Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

Ondřej Tichý^{1,2}

¹ Institute of Information Theory and Automation ² Faculty of Nuclear Sciences and Physical Engineering

Seminář strojového učení a modelování 21.11.2013

Supervisor: Václav Šmídl (UTIA)

Ondřej Tichý

Outline

- Problem description
- Current approaches
- Blind source separation (BSS)
- Deconvolution in BSS (BCMS)
- Automatic regions of interest in BSS (FAROI)
- Automatic relevant determination and deconvolution in BSS (S-BSS-vecDC)
- On validation of the algorithms

3

The scheme of scintigraphy:

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

- 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CT:

Scintigraphy:

Ondřej Tichý

The scheme of tissues detection from renal scintigraphy sequence:

Ondřej Tichý

Why should we do that?

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

E

Why should we do that?

e.g. Relative Renal Function (RRF) computation in clinical practise:

- Computed from parenchyma activity during accumulation.
- L_p is activity in the left parenchyma.
- R_p is activity in the right parenchyma.
- RRF (for the left kidney):

$$\mathsf{RRF} = \frac{L_{\rho}}{L_{\rho} + R_{\rho}} \tag{1}$$

It is possible to select a specific region and obtain its activity in time.

[M. Caglar et al., Nuclear medicine communications, vol. 29, no. 11, p. 1002, 2008.]

Ondřej Tichý

It is possible to select a specific region and obtain its activity in time.

[M. Caglar et al., Nuclear medicine communications, vol. 29, no. 11, p. 1002, 2008.]

- Clear activity of parenchyma can be achieved by subtraction of reference background.
- Problems: it is very time consuming and highly dependent on physician.

Ondřej Tichý

Kidneys borders can be found using software AUTOROI.

[E. Garcia et al., Nuclear medicine communications, vol. 31, no. 5, p. 366, 2010.]

Ondřej Tichý

Kidneys borders can be found using software AUTOROI.

[E. Garcia et al., Nuclear medicine communications, vol. 31, no. 5, p. 366, 2010.]

- Focused only on kidney border.
- Manual interaction is necessary.

Ondřej Tichý

Dynamic renal study is examined in [Ståhl et al. 2011]; based on compartment modeling.

Fig. 6. The injection, blood/tissue, left kidney, right kidney and bladder compartment

[D. Ståhl et al., Image Analysis, 557-568, Springer Berlin Heidelberg, 2011.]

Ondřej Tichý

Dynamic renal study is examined in [Ståhl et al. 2011]; based on compartment modeling.

Fig. 6. The injection, blood/tissue, left kidney, right kidney and bladder compartment

[D. Ståhl et al., Image Analysis, 557-568, Springer Berlin Heidelberg, 2011.]

A whole kidney is one compartment.

Ondřej Tichý

Dynamic studies of tumor are examined in [Chen et al. 2011].

[L. Chen et al., Medical Imaging, IEEE Transactions on, no. 99, pp. 1-16, 2011.]

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

Dynamic studies of tumor are examined in [Chen et al. 2011].

[L. Chen et al., Medical Imaging, IEEE Transactions on, no. 99, pp. 1-16, 2011.]

- Manual setting of number of compartments is necessary.
- Huge computation issues.

Ondřej Tichý

Consider following scalar model:

$$d = ax + e$$
 (2)

Ondřej Tichý

Consider following scalar model:

$$d = ax + e \tag{2}$$

Since $e \sim \mathcal{N}(0, r_e)$, then

$$f(d|a, x, r_e) = \mathcal{N}(ax, r_e)$$
(3)

and priors for a and x are chosen as

$$f(a|r_a) = \mathcal{N}(0, r_a) \tag{4}$$
$$f(\mathbf{x}|\mathbf{r}_a) = \mathcal{N}(0, r_a) \tag{5}$$

$$f(\boldsymbol{x}|\boldsymbol{r}_{\boldsymbol{x}}) = \mathcal{N}(\boldsymbol{0},\boldsymbol{r}_{\boldsymbol{x}}) \tag{5}$$

