

SAT-based Multi-Agent Path Finding

an overview

PAVEL SURYNEKČVUT - CZECH TECHNICAL UNIVERSITYFIT - FACULTY OF INFORMATION
TECHNOLOGYPRAHA, CZECHIA

Background in Multi Agent Path Finding

Multi-agent Path Finding (MAPF) [Silver, 2005]

Problem components

- G=(V,E)
 - agents placed in vertices
 - $A = \{a_1, a_2, ..., a_k\}, k < |V|$
- at least one vertex empty
 - at most one agent per vertex

Task

- initial placement of agents
 - $\circ \alpha_0: A \to V$
- move agents so that agents arrive to their goals
 - $^{\circ}$ goal agent placement α₊: A → V

Moving agent a_i across edge {u,v} into empty v

Motivation

Navigation of multiple robots • agent = robot

Container movement planning

agent = container

Quantum program compilation

qubit/quantum gate allocation

Robust scheduling/planning

 repair the schedule/plan by swapping of activities

Economic Impact

- KIVA agents/Amazon
 - warehouse relocation
 - bought by Amazon
 - \$775.000.000
- Autonomous cars
 - Google, Toyota, Tesla
 - combines
 - autonomy
 - multi-agent path finding

Parking systems

- AVERT
- saves
 - space, time,
 - energy, ...
- Computer games
 - \$ multi-billion market

Optimization – Makespan/Sum-of-costs

When **time** matters (makespan μ)

- each more requires 1 unit of time
- all agents in goals at earliest time

When energy matters (sum-of-costs ξ)
each move consumes 1 unit of energy
the least energy consumed in total

Makespan and sum-of-costs **optimization** • go against each other

both NP-hard

Optimization - Complexity

Minimize cumulative costs such a the number of moves, cost, fuel, ...

- unit edges in the basic variant
 - each move or wait action costs 1
- NP-hard problem [Ratner & Warmuth, 1986; Bonnet et al., 2016]
- inapproximable (APX-hard) [Mitzow et al., 2016]

Known bounds [Kornhauser et al., 1984; Yamanaka et al., 2016]

- any MAPF instance can be solved using O(|V|³) moves
- there are instance that need $\Omega(|V|^3)$

Feasible solution (not requiring the minimum number of moves)

- can be found in polynomial time
- O(|V|³) time and O(|V|³) moves

Solving MAPF reduction to SAT

Overview of SAT-based Approaches

Improving sub-optimal solutions [2011]

- takes a solution generated by some polynomial time algorithm and improves it w.r.t. given cumulative objective (makespan, sum-of-costs, fuel, ...)
 - replaces sub-sequence of moves in the current solution with an **optimal sub-sequence**

SAT-Plan inspired approach [2014]

- being confident and going directly to optimal solution
 - like replacing entire solution sequence with an optimal one
- we do not need the iterative process at all

Problem Decomposition / Independence Detection [2017]

planning for isolated groups of agents separately

Lazy Compilation + SMT [2019]

using incomplete propositional encodings – do not encode all MAPF rules

Propositional Satisfiability (SAT)

- Propositional formula / satisfiability
 - a formula \mathcal{F} over 0/1 (false/true) variables
 - Is there an assignment under which *F* evaluates to 1/true?
- Benefits of reduction
 - powerful propositional solvers
 - decades of development
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - and most recently
 - machine learning for variable/value ordering
 - MapleSAT (winner in recent SAT competitions)
 - multi-agent path finding \Rightarrow formula \mathcal{F}
 - all these advanced techniques accessed almost for free

 $(x \lor \neg y) \land (\neg x \lor y)$ Satisfied for x = 1, y = 1

Reducing MAPF to SAT [Surynek, 2012]

MAPF instance \rightarrow sequence of SAT instances

- $\mathcal{F}(\xi)$ satisfiable iff MAPF has a solution of cost ξ
- consult the SAT solver on $\mathcal{F}(\xi_0)$, $\mathcal{F}(\xi_0+1)$, $\mathcal{F}(\xi_0+2)$, ... until a satisfiable formula is met
 - $\circ \ \xi_0$ lower bound on the cost
- cumulative objectives in MAPF imply monotonicity of solvability
 - unsolvable, unsolvable, unsolvable, solvable, solvable, ...

