etc.). For
instance, ViT-B/16 [20] gives rise to 74.6% top-1 accuracy on the ImageNet validation set (224
image resolution), compared with 78.5% of ResNet-152 [24]. Mixer-B/16 [53] performs even worse
(66.4%). There also exists a large gap between ViTs and ResNets in robustness tests (e.g., against 19
corruptions in ImageNet-C [26]).

Moreover, Chen et al. [15] find that the gradients can spike and cause a sudden accuracy dip
when training ViTs, and Touvron et al. [55] report the training is sensitive to initialization and
hyperparameters. These all point to optimization problems. In this paper, we investigate the loss
landscapes of ViTs and MLP-Mixers to understand them from the optimization perspective, intending
to reduce their dependency on the large-scale pretraining or strong data augmentations.

ViTs and MLP-Mixers converge to extremely sharp local minima. It has been extensively studied
that the convergence to a flat region whose curvature is small benefits the generalization of neural
networks [10, 13, 29, 30, 33, 48, 64]. Following [36], we plot the loss landscapes at convergence
when ResNets, ViTs, and MLP-Mixers are trained from scratch on ImageNet with the basic Inception-
style preprocessing [51] (see Appendices for details). As shown in Figures 1(a) to 1(c), ViTs and
MLP-Mixers converge to much sharper regions than ResNets. In Table 1, we further validate the
results by computing the dominate Hessian eigenvalue λmax, which is a mathematical evaluation of
the landscape curvature. The λmax values of ViT and MLP-Mixer are orders of magnitude larger than
that of ResNet, and MLP-Mixer suffers the largest curvature among the three species (see Section 4.4
for a detailed analysis).

Small training errors. This convergence to sharp regions coincides with the training dynamics
shown in Figure 2 (left). Although Mixer-B/16 has fewer parameters than ViT-B/16 (59M vs. 87M),
it has a smaller training error but much worse test accuracy, implying that using the cross-token
MLP to learn the interplay across image patches is more prone to overfitting than ViTs’ self-attention

3

Table 3: Dominant eigenvalue λmax of the sub-diagonal Hessians for different network components,
and norm of the model parameter w and the post-activation ak of block k. Each ViT block consists
of a MSA and a MLP, and MLP-Mixer alternates between a token MLP a channel MLP. Shallower
layers have larger λmax. SAM smooths every component.

Model λmax of diagonal blocks of Hessian �w�2 �a1�2 �a6�2 �a12�2
Embedding MSA/Token MLP MLP/Channel MLP Block1 Block6 Block12 Whole

ViT-B/16 300.4 179.8 281.4 44.4 32.4 26.9 738.8 269.3 104.9 104.3 138.1
ViT-B/16-SAM 3.8 8.5 9.6 1.7 1.7 1.5 20.9 353.8 117.0 120.3 97.2

Mixer-B/16 1042.3 95.8 417.9 239.3 41.2 5.1 1644.4 197.6 96.7 135.1 74.9
Mixer-B/16-SAM 18.2 1.4 9.5 4.0 1.1 0.3 22.5 389.9 110.9 176.0 216.1

C [26]). ViT-B/16 achieves 79.9%, 26.4%, and 56.6% top-1 accuracy on ImageNet, ImageNet-R,
and ImageNet-C, while the counterpart numbers for ResNet-152 are 79.3%, 25.7%, and 52.2%,
respectively (see Table 2). The gaps between ViTs and ResNets are even wider for small architectures.
ViT-S/16 outperforms a similarly sized ResNet-50 by 1.4% on ImageNet, and 6.5% on ImageNet-C.
SAM also significantly improves MLP-Mixers’ results.

4.4 Intrinsic changes after SAM

We take a deeper look into the models to understand how they intrinsically change to reduce the
Hessian’ eigenvalue λmax and what the changes imply in addition to the enhanced generalization.

Smoother loss landscapes for every network component. In Table 3, we break down the Hessian
of the whole architecture into small diagonal blocks of Hessians concerning each set of parameters,
attempting to analyze what specific components cause the blowing up of λmax in the models trained
without SAM. We observe that shallower layers have larger Hessian eigenvalues λmax, and the first
linear embedding layer incurs the sharpest geometry. This agrees with the finding in [15] that spiking
gradients happen early in the embedding layer. Additionally, the multi-head self-attention (MSA) in
ViTs and the Token MLPs in MLP-Mixers, both of which mix information across spatial locations,
have comparably lower λmax than the other network components. SAM consistently reduces the
λmax of all network blocks.

We can gain insights into the above findings by the recursive formulation of Hessian matrices for
MLPs [7]. Let hk and ak be the pre-activation and post-activation values for layer k, respectively.
They satisfy hk = Wkak−1 and ak = fk(hk), where Wk is the weight matrix and fk is the activation
function (GELU [27] in MLP-Mixers). Here we omit the bias term for simplicity. The diagonal block
of Hessian matrix Hk with respect to Wk can be recursively calculated as:

Hk = (ak−1a
T
k−1)⊗Hk, Hk = BkW

T
k+1Hk+1Wk+1Bk +Dk, (3)

Bk = diag(f �
k(hk)), Dk = diag(f ��

k (hk)
∂L

∂ak
), (4)

where ⊗ is the Kronecker product, Hk is the pre-activation Hessian for layer k, and L is the objective
function. Therefore, the Hessian norm accumulates as the recursive formulation backpropagates to
shallow layers, explaining why the first block has much larger λmax than the last block in Table 3.

Greater weight norms. After applying SAM, we find that the norm of the post-activation value
ak−1 and the weight Wk+1 become even bigger (see Table 3), indicating that the commonly used
weight decay may not effectively regularize ViTs and MLP-Mixers.