Ondřej Tichý

Consider following scalar model:

$$d = ax + e \tag{2}$$

Since $e \sim \mathcal{N}(0, r_e)$, then

$$f(d|a, x, r_e) = \mathcal{N}(ax, r_e)$$
(3)

and priors for a and x are chosen as

$$f(a|r_a) = \mathcal{N}(0, r_a) \tag{4}$$
$$f(x|r_a) = \mathcal{N}(0, r_a) \tag{5}$$

$$f(\boldsymbol{x}|\boldsymbol{r}_{\boldsymbol{x}}) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{r}_{\boldsymbol{x}}) \tag{5}$$

Ondřej Tichý

- Following Variational Bayes (VB) method, we construct the posterior density and compute estimates of parameters a and x using iterative algorithm.
- Iterative VB algorithm estimates parameter using estimates of others.

- Following Variational Bayes (VB) method, we construct the posterior density and compute estimates of parameters a and x using iterative algorithm.
- Iterative VB algorithm estimates parameter using estimates of others.

Ondřej Tichý

Each recorded image is a superposition of biological tissues:

$$\mathbf{d}_t = \mathbf{a}_1 \mathbf{x}_{1,t} + \mathbf{a}_2 \mathbf{x}_{2,t} + \dots + \mathbf{a}_r \mathbf{x}_{r,t}$$
(6)

- t is the time index
- r is the number of physiological tissues
- d is the observed image (stored column-wise)
- ► **a**_k is the image of the *k*th tissue (stored column-wise)
- $x_{k,t}$ is the weight of the *k*th tissue image in time *t*

[J.W. Miskin. Ensemble learning for independent component analysis, PhD thesis, University of Cambridge, 2000.] Problem specifics:

- Poisson observation noise.
- Positivity of tissue images and time-activity curves.
- Unknown number of tissues.

[J.W. Miskin. Ensemble learning for independent component analysis, PhD thesis, University of Cambridge, 2000.] Problem specifics:

- Poisson observation noise.
- Positivity of tissue images and time-activity curves.
- Unknown number of tissues.

$$f(\mathbf{d}_t|\mathbf{A}, \mathbf{X}, \omega) = \mathbf{t} \mathcal{N}(\mathbf{A} \bar{\mathbf{x}}_t, \omega^{-1} \mathbf{I}_p \otimes \mathbf{I}_n),$$
(7)

$$f(\omega) = \mathsf{G}(\vartheta_0, \rho_0), \tag{8}$$

$$f(\mathbf{x}_k|v_k) = t\mathcal{N}(\mathbf{0}_{n,1}, v_k^{-1}I_n),$$
(9)

$$f([v_1,...,v_r]) = \prod_{k=1}^{r} G(\alpha_{k,0},\beta_{k,0}),$$
 (10)

$$f(\mathbf{a}_k) = t\mathcal{N}(\mathbf{0}_{p,1}, I_p), \tag{11}$$

Ondřej Tichý

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

E

 Note that biologically meaningful solution is not guaranteed.

Ondřej Tichý

[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.] Motivation:

The time-activity curves of tissues are convolution of the input activity (the blood) and tissue-specific kernels.

3

[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.] Motivation:

- The time-activity curves of tissues are convolution of the input activity (the blood) and tissue-specific kernels.
- The shape of the kernels is expected to be formed by a constant plateau followed by monotonic decrease to zero.

[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.] Motivation:

- The time-activity curves of tissues are convolution of the input activity (the blood) and tissue-specific kernels.
- The shape of the kernels is expected to be formed by a constant plateau followed by monotonic decrease to zero.

Ondřej Tichý

• Each time-activity curve, \mathbf{x}_k , is modeled as a convolution:

$$x_{t,k} = \sum_{m=1}^{t} b_{t-m+1} u_{m,k}$$
(12)

Ondřej Tichý

E

• Each time-activity curve, \mathbf{x}_k , is modeled as a convolution:

$$x_{t,k} = \sum_{m=1}^{t} b_{t-m+1} u_{m,k}$$
(12)

 Convolution kernels of each tissue are modeled as additions stored in vectors w_k,

$$w_{i,k} = \begin{cases} h_k & s_k \le i \le s_k + l_k \\ 0 & \text{otherwise} \end{cases}$$
(13)

• Each time-activity curve, \mathbf{x}_k , is modeled as a convolution:

$$x_{t,k} = \sum_{m=1}^{t} b_{t-m+1} u_{m,k}$$
(12)

 Convolution kernels of each tissue are modeled as additions stored in vectors w_k,

Ondřej Tichý

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

 $\mathcal{O} \mathcal{O} \mathcal{O}$

- 2

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

• • • • • • • • • • • •

-

E

BSS+ results

BCMS results

Ondřej Tichý

Automatic regions of interest in BSS (FAROI)

[V. Šmídl, O. Tichý. In 2012 IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.]

region of interest

(for the right kidney)

Ondřej Tichý
[V. Šmídl, O. Tichý. In 2012 IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.]

