
SAT-based Multi-Agent Path Finding
an overview

PAVEL SURYNEK ČVUT - CZECH TECHNICAL UNIVERSITY

FIT - FACULTY OF INFORMATION
TECHNOLOGY

PRAHA, CZECHIA

u v

u vai

ai

Background
in Multi Agent Path Finding

Multi-agent Path Finding (MAPF) [Silver, 2005]

Problem components
◦ G=(V,E)

◦ agents placed in vertices

◦ A = {a1, a2, …, ak}, k < |V|

◦ at least one vertex empty

◦ at most one agent per vertex

Task
◦ initial placement of agents

◦ α0: A → V

◦ move agents so that agents arrive to their goals
◦ goal agent placement α+: A → V

u vu v

Moving agent ai across edge
{u,v} into empty v

α+α0 A

a2

a3

a1

a2

a3

α0 α1 α2 α3 α4= α+

A C C C D
B B A A A
D D D B B

B C

D

A

B C

D

a1

ai ai

a3

a1

a2

Motivation
Navigation of multiple robots
◦ agent = robot

Container movement planning
◦ agent = container

Quantum program compilation
◦ qubit/quantum gate allocation

Robust scheduling/planning
◦ repair the schedule/plan by

swapping of activities

Economic Impact
 KIVA agents/Amazon

 warehouse relocation
 bought by Amazon

• $ 775.000.000

 Autonomous cars
 Google, Toyota, Tesla
 combines

• autonomy
• multi-agent path finding

 Parking systems
 AVERT
 saves

• space, time,
◦ energy, ...

 Computer games
 $ multi-billion market

Optimization – Makespan/Sum-of-costs
When time matters (makespan µ)
◦ each more requires 1 unit of time

◦ all agents in goals at earliest time

When energy matters (sum-of-costs ξ)
◦ each move consumes 1 unit of energy

◦ the least energy consumed in total

Makespan and sum-of-costs optimization
◦ go against each other

◦ both NP-hard

1

2

3

4

5

6

A

C

F

D

E

a

b

7

8

9

B

μ = 7
ξ* = 11

μ* = 6
ξ = 12

a
b

α0

A
7

α1

F
2

α2

E
3

α3

D
4

α6 = α+

6
8

α4

C
5

α5

B
9

Optimal makespan μ*
Sub-optimal sum-of-costs ξ

a
b

α0

A
7

α1

9
C

α2

5
D

α3

4
E

α7 = α+

6
8

α4

3
8

α5

2
8

α6

1
8

Optimal sum-of-costs ξ*
Sub-optimal makespan μ

Optimization - Complexity
Minimize cumulative costs such a the number of moves, cost, fuel, …
◦ unit edges in the basic variant

◦ each move or wait action costs 1

◦ NP-hard problem [Ratner & Warmuth, 1986; Bonnet et al., 2016]

◦ inapproximable (APX-hard) [Mitzow et al., 2016]

Known bounds [Kornhauser et al., 1984; Yamanaka et al., 2016]

◦ any MAPF instance can be solved using O(|V|3) moves

◦ there are instance that need Ω(|V|3)

Feasible solution (not requiring the minimum number of moves)
◦ can be found in polynomial time

◦ O(|V|3) time and O(|V|3) moves

G = (V,E)

Solving MAPF
reduction to SAT

Overview of SAT-based Approaches
Improving sub-optimal solutions [2011]
◦ takes a solution generated by some polynomial time algorithm and improves it w.r.t.

given cumulative objective (makespan, sum-of-costs, fuel, …)
◦ replaces sub-sequence of moves in the current solution with an optimal sub-sequence

SAT-Plan inspired approach [2014]
◦ being confident and going directly to optimal

solution
◦ like replacing entire solution sequence

with an optimal one

◦ we do not need the iterative process at all

Problem Decomposition / Independence Detection [2017]
◦ planning for isolated groups of agents separately

Lazy Compilation + SMT [2019]
◦ using incomplete propositional encodings – do not encode all MAPF rules

Base solution

Time steps

New solution

SAT solving

Next
iteration

makespan

Propositional Satisfiability (SAT)
 Propositional formula / satisfiability

 a formula ℱ over 0/1 (false/true) variables
 Is there an assignment under which ℱ evaluates to 1/true?