Sparser active neurons in MLP-Mixers. Given the recursive formulation (3) to (4), we identify
another intrinsic measure of MLP-Mixers that contribute to the Hessian: the number of activated
neurons. Indeed, Bk is determined by the activated neurons whose values are greater than zero, since
the first-order derivative of GELU becomes much smaller when the input is negative. As a result, the
number of active GELU neurons is directly connected to the Hessian norm. Figure 2 (right) shows the
proportion of activated neurons for each block, counted using 10% of the ImageNet training set. We
can see that SAM greatly reduces the proportion of activated neurons for the first few layers, pushing
them to much sparser states. This result also suggests the potential redundancy of image patches.

ViTs’ active neurons are highly sparse. Although Equations (3) and (4) only involve MLPs, we
still observe a decrease of activated neurons in the first layer of ViTs (but not as significant as in
MLP-Mixers). More interestingly, we find that the proportion of activated neurons in ViT is much

6

Table 4: Data augmentation, SAM, and their combination applied to different model architectures
trained on ImageNet and its subsets.

Training Set #Images ResNet-152 ViT-B/16 Mixer-B/16

Vanilla SAM Vanilla SAM AUG SAM
+ AUG Vanilla SAM AUG SAM

+ AUG

ImageNet 1,281,167 78.5 79.3 74.6 79.9 79.6 81.5 66.4 77.4 76.5 78.1

i1k (1/2) 640,583 74.2 75.6 64.9 75.4 73.1 75.8 53.9 71.0 70.4 73.1
i1k (1/4) 320,291 68.0 70.3 52.4 66.8 63.2 65.6 37.2 62.8 61.0 65.8
i1k (1/10) 128,116 54.6 57.1 32.8 46.1 38.5 45.7 21.0 43.5 43.0 51.0

training is proportional to the number of training images. When trained on i1k (1/4), it boosts ViT-
B/16 and Mixer-B/16 by 14.4% and 25.6%, escalating their results to 66.8% and 62.8%, respectively.
It also tells that ViT-B/16-SAM matches the performance of ResNet-152-SAM even with only 1/2
ImageNet training data.

5.2 SAM complements strong augmentation and is more robust to different training settings

Figure 4: ImageNet validation
accuracy (Top) and improve-
ment (Bottom) brought by SAM
on different training sets.

Following the training pipeline in [53], we also study how SAM
interplays with the strong data augmentations of mixup [65] (with
probability 0.5) and RandAugment [17] (with two layers and mag-
nitude 15). Table 4 shows the effects of the augmentations, SAM,
and their combination on ImageNet and three subsets of train-
ing images. SAM benefits ViT-B/16 and Mixer-B/16 more than
the strong data augmentations, especially when the training set
is small. When the training set contains only 1/10 of ImageNet
training images, SAM outperforms data augmentations by 7.6%
for ViT-B/16. Besides, SAM and the strong data augmentations
are complementary for most test cases.

The results demonstrate SAM is more robust to the change of
training settings than the combination of strong augmentation
methods. Figure 2 (middle) plots the training loss when using
strong augmentations. It is very noisy, implying the difficulty of
tuning their hyperparameters. In comparison, SAM is a principled
optimizer that introduces only one additional hyperparameter ρ.
Appendices report the experiments of tuning ρ, which does not
complicate other hyper-parameters.

5.3 SAM complements contrastive learning

In addition to data augmentations and large-scale pretraining, another notable way of improving
a neural model’s generalization is (supervised) contrastive learning [9, 11, 25, 31]. We couple
SAM with the supervised contrastive learning [31] for 350 epochs, followed by fine-tuning the
classification head by 90 epochs for both ViT-S/16 and ViT-B/16. Please see the Appendices for more
implementation details. Compared to the training procedure without SAM, we find considerable
performance gain thanks to SAM’s smoothing of the contrastive loss geometry, improving the
ImageNet top-1 accuracy of ViT-S/16 from 77.0% to 78.1%, and ViT-B/16 from 77.4% to 80.0%.

5.4 When ViTs and MLP-Mixers meet both SAM and adversarial training

Interestingly, SAM and adversarial training are both minimax problems except that SAM’s inner
maximization is with respect to the network weights, while the latter concerns about the input for
defending contrived attack [39, 57]. Moreover, similar to SAM, Shafahi et al. [46] suggest that
adversarial training can flatten and smooth the loss landscape. In light of these connections, we study
ViTs and MLP-Mixers under the adversarial training framework. To incorporate SAM, we formulate
a three-level objective:

min
w

max
�∈Ssam

max
δ∈Sadv

Ltrain(w + �, x+ δ, y), (5)

where Ssam and Sadv denote the allowed perturbation norm balls for the model parameter w and
input image x, respectively. Note that we can simultaneously obtain the gradients for computing �

8

Table 5: Comparison under the adversarial training framework on ImageNet (numbers in the paren-
theses denote the improvement over the standard adversarial training without SAM). With similar
model size and throughput, ViTs-SAM can still outperform ResNets-SAM for clean accuracy and
adversarial robustness.