Each pixel $a_{i,k}$ in the tissue image \mathbf{a}_k has an indicator variable $\mathbf{i}_{i,k}$ such that

 $\mathbf{i}_{i,k} = \begin{cases} 1 & \text{i-th pixel has non-zero activity in the k-th factor,} \\ 0 & \text{i-th pixel has zero activity in the k-th factor.} \end{cases}$ (14)

Ondřej Tichý

We would like to have two extremes:

$$f(\mathbf{a}_{i,k}) = \begin{cases} \mathsf{U}(0,1) & \mathbf{i}_{i,k} = 1, \\ \mathsf{t}\mathcal{N}(0,\xi_k^{-1}) & \mathbf{i}_{i,k} = 0, \end{cases}$$

- U(0, 1) is a prior model of the tissue.
- $t\mathcal{N}(0,\xi_k^{-1})$ is a model of a "soft zero".

We would like to have two extremes:

$$f(\mathbf{a}_{i,k}) = \begin{cases} \mathsf{U}(0,1) & \mathbf{i}_{i,k} = 1, \\ \mathsf{t}\mathcal{N}(0,\xi_k^{-1}) & \mathbf{i}_{i,k} = 0, \end{cases}$$

- U(0, 1) is a prior model of the tissue.
- $t\mathcal{N}(0,\xi_k^{-1})$ is a model of a "soft zero".
- ▶ We model $\mathbf{i}_{i,k}$ as a continuous variable, $\mathbf{i}_{i,k} \in \langle 0, 1 \rangle$

$$f(a_{i,k}) = \mathsf{U}(0,1)^{\mathbf{i}_{i,k}} \times \mathsf{t}\mathcal{N}(0,\xi_k^{-1})^{(1-\mathbf{i}_{i,k})} \tag{15}$$

(for computation reason)

Ondřej Tichý

Ondřej Tichý

BSS:

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

000

[C.M. Bishop and M.E. Tipping. The 16th Conference on Uncertainty in Artificial Intelligence, pages 46–53, 2000.] Automatic relevance determination (ARD) principle:

$$f(\mathbf{s}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \operatorname{diag}(\boldsymbol{\theta})), \tag{16}$$
$$f(\boldsymbol{\theta}_t) = \mathbf{G}(\alpha_0, \beta_0), \tag{17}$$

Ondřej Tichý

[C.M. Bishop and M.E. Tipping. The 16th Conference on Uncertainty in Artificial Intelligence, pages 46–53, 2000.] Automatic relevance determination (ARD) principle:

$$f(\mathbf{s}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \operatorname{diag}(\boldsymbol{\theta})), \tag{16}$$
$$f(\boldsymbol{\theta}_t) = \mathbf{G}(\alpha_0, \beta_0), \tag{17}$$

The expected value of the prior variance of a redundant parameter approaches zero in the Variational Bayes solution.

Ondřej Tichý

Scalar example again:

$$d = ax + e, \ e \sim \mathcal{N}(0, r_e) \tag{18}$$

Ondřej Tichý

Scalar example again:

$$d = ax + e, \ e \sim \mathcal{N}(0, r_e) \tag{18}$$

$$\boldsymbol{p}(\boldsymbol{a}|\boldsymbol{r}_{\boldsymbol{a}}) = \mathsf{t}\mathcal{N}(\boldsymbol{0},\boldsymbol{r}_{\boldsymbol{a}}^{-1}), \ \boldsymbol{p}(\omega_{\boldsymbol{a}}) = \mathsf{G}(\alpha_{\boldsymbol{a}},\beta_{\boldsymbol{a}}), \tag{19}$$