 Benefits of reduction
 powerful propositional solvers

• decades of development
• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, …
• intelligent search, learning, restarts, heuristics, …

• and most recently
• machine learning for variable/value ordering
• MapleSAT (winner in recent SAT competitions)

 multi-agent path finding formula ℱ
• all these advanced techniques accessed almost for free

(x ∨¬y) ∧ (¬x ∨ y)
Satisfied for x = 1, y = 1

Reducing MAPF to SAT [Surynek, 2012]

MAPF instance → sequence of SAT instances
◦ ℱ(ξ) satisfiable iff MAPF has a solution of cost ξ
◦ consult the SAT solver on ℱ(ξ0), ℱ(ξ0+1), ℱ(ξ0+2), … until a satisfiable formula is met

◦ ξ0 lower bound on the cost

◦ cumulative objectives in MAPF imply monotonicity of solvability
◦ unsolvable, unsolvable, unsolvable, solvable, solvable, …

Iterative Algorithm – MDD-SAT
◦ ξ0 sum of lengths of shortest paths

◦ first satisfiable ℱ(ξ) corresponds to
the minimum cost
◦ satisfiability of ℱ(ξ) is monotonic w.r.t. ξ

SAT
solver

Encoder

ξ = ξ0

ℱ(ξ)

Yes

No

ξ ξ +1

Solution

MAPF Encoding through Time Expansion
Time Expanded Graph (TEG) TEG for agent a1 = TEG1

◦ positions of all agents at all time-steps are represented in TEGs
◦ introduce a propositional variable for each node and each edge in TEGs

◦ a node variable is TRUE iff an agent occupies the vertex at the given time-step

◦ an edge variable is TRUE iff an agent makes move across the edge

u2

u1

u3

G=(V,E)

u0
1

u0
2

u0
3

u2
1

u2
2

u2
3

time step

0 1 2

u1
1

u1
2

u1
3

μ =3 α+α0

a1

a1

TEG1 for ξ = 4

a1

u0
1

u0
2

u0
3

u3
1

u3
2

u3
3

time step

0 1 2 3

u2
1

u2
2

u2
3

u1
1

u1
2

u1
3

u2

u1

u3

u2

u1

u3

a1

a1 a1

[Surynek, Felner, Stern, Boyarski, 2016]

Example of MAPF Rule Encoding
◦ Propositional variables for ai ∈ A, v,u ∈V,t ∈ {0,1,…, bound derived from the objective}

◦ Node variables

◦ X(ai)u
t TRUE iff agent ai occupies vertex v at time-step t

◦ Edge variables

◦ E(ai)u,v
t TRUE iff agent ai starts traversal of edge (u,v) (starting in u) at time-step t

◦ Target vertex v of a movement of agent ai across (u,v) must be empty at time-step t

◦ Implication a ⇒ (¬b ∧ ¬c ∧ ¬d…) can be written as a conjunction of multiple binary
clauses

◦ (¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ ¬d) ∧ …

E(ai)u,v
t ⇒ ∧ aj ∈ A| aj ≠ ai

¬ X(aj)v
t

Experimental Evaluation
 Setup

 small 4-connected grids
• random initial and
◦ goal arrangement
• dense occupation

 large game maps
• Dragon Age – standard benchmark
• sparse occupation

 Comparison
 search-based algorithms

• previous state-of-the-art
• ICTS [Felner et al., 2013],

EPEA [Sharon et al., 2014],
ICBS [Sharon et al., 2014]

 Results
 SAT-based approach

• better in hard setups

0

50

100

150

200

250

300

350

0,1 1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 32x32 | 10% obstacles

MDD-SAT

EPEA

ICTS

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|32 agents

MDD-SAT

ICBS

ICTS

Problem Decomposition [Standley, AAAI 2010]

Solve independent sub-problems separately

◦ Solving procedure of time complexity O(2N)

◦ N - the number of agents

Problem decomposition

◦ decompose into two independent sub-problems of size N/2

◦ solve sub-problems separately

◦ merge solutions of sub-problems

time(total) = time(decomposition) + 2 * O(2N/2) + time(merging) = O(N) + O(2N/2+1) << O(2N)

In theory. What about practice?

Independence Detection
Dividing agents in groups
◦ G1,G2,G3,…

Plan for each group independently
◦ Time O(2|Gi|)

If two groups Gi and Gk collide
◦ Try to replan for Gi

◦ while avoid all other groups

◦ or try to replan for Gk

◦ while avoid all other groups

◦ if both fails

◦ merge Gi and Gk

Integration into SAT-based approach
◦ encode group avoidance in formulae

vertices

time

21 3 4 5 21 3 4 5

G1 G2 G3 G1 G2 G3

Experiments – small instances
Algorithms

◦ MDD-SAT
◦ original SAT-based MAPF solver (Surynek et al., ECAI 2016)

◦ MDD-SAT+ID
◦ with independent detection

◦ ICTS, ICBS
◦ Increasing cost tree search – search based algorithms (Sharon et al., AIJ 2013)

0

20

40

60

80

100

120

140

160

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 8x8|10% obstacles

MDD-SAT+ID

MDD-SAT

ICBS

ICTS
0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Grid 16x16|10% obstacles

MDD-SAT+ID

MDD-SAT

ICBS

ICTS
0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Grid 32x32 | 10% obstacles

MDD-SAT+ID

ICBS

ICTS

MDD-SAT

4 – connected grids
◦ Sizes 8x8, 16x16, 32x32

◦ 10% obstacles

Agents
◦ 1..20 (8x8), 1..40 (16x16), 1..60 (32x32)

Experiments – large instances
Big 4-connected grids

◦ Dragon Age game

◦ Size:

◦ 481x530 (brc202d), 257x256 (den520d), 194x194 (ost003d)

◦ 32 agents

Distance from goals 1..320

ost003d den520d brc202d

0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Ost003d|32 agents

ICTS

ICBS

MDD-SAT+ID

MDD-SAT

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Den520d|32 agents

ICTS

ICBS

MDD-SAT+ID

MDD-SAT

0

50

100

150

200

250

300

350

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Brc202d|32 agents

ICBS

ICTS

MDD-SAT+ID

MDD-SAT

Conflict Based Search
Conflict-based Search (CBS) [Sharon et al., 2013]
◦ A* at the high level, nodes contain incomplete solutions
◦ considers collisions lazily

1. searches for individual shortest paths connecting
initial position α0(ai) with goal α+(ai) for each ai

2. validates solution from the OPEN list w.r.t. MAPF rules
◦ a) vertex conflict (ai, aj, u, t)

◦ ai and aj both appear in u at time-step t

◦ add conflicts: ai cannot appear in u at t in one branch, aj cannot appear in u at t in the other branch

◦ b) edge conflict (ai, aj, {u,v,w}, t)
◦ ai traverses (u,v) at t but aj appearing in v at t traverses (v,u) (opposite direction) which is forbidden usually

◦ add conflicts: ai cannot traverse (u,v) at t or aj cannot traverse (v,u) at t

waj

v uai

w

ajv uai

Introduce Constraints Lazily [Surynek, IJCAI 2019]

SMT – Satisfiability Modulo Theory
◦ SAT Solver

◦ works on top of propositional skeleton – only decision variables (nodes X(ai)u
t, edges E(ai)u,v

t)

◦ no understanding of MAPF rules

◦ DECIDEMAPF

◦ complete understanding of MAPF rules

◦ checks the assignment from the SAT solver

◦ returns conflict elimination constraints

a1

u2

u1

u3
a2

a1

u0
1

u0
2

u0
3

u3
1

u3
2

u3
3

u2
1

u2
2

u2
3

u1
1

u1
2

u1
3

a2

E1,2
1

E3,2
1

¬ E1,2
1 ∨ ¬ E3,2

1

DECIDE
MAPF

SAT
solver

ℱ

Yes

No

¬ Ei,j
t ∨ ¬ Ek,l

t

Solution

assignment

Experiments - small graphs
Various types of graphs

◦ 4-conneced grids
◦ Stars
◦ Paths
◦ Cliques
◦ Random graphs (50% edges)

Up to 16 agents

Results
◦ significant improvement from

previous SAT-based solving
◦ degeneration towards complete

formula in hard cases

0,001
0,01

0,1
1

10
100

1000

0 40 80 120 160 200

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime | Grid 8×8

CBS MDD-SAT SMT-CBS

0,001
0,01

0,1
1

10
100

1000

0 20 40 60 80 100

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime | Random (16)

CBS MDD-SAT SMT-CBS

0,001
0,01

0,1
1

10
100

1000

0 20 40 60 80 100 120
R

u
n

ti
m

e
(s

ec
o

n
d

s)

Instance

Runtime | Clique (16)

CBS MDD-SAT SMT-CBS

0,001
0,01

0,1
1

10
100

1000

0 20 40 60 80

R
u

n
ti

m
e

(s
e

co
n

d
s)

Instance

Runtime | Star (16)

CBS MDD-SAT SMT-CBS

Experiments - large graphs
Big 4-connected grids

◦ Dragon Age game

◦ Size:

◦ 481x530 (brc202d), 257x256 (den520d), 194x194 (ost003d)

◦ up to 64 agents

Results
◦ lazy encoding helps much more in

large cases
◦ better chance that agents do not collide

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Brc202d| MAPF

0 100 200 300 400

Instance

Runtime Den520d

0 100 200 300
Instance

Runtime Ost003d

CBS

MDD-SAT

SMT-CBS

Conclusion
Not everything in SAT-based MAPF has been covered

◦ finding suboptimal solutions using SAT
◦ various encodings of constraints

◦ Boolean circuits for calculating objectives

◦ log-space representation of decision variables

Variants of MAPF
◦ multiple agents per vertex

◦ adversarial MAPF
◦ multiple teams of agents compete

◦ …

Further reading
◦ web site: mapf.info [Koenig, 2019]

◦ community is growing around MAPF
◦ MAPF session and workshop at IJCAI 2019

Future Work:
Continuous MAPF
MAPFR

◦ environment G=(V,E)
◦ each vertex has a position

◦ agents A = {a1,a2,…,ak}
◦ each circular agent has

◦ constant velocity

◦ diameter

Movements
◦ agents move along straight lines connecting vertices
◦ agents‘ bodies must not overlap

Methods – SAT again (SMT more precisely)
◦ not only lazy constraint generation but also

lazy decision variable generation

α+α0

a2

a3

a1

G=(V,E)

a2

a1

a3

a2

a1
a3

conflict

Thank you