Iterative Algorithm – **MDD-SAT**

- ξ_0 sum of lengths of shortest paths
- first satisfiable $\mathcal{F}(\xi)$ corresponds to the minimum cost
 - satisfiability of $\mathcal{F}(\xi)$ is monotonic w.r.t. ξ

[Surynek, Felner, Stern, Boyarski, 2016] MAPF **Encoding** through Time Expansion

- positions of all agents at all time-steps are represented in TEGs
- introduce a **propositional** variable for **each node** and **each edge** in TEGs
 - a node variable is TRUE iff an agent occupies the vertex at the given time-step
 - an edge variable is TRUE iff an agent makes move across the edge

Example of MAPF Rule Encoding

- Propositional variables for a_i ∈ A, v,u ∈V,t ∈ {0,1,..., bound derived from the objective}
 - Node variables
 - **X**(**a**_i)^t TRUE iff agent **a**_i occupies vertex **v** at time-step **t**
 - Edge variables
 - $E(a_i)_{u,v}^{t}$ TRUE iff agent a_i starts traversal of edge (u,v) (starting in u) at time-step t
- Target vertex **v** of a movement of agent **a**_i across **(u,v)** must be empty at time-step **t**

 $\mathsf{E}(\mathsf{a}_{\mathsf{i}})_{\mathsf{u},\mathsf{v}}{}^{\mathsf{t}} \Rightarrow \bigwedge_{\mathsf{a}_{\mathsf{j}} \in \mathsf{A}|\mathsf{a}_{\mathsf{j}} \neq \mathsf{a}_{\mathsf{i}}} \neg \mathsf{X}(\mathsf{a}_{\mathsf{j}})_{\mathsf{v}}{}^{\mathsf{t}}$

- Implication a ⇒ (¬b ∧ ¬c ∧ ¬d...) can be written as a conjunction of multiple binary clauses
 - ∘ (¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ ¬d) ∧ ...

Experimental Evaluation

Setup

- small 4-connected grids
 - random initial and
 - goal arrangement
 - dense occupation
- large game maps
 - **Dragon Age** standard benchmark
 - sparse occupation

Comparison

- search-based algorithms
 - previous state-of-the-art
 - ICTS [Felner et al., 2013], EPEA [Sharon et al., 2014], ICBS [Sharon et al., 2014]

Results

- SAT-based approach
 - better in hard setups

Solved instances Grid 32x32 | 10% obstacles

Problem Decomposition [Standley, AAAI 2010]

Solve independent sub-problems separately

- Solving procedure of time complexity **O(2^N)**
 - N the number of agents

Problem decomposition

- decompose into two independent sub-problems of size N/2
- solve sub-problems separately
- merge solutions of sub-problems

time(total) = time(decomposition) + 2 * $O(2^{N/2})$ + time(merging) = $O(N) + O(2^{N/2+1}) << O(2^{N})$

In theory. What about practice?

Independence Detection

Dividing agents in **groups**

- G₁,G₂,G₃,...
- Plan for each group **independently** \circ Time O(2^{|G_i|})

If two groups \boldsymbol{G}_i and \boldsymbol{G}_k collide

- $^{\circ}\,$ Try to replan for $\rm G_{i}$
 - while **avoid** all other groups
- $^{\circ}\,$ or try to replan for $\mathrm{G_{k}}$
 - while avoid all other groups
- if both fails
 - $\circ~\mbox{merge}~\mbox{G}_{i}$ and \mbox{G}_{k}