Model #params Throughput
(img/sec/core) ImageNet Real V2 PGD-10 ImageNet-R ImageNet-C

ResNet
ResNet-50-SAM 25M 2161 70.1 (-0.7) 77.9 (-0.3) 56.6 (-0.8) 54.1 (+0.9) 27.0 (+0.9) 42.7 (-0.1)
ResNet-101-SAM 44M 1334 73.6 (-0.4) 81.0 (+0.1) 60.4 (-0.6) 58.8 (+1.4) 29.5 (+0.6) 46.9 (+0.3)
ResNet-152-SAM 60M 935 75.1 (-0.4) 82.3 (+0.2) 62.2 (-0.4) 61.0 (+1.8) 30.8 (+1.4) 49.1 (+0.6)

Vision Transformer
ViT-S/16-SAM 22M 2043 73.2 (+1.2) 80.7 (+1.7) 60.2 (+1.4) 58.0 (+5.2) 28.4 (+2.4) 47.5 (+1.6)
ViT-B/32-SAM 88M 2805 69.9 (+3.0) 76.9 (+3.4) 55.7 (+2.5) 54.0 (+6.4) 26.0 (+3.0) 46.4 (+3.0)
ViT-B/16-SAM 87M 863 76.7 (+3.9) 82.9 (+4.1) 63.6 (+4.3) 62.0 (+7.7) 30.0 (+4.9) 51.4 (+5.0)

MLP-Mixer
Mixer-S/16-SAM 18M 4005 67.1 (+2.2) 74.5 (+2.3) 52.8 (+2.5) 50.1 (+4.1) 22.9 (+2.6) 37.9 (+2.5)
Mixer-B/32-SAM 60M 4209 69.3 (+9.1) 76.4 (+10.2) 54.7 (+9.4) 54.5 (+13.9) 26.3 (+8.0) 43.7 (+8.8)
Mixer-B/16-SAM 59M 1390 73.9 (+11.1) 80.8 (+11.8) 60.2 (+11.9) 59.8 (+17.3) 29.0 (+10.5) 45.9 (+12.5)

Table 6: Accuracy on downstream tasks of the models pretrained on ImageNet. SAM improves ViTs
and MLP-Mixers’ transferabilities to the tasks. ViTs transfer better than ResNets of similar sizes.

% ResNet-
50-SAM

ResNet-
152-SAM ViT-S/16 ViT-S/16-

SAM ViT-B/16 ViT-B/16-
SAM Mixer-S/16 Mixer-S/16-

SAM Mixer-B/16 Mixer-B/16-
SAM

CIFAR-10 97.4 98.2 97.6 98.2 98.1 98.6 94.1 96.1 95.4 97.8
CIFAR-100 85.2 87.8 85.7 87.6 87.6 89.1 77.9 82.4 80.0 86.4
Flowers 90.0 91.1 86.4 91.5 88.5 91.8 83.3 87.9 82.8 90.0
Pets 91.6 93.3 90.4 92.9 91.9 93.1 86.1 88.7 86.1 92.5

Average 91.1 92.6 90.0 92.6 91.5 93.2 85.4 88.8 86.1 91.7

and δ by backpropagation only once. To lower the training cost, we use fast adversarial training [57]
with the l∞ norm for δ, and the maximum per-pixel change is set as 2/255.

Table 5 evaluates the models’ clean accuracy, real-world robustness, and adversarial robustness
(under 10-step PGD attack [39]). It is clear that the landscape smoothing significantly improves the
convolution-free architectures for both clean and adversarial accuracy. However, we observe a slight
accuracy decrease on clean images for ResNets despite gain for robustness. Similar to our previous
observations, ViTs surpass similar-size ResNets when adversarially trained on ImageNet with the
basic Inception-style preprocessing for both clean accuracy and adversarial robustness.

5.5 ViTs and MLP-Mixers with smoother loss geometry transfer better to downstream tasks

Finally, we study the role of smoothed loss geometry in transfer learning. We select four datasets to
test ViTs and MLP-Mixers’ transferabilities: CIFAR-10/100 [35], Oxford-IIIT Pets [43], and Oxford
Flowers-102 [42]. We fine-tune all the models with image resolution 224 using vanilla SGD. For
comparison, we also include ResNet-50-SAM and ResNet-152-SAM in the experiments. Table 6
summarizes the results, which confirm that the enhanced models also perform better after fine-tuning
and that MLP-Mixers gain the most from the sharpness-aware optimization.

6 Conclusion and Discussion

This paper presents a detailed analysis of the convolution-free ViTs and MLP-Mixers from the lens
of the loss landscape geometry, intending to reduce the models’ dependency on massive pretraining
and/or strong data augmentations. We arrive at the sharpness-aware minimizer (SAM) after observing
sharp local minima of the converged models. By explicitly regularizing the loss geometry through
SAM, the models enjoy much flatter loss landscapes and improved generalization regarding accuracy
and robustness. The resultant ViT models outperform ResNets of comparable size and throughput
when learned with no pretraining or strong augmentations. Further investigation reveals that the
smoothed loss landscapes attribute to much sparser activated neurons in the first few layers. Moreover,
ViTs after SAM offer perceptive attention maps.

Future work will focus on the following limitations of the work. The update to � is approximated up
to the first order by one step only, and it may be improved by considering multiple steps or higher