Ondřej Tichý

Scalar example again:

$$d = ax + e, \ e \sim \mathcal{N}(0, r_e)$$
 (18)

$$\boldsymbol{\rho}(\boldsymbol{a}|\boldsymbol{r}_{\boldsymbol{a}}) = \mathsf{t}\mathcal{N}(\boldsymbol{0},\boldsymbol{r}_{\boldsymbol{a}}^{-1}), \ \boldsymbol{\rho}(\omega_{\boldsymbol{a}}) = \mathsf{G}(\alpha_{\boldsymbol{a}},\beta_{\boldsymbol{a}}), \tag{19}$$

Ondřej Tichý

improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.] Matrix formulation of the data model:

$$D = [\mathbf{a}_1, \dots, \mathbf{a}_r][\mathbf{x}_1, \dots, \mathbf{x}_r]' = AX'.$$
(20)

Ondřej Tichý

improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.] Matrix formulation of the data model:

$$D = [\mathbf{a}_1, \dots, \mathbf{a}_r][\mathbf{x}_1, \dots, \mathbf{x}_r]' = AX'.$$
(20)

 Each time-activity curve arrise as convolution of the input function and tissue-specific kernels as

$$\mathbf{x}_k = \mathbf{b} * \mathbf{u}_k, \ \forall k = 1, \dots, r.$$
 (21)

Ondřej Tichý

improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.] Matrix formulation of the data model:

$$D = [\mathbf{a}_1, \dots, \mathbf{a}_r][\mathbf{x}_1, \dots, \mathbf{x}_r]' = AX'.$$
(20)

 Each time-activity curve arrise as convolution of the input function and tissue-specific kernels as

$$\mathbf{x}_k = \mathbf{b} * \mathbf{u}_k, \ \forall k = 1, \dots, r.$$
 (21)

Thus,

$$D = AX' = A[\mathbf{u}_1, \dots, \mathbf{u}_r]' \begin{pmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ \dots & b_2 & b_1 & 0 \\ b_n & \dots & b_2 & b_1 \end{pmatrix}' = AU'B'.$$
(22)

Ondřej Tichý

• We adopt ARD principle for modeling A and U.

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

2

- ▶ We adopt ARD principle for modeling *A* and *U*.
- Model of pixels:

$$f(\overline{\mathbf{a}}_i|\boldsymbol{\xi}_i) = t\mathcal{N}(\mathbf{0}_{1,r}, \operatorname{diag}(\boldsymbol{\xi}_i)^{-1}), \quad \forall i = 1, \dots, p,$$
(23)
$$f(\boldsymbol{\xi}_i) = \prod_{k=1}^r \mathbf{G}(\phi_{ik,0}, \psi_{ik,0}),$$
(24)

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

2

Model of convolution kernels:

$$(\operatorname{vec}(U)|\Upsilon) = t\mathcal{N}(\mathbf{0}_{nr,1},\Upsilon^{-1}), \qquad (25)$$
$$f(\Upsilon) = \prod_{j=1}^{nr} \mathbf{G}(\alpha_{j,0},\beta_{j,0}), \qquad (26)$$

 Vectorized form of U allows us to model the relation between convolution kernels mutually

Ondřej Tichý

Model of convolution kernels:

$$f(\operatorname{vec}(U)|\Upsilon) = t\mathcal{N}(\mathbf{0}_{nr,1}, \Upsilon^{-1}), \qquad (25)$$
$$f(\Upsilon) = \prod_{j=1}^{nr} \mathbf{G}(\alpha_{j,0}, \beta_{j,0}), \qquad (26)$$

- Vectorized form of U allows us to model the relation between convolution kernels mutually
- Model of the input function:

$$f(\mathbf{b}|\varsigma) = t\mathcal{N}(\mathbf{0}_{n,1},\varsigma^{-1}I_n),$$
(27)
$$f(\varsigma) = \mathbf{G}(\zeta_0,\eta_0),$$
(28)

Ondřej Tichý

Ondřej Tichý

Example result:

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

BSS:

Example result:

S-BSS-vecDC:

Ondřei Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

100 150

Validation

How to validate or compare the algorithms since typically no ground truth is available?

æ

Validation

How to validate or compare the algorithms since typically no ground truth is available?