Integration into SAT-based approachencode group avoidance in formulae

Experiments – small instances

4 – connected grids

- Sizes 8x8, 16x16, 32x32
- 10% obstacles

Agents

1..20 (8x8), 1..40 (16x16), 1..60 (32x32)

Algorithms

- MDD-SAT
 - original SAT-based MAPF solver (Surynek et al., ECAI 2016)
- MDD-SAT+ID
 - with independent detection
- ICTS, ICBS

Experiments – large instances

Big 4-connected grids

- Dragon Age game
- Size:
 - **481x530** (brc202d), **257x256** (den520d), **194x194** (ost003d)
- 32 agents

Distance from goals 1..320

ost003d

ICTS

ICBS

100

Runtime (seconds)

MDD-SAT+ID

MDD-SAT

den520d

brc202d

Conflict Based Search

Conflict-based Search (CBS) [Sharon et al., 2013]

- A* at the high level, nodes contain incomplete solutions
 considers collisions lazily
- 1. searches for individual shortest paths connecting initial position $\alpha_0(a_i)$ with goal $\alpha_+(a_i)$ for each a_i
- 2. validates solution from the OPEN list w.r.t. MAPF rules
- a) **vertex conflict** (a_i, a_j, u, t)
 - \circ **a**_i and **a**_j both appear in **u** at time-step **t**
 - add conflicts: a_i cannot appear in u at t in one branch, a_j cannot appear in u at t in the other branch
- b) edge conflict (a_i, a_j, {u,v,w}, t)
 - **a**_i traverses **(u,v)** at **t** but **a**_j appearing in **v** at **t** traverses **(v,u)** (opposite direction) which is forbidden usually
 - add conflicts: a_i cannot traverse (u,v) at t or a_j cannot traverse (v,u) at t

Introduce Constraints Lazily ^[Surynek, IJCAI 2019]

SMT – Satisfiability Modulo Theory

- SAT Solver
 - works on top of propositional skeleton only decision variables (nodes X(a_i)_u^t, edges E(a_i)_{u,v}^t)
 - no understanding of MAPF rules

• DECIDE_{MAPF}

- complete understanding of MAPF rules
- checks the assignment from the SAT solver
 - returns conflict elimination constraints

$$\neg \mathsf{E}_{1,2}^{1} \lor \neg \mathsf{E}_{3,2}^{1}$$

40

20

-CBS

60

MDD-SAT —SMT-CBS

80

100 120

Various types of graphs

- 4-conneced grids
- Stars
- Paths
- Cliques
- Random graphs (50% edges)

Up to 16 agents

Results

- significant improvement from previous SAT-based solving
- degeneration towards complete formula in hard cases

20

CBS

40

80

60

Experiments - large graphs

Big 4-connected grids

- Dragon Age game
- Size:
 - 481x530 (brc202d), 257x256 (den520d), 194x194 (ost003d)
- up to 64 agents

Results

- lazy encoding helps much more in large cases
 - better chance that agents do not collide

Runtime Ost003d

Runtime (seconds)

Conclusion

Not everything in SAT-based MAPF has been covered

- finding suboptimal solutions using SAT
- various encodings of constraints
 - Boolean circuits for calculating objectives
- log-space representation of decision variables

Variants of MAPF

- multiple agents per vertex
- adversarial MAPF
 - multiple teams of agents compete

•

Further reading

- web site: mapf.info [Koenig, 2019]
- community is growing around MAPF
 - MAPF session and workshop at IJCAI 2019

Future Work: Continuous MAPF

MAPF^R

- environment G=(V,E)
 - each vertex has a position
- **agents** $A = \{a_1, a_2, ..., a_k\}$
 - each circular agent has
 - constant velocity
 - diameter

Movements

- agents move along straight lines connecting vertices
- agents' bodies must not overlap

Methods – SAT again (SMT more precisely)

 not only lazy constraint generation but also lazy decision variable generation

Thank you