9

Published as a conference paper at ICLR 2022

SURROGATE GAP MINIMIZATION
IMPROVES SHARPNESS-AWARE TRAINING

Juntang Zhuang1 ∗

j.zhuang@yale.edu
Boqing Gong2, Liangzhe Yuan2, Yin Cui2, Hartwig Adam2

{bgong, lzyuan, yincui, hadam}@google.com

Nicha C. Dvornek1, Sekhar Tatikonda1, James S. Duncan1

{nicha.dvornek, sekhar.tatikonda, james.duncan}@yale.edu

Ting Liu2

liuti@google.com 1 Yale University, 2 Google Research

ABSTRACT

The recently proposed Sharpness-Aware Minimization (SAM) improves gener-
alization by minimizing a perturbed loss defined as the maximum loss within a
neighborhood in the parameter space. However, we show that both sharp and flat
minima can have a low perturbed loss, implying that SAM does not always prefer
flat minima. Instead, we define a surrogate gap, a measure equivalent to the dom-
inant eigenvalue of Hessian at a local minimum when the radius of neighborhood
(to derive the perturbed loss) is small. The surrogate gap is easy to compute and
feasible for direct minimization during training. Based on the above observations,
we propose Surrogate Gap Guided Sharpness-Aware Minimization (GSAM), a
novel improvement over SAM with negligible computation overhead. Conceptu-
ally, GSAM consists of two steps: 1) a gradient descent like SAM to minimize
the perturbed loss, and 2) an ascent step in the orthogonal direction (after gradi-
ent decomposition) to minimize the surrogate gap and yet not affect the perturbed
loss. GSAM seeks a region with both small loss (by step 1) and low sharpness (by
step 2), giving rise to a model with high generalization capabilities. Theoretically,
we show the convergence of GSAM and provably better generalization than SAM.
Empirically, GSAM consistently improves generalization (e.g., +3.2% over SAM
and +5.4% over AdamW on ImageNet top-1 accuracy for ViT-B/32). Code is
released at https://sites.google.com/view/gsam-iclr22/home.

1 INTRODUCTION

Modern neural networks are typically highly over-parameterized and easy to overfit to training data,
yet the generalization performances on unseen data (test set) often suffer a gap from the training
performance (Zhang et al., 2017a). Many studies try to understand the generalization of machine
learning models, including the Bayesian perspective (McAllester, 1999; Neyshabur et al., 2017),
the information perspective (Liang et al., 2019), the loss surface geometry perspective (Hochreiter
& Schmidhuber, 1995; Jiang et al., 2019) and the kernel perspective (Jacot et al., 2018; Wei et al.,
2019). Besides analyzing the properties of a model after training, some works study the influence
of training and the optimization process, such as the implicit regularization of stochastic gradient
descent (SGD) (Bottou, 2010; Zhou et al., 2020), the learning rate’s regularization effect (Li et al.,
2019), and the influence of the batch size (Keskar et al., 2016).

These studies have led to various modifications to the training process to improve generalization.
Keskar & Socher (2017) proposed to use Adam in early training phases for fast convergence and
then switch to SGD in late phases for better generalization. Izmailov et al. (2018) proposed to
average weights to achieve a wider local minimum, which is expected to generalize better than sharp
minima. A similar idea was later used in Lookahead (Zhang et al., 2019). Entropy-SGD (Chaudhari

∗Work was done during an internship at Google

1

Published as a conference paper at ICLR 2022

Figure 1: Consider original loss f (solid line), perturbed loss fp � max||δ||≤ρ f(w+δ) (dashed line),
and surrogate gap h(w) � fp(w)− f(w). Intuitively, fp is approximately a max-pooled version of
f with a pooling kernel of width 2ρ, and SAM minimizes fp. From left to right are the local minima
centered at w1, w2, w3, and the valleys become flatter. Since fp(w1) = fp(w3) < fp(w2), SAM
prefers w1 and w3 to w2. However, a low fp could appear in both sharp (w1) and flat (w3) minima,
so fp might disagree with sharpness. On the contrary, a smaller surrogate gap h indicates a flatter
loss surface (Lemma 3.3). From w1 to w3, the loss surface is flatter, and h is smaller.

• ∇f(wt) = ∇f�(wt) +∇f⊥(wt): Decompose ∇f(wt) into parallel component ∇f�(wt) and
vertical component ∇f⊥(wt) by projection ∇f(wt) onto ∇fp(wt).

2.2 SHARPNESS-AWARE MINIMIZATION

Conventional optimization of neural networks typically minimizes the training loss f(w) by gradient
descent w.r.t. ∇f(w) and searches for a single point w with a low loss. However, this vanilla training
often falls into a sharp valley of the loss surface, resulting in inferior generalization performance
(Chaudhari et al., 2019). Instead of searching for a single point solution, SAM seeks a region with
low losses so that small perturbation to the model weights does not cause significant performance
degradation. SAM formulates the problem as:

minw fp(w) where fp(w) � max||δ||≤ρ f(w + δ) (1)

where ρ is a predefined constant controlling the radius of a neighborhood. This perturbed loss
fp induced by f(w) is the maximum loss within the neighborhood. When the perturbed loss is
minimized, the neighborhood corresponds to low losses (below the perturbed loss). For a small ρ,
using Taylor expansion around w, the inner maximization in Eq. 1 turns into a linear constrained
optimization with solution

argmax||δ||≤ρ f(w + δ) = argmax||δ||≤ρ f(w) + δ�∇f(w) +O(ρ2) = ρ
∇f(w)

||∇f(w)|| (2)

As a result, the optimization problem of SAM reduces to

minw fp(w) ≈ minw f(wadv) where wadv � w + ρ
∇f(w)

||∇f(w)||+ �
(3)

where � is a scalar (default: 1e-12) to avoid division by 0, and wadv is the “perturbed weight” with
the highest loss within the neighborhood. Equivalently, SAM seeks a solution on the surface of the
perturbed loss fp(w) rather than the original loss f(w) (Foret et al., 2020).

3 THE SURROGATE GAP MEASURES THE SHARPNESS AT A LOCAL MINIMUM

3.1 THE PERTURBED LOSS IS NOT ALWAYS SHARPNESS-AWARE

Despite that SAM searches for a region of low losses, we show that a solution by SAM is not
guaranteed to be flat. Throughout this paper we measure the sharpness at a local minimum of loss
f(w) by the dominant eigenvalue σmax (eigenvalue with the largest absolute value) of Hessian. For
simplicity, we do not consider the influence of reparameterization on the geometry of loss surfaces,
which is thoroughly discussed in (Laurent & Massart, 2000; Kwon et al., 2021).