What we can do:

- Validation on synthetic data.
- Comparison with physician's separation results.
- Comparison on parameters such as RRF.

Validation on Synthetic Data

We generate data composed of 3 sources and noise.

Ondřej Tichý

We have 19 sequences where activities of parenchyma and heart are selected using experienced physician.

- We have 19 sequences where activities of parenchyma and heart are selected using experienced physician.
- We use these physician's results as our ground truth.
- The statistics such as MSE, MAE, or median can be calculated for the whole dataset and compared.

Experiment description:

- ► Each image has resolution 128 × 128 pixels.
- ► Each sequence contains 100 180 images.

Experiment description:

- ► Each image has resolution 128 × 128 pixels.
- ► Each sequence contains 100 180 images.
- We use automated ROIs based on those from physician hiding left or right kidney = we have 38 kidneys in experiment.

Experiment description:

- Each image has resolution 128×128 pixels.
- ► Each sequence contains 100 180 images.
- We use automated ROIs based on those from physician hiding left or right kidney = we have 38 kidneys in experiment.

 Activity of parenchyma is examined using algorithms: BSS, FAROI, CAM-CM, BCMS, S-BSS-vecDC.

Ondřej Tichý

Example result:

Ondřej Tichý

Example result:

algorithm	mean MLE \pm std MLE	mean MAE \pm std MAE	best MLE	best MAE
BSS+	$0.0314{\pm}0.0340$	0.1197±0.0687	3	4
FAROI	$0.0358 {\pm} 0.0469$	0.1202 ± 0.0860	9	7
CAM-CM	0.0376 ± 0.0262	$0.1444 {\pm} 0.0567$	0	1
BCMS	0.0207 ± 0.0296	0.0914±0.0601	10	11
S-BSS-vecDC	0.0124±0.0118	0.0730±0.0376	16	15

E

algorithm	mean MLE \pm std MLE	mean MAE \pm std MAE	best MLE	best MAE
BSS+	$0.0314{\pm}0.0340$	0.1197±0.0687	3	4
FAROI	$0.0358 {\pm} 0.0469$	0.1202 ± 0.0860	9	7
CAM-CM	0.0376 ± 0.0262	0.1444±0.0567	0	1
BCMS	0.0207±0.0296	0.0914±0.0601	10	11
S-BSS-vecDC	0.0124±0.0118	0.0730±0.0376	16	15

Ondřej Tichý

Clinical Validation

 107 data sets are available on http://www.dynamicrenalstudy.org/ since March 2012.

2

Clinical Validation

- 107 data sets are available on http://www.dynamicrenalstudy.org/ since March 2012.
- Data are well described and RRFs are given.

Ondřej Tichý

Clinical Validation

99 datasets are used (2 kidneys are required).

æ
Clinical Validation

- 99 datasets are used (2 kidneys are required).
- Each dataset: 180 images taken after each 10 seconds as a matrix of 128 × 128 pixels.
- Part of accumulation of each sequence is selected.

Clinical Validation

- 99 datasets are used (2 kidneys are required).
- Each dataset: 180 images taken after each 10 seconds as a matrix of 128 × 128 pixels.
- Part of accumulation of each sequence is selected.

Our objection:

- Assessment of relative renal function using: BSS, FAROI, CAM-CM, BCMS, S-BSS-vecDC.
- Comparison with expert RRFs via cumulative histogram.

Ondřej Tichý

Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences

Clinical Validation

 Quantiles of the difference of the estimated RRF from the reference value for all 99 patients.

algorithm	≦ 3%	≦ 5%	≦10%	≧10%
BSS+	38.4%	57.6%	78.8%	21.2%
FAROI	43.4%	58.6%	83.8%	16.2%
CAM-CM	30.3%	48.5%	63.6%	36.4%
CFA	42.4%	59.6%	82.8%	17.2%
S-BSS-vecDC	46.5%	68.7%	86.9%	13.1%

ㅋ ㅋ

Conclusion

- Blind source separation methods were introduced.
- Sparsity modeling of tissue images was proposed.
- Convolution model within blind source separation was proposed.
- Comparison on both synthetic and real data was given.

Thank you for your attention. Questions?

イロン 不得 とうほう イロン

2