3

Published as a conference paper at ICLR 2022

Figure 2: ∇f is decomposed into
parallel and vertical (∇f⊥) com-
ponents by projection onto ∇fp.
∇fGSAM = ∇fp − α∇f⊥

Algorithm 1 GSAM Algorithm
For t = 1 to T

0) ρt schedule: ρt = ρmin + (ρmax−ρmin)(lr−lrmin)
lrmax−lrmin

1a) Δwt = ρt
∇f(t)

||∇f(t)||+�

1b) wadv
t = wt +Δwt

2) Get ∇f
(t)
p by back-propagation at wadv

t .
3) ∇f (t) = ∇f

(t)
� + ∇f

(t)
⊥ Decompose ∇f (t) into compo-

nents that are parallel and orthogonal to ∇f
(t)
p .

4) Update weights:
Vanilla wt+1 = wt − ηt∇f (t)

SAM wt+1 = wt − ηt∇f
(t)
p

GSAM wt+1 = wt − ηt(∇f
(t)
p − α∇f

(t)
⊥)

Lemma 3.1. For some fixed ρ, consider two local minima w1 and w2, fp(w1) ≤ fp(w2) �=⇒
σmax(w1) ≤ σmax(w2), where σmax is the dominant eigenvalue of the Hessian.

We leave the proof to Appendix. Fig. 1 illustrates Lemma 3.1 with an example. Consider three
local minima denoted as w1 to w3, and suppose the corresponding loss surfaces are flatter from w1

to w3. For some fixed ρ, we plot the perturbed loss fp and surrogate gap h � fp − f around each
solution. Comparing w2 with w3: Suppose their vanilla losses are equal, f(w2) = f(w3), then
fp(w2) > fp(w3) because the loss surface is flatter around w3, implying that SAM will prefer w3

to w2. Comparing w1 and w2: fp(w1) < fp(w2), and SAM will favor w1 over w2 because it only
cares about the perturbed loss fp, even though the loss surface is sharper around w1 than w2.

3.2 THE SURROGATE GAP AGREES WITH SHARPNESS

We introduce the surrogate gap that agrees with sharpness, defined as:

h(w) � max||δ||≤ρ f(w + δ)− f(w) ≈ f(wadv)− f(w) (4)

Intuitively, the surrogate gap represents the difference between the maximum loss within the neigh-
borhood and the loss at the center point. The surrogate gap has the following properties.
Lemma 3.2. Suppose the perturbation amplitude ρ is sufficiently small, then the approximation to
the surrogate gap in Eq. 4 is always non-negative, h(w) ≈ f(wadv)− f(w) ≥ 0, ∀w.
Lemma 3.3. For a local minimum w∗, consider the dominate eigenvalue σmax of the Hessian of
loss f as a measure of sharpness. Considering the neighborhood centered at w∗ with a small radius
ρ, the surrogate gap h(w∗) is an equivalent measure of the sharpness: σmax ≈ 2h(w∗)/ρ2.

The proof is in Appendix. Lemma 3.2 tells that the surrogate gap is non-negative, and Lemma 3.3
shows that the loss surface is flatter as h gets closer to 0. The two lemmas together indicate that we
can find a region with a flat loss surface by minimizing the surrogate gap h(w).

4 SURROGATE GAP GUIDED SHARPNESS-AWARE MINIMIZATION

4.1 GENERAL IDEA: SIMULTANEOUSLY MINIMIZE THE PERTURBED LOSS AND SURROGATE
GAP

Inspired by the analysis in Section 3, we propose Surrogate Gap Guided Sharpness-Aware
Minimzation (GSAM) to simultaneously minimize two objectives, the perturbed loss fp and the
surrogate gap h:

minw
�
fp(w), h(w)

�
(5)

Intuitively, by minimizng fp we search for a region with a low perturbed loss similar to SAM, and
by minimizing h we search for a local minimum with a flat surface. A low perturbed loss implies

4

Published as a conference paper at ICLR 2022

low training losses within the neighborhood, and a flat loss surface reduces the generalization gap
between training and test performances (Chaudhari et al., 2019). When both are minimized, the
solution gives rise to high accuracy and good generalization.

Potential caveat in optimization It is tempting and yet sub-optimal to combine the objectives in
Eq. 5 to arrive at minw fp(w)+λh(w), where λ is some positive scalar. One caveat when solving this
weighted combination is the potential conflict between the gradients of the two terms, i.e., ∇fp(w)
and ∇h(w). We illustrate this conflict by Fig. 2, where ∇h(w) = ∇fp(w) − ∇f(w) (the grey
dashed arrow) has a negative inner product with ∇fp(w) and ∇f(w). Hence, the gradient descent
for the surrogate gap could potentially increase the loss fp, harming the model’s performance. We
empirically validate this argument in Sec. 6.4.

4.2 GRADIENT DECOMPOSITION AND ASCENT FOR THE MULTI-OBJECTIVE OPTIMIZATION

Our primary goal is to minimize fp because otherwise a flat solution of high loss is meaningless,
and the minimization of h should not increase fp. We propose to decompose ∇f(wt) and ∇h into
components that are parallel and orthogonal to ∇fp(wt), respectively (see Fig. 2):

∇f(wt) = ∇f�(wt) +∇f⊥(wt)

∇h(wt) = ∇h�(wt) +∇h⊥(wt) (6)

∇h⊥(wt) = −∇f⊥(wt)

The key is that updating in the direction of ∇h⊥(wt) does not change the value of the perturbed loss
fp(wt) because ∇h⊥ ⊥ ∇fp by construction. Therefore, we propose to perform a descent step in
the ∇h⊥(wt) direction, which is equivalent to an ascent step in the ∇f⊥(wt) direction (because
∇h⊥ = −∇f⊥ by the definition of h), and achieve two goals simultaneously — it keeps the value
of fp(wt) intact and meanwhile decreases the surrogate gap h(wt) = fp(wt)−f(wt) (by increasing
f(wt) and not affect fp(wt)).

The full GSAM Algorithm is shown in Algo. 1 and Fig. 2, where g(t), g(t)p are noisy observations of
∇f(wt) and ∇fp(wt), respectively, and g

(t)
� , g

(t)
⊥ are noisy observations of ∇f�(wt) and ∇f⊥(wt),

respectively, by projecting g(t) onto g
(t)
p . We introduce a constant α to scale the stepsize of the

ascent step. Steps 1) to 2) are the same as SAM: At current point wt, step 1) takes a gradient ascent
to wadv

t followed by step 2) evaluating the gradient g(t)p at wadv
t . Step 3) projects g(t) onto g

(t)
p ,

which requires negligible computation compared to the forward and backward passes. In step 4),
−ηtg

(t)
p is the same as in SAM and minimizes the perturbed loss fp(wt) with gradient descent, and

αηtg
(t)
⊥ performs an ascent step in the orthogonal direction of g(t)p to minimize the surrogate gap

h(wt) (equivalently increase f(wt) and keep fp(wt) intact). In coding, GSAM feeds the “surrogate
gradient” ∇fGSAM

t � g
(t)
p − αg

(t)
⊥ to first-order gradient optimizers such as SGD and Adam.

The ascent step along g
(t)
⊥ does not harm convergence SAM demonstrates that minimizing fp

makes the network generalize better than minimizing f . Even though our ascent step along g
(t)
⊥

increases f(w), it does not affect fp(w), so GSAM still decreases the perturbed loss fp in a way
similar to SAM. In Thm. 5.1, we formally prove the convergence of GSAM. In Sec. 6 and Appendix
C, we empirically validate that the loss decreases and accuracy increases with training.

Illustration with a toy example We demonstrate different algorithms by a numerical toy example
shown in Fig. 3. The trajectory of GSAM is closer to the ridge and tends to find a flat minimum.
Intuitively, since the loss surface is smoother along the ridge than in sharp local minima, the sur-
rogate gap h(w) is small near the ridge, and the ascent step in GSAM minimizes h to pushes the
trajectory closer to the ridge. More concretely, ∇f(wt) points to a sharp local solution and deviates
from the ridge; in contrast, wadv

t is closer to the ridge and ∇f(wadv
t) is closer to the ridge descent

direction than ∇f(wt). Note that ∇fGSAM
t and ∇f(wt) always lie at different sides of ∇fp(wt)

by construction (see Fig. 2), hence ∇fGSAM
t pushes the trajectory closer to the ridge than ∇fp(wt)

does. The trajectory of GSAM is like descent along the ridge and tends to find flat minima.

5

Published as a conference paper at ICLR 2022

Table 1: Top-1 Accuracy (%) on ImageNet datasets for ResNets, ViTs and MLP-Mixers trained with
Vanilla SGD or AdamW, SAM, and GSAM optimizers.

Model Training ImageNet-v1 ImageNet-Real ImageNet-V2 ImageNet-R ImageNet-C
ResNet

ResNet50
Vanilla (SGD) 76.0 82.4 63.6 22.2 44.6

SAM 76.9 83.3 64.4 23.8 46.5
GSAM 77.2 83.9 64.6 23.6 47.6

ResNet101
Vanilla (SGD) 77.8 83.9 65.3 24.4 48.5

SAM 78.6 84.8 66.7 25.9 51.3
GSAM 78.9 85.2 67.3 26.3 51.8

ResNet152
Vanilla (SGD) 78.5 84.2 66.3 25.3 50.0

SAM 79.3 84.9 67.3 25.7 52.2
GSAM 80.0 85.9 68.6 27.3 54.1

Vision Transformer

ViT-S/32
Vanilla (AdamW) 68.4 75.2 54.3 19.0 43.3

SAM 70.5 77.5 56.9 21.4 46.2
GSAM 73.8 80.4 60.4 22.5 48.2

ViT-S/16
Vanilla (AdamW) 74.4 80.4 61.7 20.0 46.5

SAM 78.1 84.1 65.6 24.7 53.0
GSAM 79.5 85.3 67.3 25.3 53.3

ViT-B/32
Vanilla (AdamW) 71.4 77.5 57.5 23.4 44.0

SAM 73.6 80.3 60.0 24.0 50.7
GSAM 76.8 82.7 63.0 25.1 51.7

ViT-B/16
Vanilla (AdamW) 74.6 79.8 61.3 20.1 46.6

SAM 79.9 85.2 67.5 26.4 56.5
GSAM 81.0 86.5 69.2 27.1 55.7

MLP-Mixer

Mixer-S/32
Vanilla (AdamW) 63.9 70.3 49.5 16.9 35.2

SAM 66.7 73.8 52.4 18.6 39.3
GSAM 68.6 75.8 55.0 22.6 44.6

Mixer-S/16
Vanilla (AdamW) 68.8 75.1 54.8 15.9 35.6

SAM 72.9 79.8 58.9 20.1 42.0
GSAM 75.0 81.7 61.9 23.7 48.5

Mixer-S/8
Vanilla (AdamW) 70.2 76.2 56.1 15.4 34.6

SAM 75.9 82.5 62.3 20.5 42.4
GSAM 76.8 83.4 64.0 24.6 47.8

Mixer-B/32
Vanilla (AdamW) 62.5 68.1 47.6 14.6 33.8

SAM 72.4 79.0 58.0 22.8 46.2
GSAM 73.6 80.2 59.9 27.9 52.1

Mixer-B/16
Vanilla (AdamW) 66.4 72.1 50.8 14.5 33.8

SAM 77.4 83.5 63.9 24.7 48.8
GSAM 77.8 84.0 64.9 28.3 54.4

���� ���� ���� ���� ���� ����

��

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
�
�

��������������

�����

�����

����

���� ���� ���� ���� ���� ����

���

���

���

���

���

���

��
�
��
�
�

�
�

���������������������������������

�����

�����

����

���� ���� ���� ���� ���� ����

�

�

�

�

�

��
�
�

�
�
�
��

��

����������������������������

�����

�����

����

Figure 4: Influence of ρ (set as constant for ease of comparison, other experiments use decayed
ρt schedule) and α on the training of ViT-B/32. Left: Top-1 accuracy on ImageNet. Middle:
Estimation of the dominant eigenvalues from the surrogate gap, σmax ≈ 2h/ρ2. Right: Dominant
eigenvalues of the Hessian calculated via the power iteration. Middle and right figures match in
the trend of curves, validating that the surrogate gap can be viewed as a proxy of the dominant
eigenvalue of Hessian.

8

Published as a conference paper at ICLR 2022

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
�
�

�����������������

�������

�������

���

����������

����

�����������

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
�
�

����������������������

�������

�������

���

����������

����

�����������

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
�
�

��������������������

�������

�������

���

����������

����

�����������

Figure 5: Top-1 accuracy of Mixer-S/32 trained with different methods. “+ascent” represents
applying the ascent step in Algo. 1 to an optimizer. Note that our GSAM is described as
SAM+ascent(=GSAM) for consistency.

Table 2: Results (%) of GSAM and
min(fp + λh) on ViT-B/32

Dataset min(fp + λh) GSAM
ImageNet 75.4 76.8
ImageNet-Real 81.1 82.7
ImageNet-v2 60.9 63.0
ImageNet-R 23.9 25.1

Table 3: Transfer learning results (top-1 accuracy, %)
ViT-B/16 ViT-S/16

Vanilla SAM GSAM Vanilla SAM GSAM
Cifar10 98.1 98.6 98.8 97.6 98.2 98.4

Cifar100 87.6 89.1 89.7 85.7 87.6 88.1
Flowers 88.5 91.8 91.2 86.4 91.5 90.3

Pets 91.9 93.1 94.4 90.4 92.9 93.5
mean 91.5 93.2 93.5 90.0 92.6 92.6

eigenvalues estimated by the surrogate gap, σmax ≈ 2h/ρ2 (Lemma 3.3). In the right subfigure, we
directly calculate the dominant eigenvalues using the power-iteration (Mises & Pollaczek-Geiringer,
1929). The estimated dominant eigenvalues (middle) match the real eigenvalues σmax (right) in
terms of the trend that σmax decreases with α and ρ. Note that the surrogate gap h is derived over
the whole training set, while the measured eigenvalues are over a subset to save computation. These
results show that the ascent step in GSAM minimizes the dominant eigenvalue by minimizing the
surrogate loss, validating Thm 5.3.

6.3 COMPARISON WITH METHODS IN THE LITERATURE

Section 6.1 compares GSAM to SAM and vanilla training. In this subsection, we further compare
GSAM against Entropy-SGD (Chaudhari et al., 2019) and Adaptive-SAM (ASAM) (Kwon et al.,
2021), which are designed to improve generalization. Note that Entropy-SGD uses SGD in the inner
Langevin iteration and can be combined with other base optimizers such as AdamW as the outer
loop. For Entropy-SGD, we find the hyper-parameter “scope” from 0.0 and 0.9, and search for the
inner-loop iteration number between 1 and 14. For ASAM, we search for ρ between 1 and 7 (10×
larger than in SAM) as recommended by the ASAM authors. Note that the only difference between
ASAM and SAM is the derivation of the perturbation, so both can be combined with the proposed
ascent step. As shown in Fig. 5, the proposed ascent step increases test accuracy when combined
with both SAM and ASAM and outperforms Entropy-SGD and vanilla training.

6.4 ADDITIONAL STUDIES

GSAM outperforms a weighted combination of the perturbed loss and surrogate gap With an
example in Fig. 2, we demonstrate that directly minimizing fp(w) + λh(w) as discussed in Sec. 4.1
is sub-optimal because ∇h(w) could conflict with ∇fp(w) and ∇f(w). We empirically validate
this argument on ViT-B/32. We search for λ between 0.0 and 0.5 with a step 0.1 and search for ρ in
the same grid as SAM and GSAM. We report the best accuracy of each method. Top-1 accuracy in
Table 2 show the superior performance of GSAM, validating our analysis.

min(fp, h)min(fp, h)min(fp, h) vs. min(f, h)min(f, h)min(f, h) GSAM solves min(fp, h) by descent in ∇fp, decomposing ∇f onto ∇fp,
and an ascent step in the orthogonal direction to increase f while keep fp intact. Alternatively, we
can also optimize min(f, h) by descent in ∇f , decomposing ∇fp onto ∇f , and a descent step in
the orthogonal direction to decrease fp while keep f intact. The two GSAM variations perform
similarly (see Fig. 6, right). We choose min(fp, h) mainly to make the minimal change to SAM.

GSAM benefits transfer learning Using weights trained on ImageNet-1k, we finetune models with
SGD on downstream tasks including the CIFAR10/CIFAR100 (Krizhevsky et al., 2009), Oxford-

9

Published as a conference paper at ICLR 2022

����� ������ ������

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
��

�

��������������������������

�������

���

����

���� ���������

��

��

��

��

��

�
�
�
��
��
�
�
�
��
�
�
��
�
�

����������������������������

�������

���

����

�������� ������������� �����������
��

��

��

��

��

��

��

��
�
��
�
�
�
�
�
��
��
��
�
�
�
��
�
�
��
�
� ������� �������������� ��

������� ��

������ ��

Figure 6: Top-1 accuracy of ViT-B/32 for the additional studies (Section 6.4). Left: from left to right
are performances under different data augmentations (details in Appendix B.3) , where the vanilla
method is trained for 2× the epochs. Middle: performance with different base optimizers. Right:
Comparison between min(fp, h) and min(f, h).

flowers (Nilsback & Zisserman, 2008) and Oxford-IITPets (Parkhi et al., 2012). Results in Table 3
shows that GSAM leads to better transfer performance than vanilla training and SAM.

GSAM remains effective under various data augmentations We plot the top-1 accuracy of a
ViT-B/32 model under various Mixup (Zhang et al., 2017b) augmentations in Fig. 6 (left subfigure).
Under different augmentations, GSAM consistently outperforms SAM and vanilla training.

GSAM is compatible with different base optimizers GSAM is generic and applicable to various
base optimizers. We compare vanilla training, SAM and GSAM using AdamW (Loshchilov &
Hutter, 2017) and AdaBelief (Zhuang et al., 2020) with default hyper-parameters. Fig. 6 (middle
subfigure) shows that GSAM performs the best, and SAM improves over vanilla training.

7 CONCLUSION

We propose the surrogate gap as an equivalent measure of sharpness which is easy to compute and
feasible to optimize. We propose the GSAM method, which improves the generalization over SAM
at negligible computation cost. We show the convergence and provably better generalization of
GSAM compared to SAM, and validate the superior performance of GSAM on various models.

ACKNOWLEDGEMENT

We would like to thank Xiangning Chen (UCLA) and Hossein Mobahi (Google) for discussions, Yi
Tay (Google) for help with datasets, and Yeqing Li, Xianzhi Du, and Shawn Wang (Google) for help
with TensorFlow implementation.

ETHICS STATEMENT

This paper focuses on the development of optimization methodologies and can be applied to the
training of different deep neural networks for a wide range of applications. Therefore, the ethical
impact of our work would primarily be determined by the specific models that are trained using our
new optimization strategy.

REPRODUCIBILITY STATEMENT

We provide the detailed proof of theoretical results in Appendix A and provide the data pre-
processing and hyper-parameter settings in Appendix B. Together with the references to existing
works and public codebases, we believe the paper contains sufficient details to ensure reproducibil-
ity. We plan to release the models trained by using GSAM upon publication.

REFERENCES

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts
to extrapolation. arXiv preprint arXiv:2110.09485, 2021.

10

Published as a conference paper at ICLR 2022

���� ���� ���� ���� ���� ����

��

��

��

��

��

��

��

��

��

��

��
�
�
��
�
�
�
��
�
�
��
�
�

���

���

����

(a) Performance of SAM and GSAM under different ρ.

����� ����� ����� ����� �����

��

��

��

��

��

��

��

��

��

��

��
�
��
��
�
�
�
��
�
�
��

�

��

�������

���

(b) Performance of GSAM under different α

Figure 7: Performance of GSAM varying with ρ and α.

Table 5: Top-1 accuracy of ViT-B/32 on ImageNet with Inception-style data augmentation. For
vanilla training we report results for training 300 epochs and 600 epochs, for GSAM we report the
results for 300 epochs.

Method Epochs ImageNet ImageNet-Real ImageNet-v2 ImageNet-R

Vanilla 300 71.4 77.5 57.5 23.4
600 72.0 78.2 57.9 23.6

GSAM 300 76.8 82.7 63.0 25.1

shown in Fig. 7a. Considering that GSAM has one more parameter α, we plot the accuracy varying
with α in Fig. 7b, and show that GSAM consistently outperforms SAM and vanilla training.

C.2 CONSTANT ρ V.S. DECAYED ρt SCHEDULE

Note that Thm. 5.1 assumes ρt to decay with t in order to prove the convergence, while SAM uses a
constant ρ during training. To eliminate the influence of ρt schedule, we conduct ablation study as
in Table. 6. The ascent step in GSAM can be applied to both constant ρ or a decayed ρt schedule,
and improves accuracy for both cases. Without ascent step, constant ρ and decayed ρt achieve
similar performance. Results in Table. 6 implies that the ascent step in GSAM is the main reason
for improvement of generalization performance.

� ��� ��� ��� ���� ���� ���� ����

�������������

���

���

���

���

���

���

�
�
�
��
�

������

��

�����

����

�����

����

Figure 8: The value of cos θt varying with train-
ing steps, where θt is the angle between ∇f(wt)
and ∇fp(wt) as in Fig. 2.

� ��� ��� ��� ���� ���� ���� ����

�������������

���

���

���

���

���

���

���

�
�
��
�
�
�
��
��
�
�
��

������������� �������������������

��

�����

����

�����

����

Figure 9: Surrogate gap curve under different α
values.

23

