

Petr Váňa (Supervisor: Jan Faigl)

Computational Robotics Laboratory Artificial Intelligence Center Center for Robotics and Autonomous Systems Faculty of Electrical Engineering Czech Technical University in Prague

Traveling Salesman Problem (TSP)

Problem 1 TSP

Given a set of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city.

Exact solutions '

Concorde math.uwaterloo.ca/tsp/concorde.html (Integer Linear Programming (ILP))

Heuristic algorithms '

LKH – K. Helsgaun efficient implementation of the Lin-Kernighan heuristic (1998). http://www.akira.ruc. dk/~keld/research/LKH/

Petr Váňa, Computational Robotics Laboratory

https://www.math.uwaterloo.ca/tsp/pubs/

Multi-Goal Planning

Problem 2 Multi-Goal Planning

Having a **set of locations or neighborhoods** to be visited, determine the cost-efficient path or trajectory to visit them.

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of Intelligent & Robotic Systems.

Petr Váňa, Computational Robotics Laboratory

Decoupled Solution of Multi-Goal Planning

First, determine the sequence.

A solution of the TSP for the centers of the disks

Second, solve the Touring problem.

A solution of the CETSP

Petr Váňa, Computational Robotics Laboratory

Sampling-based Solution of the Touring problem

- Sample each region (neighborhood) with k samples, e.g., k = 6.
- Construct graph and find the shortest tour in by graph search in $O(nk^3)$ for *n* regions and nk^2 edges in the sequence.

Petr Váňa, Computational Robotics Laboratory

https://comrob.fel.cvut.cz

Sampling-based Solution of the TSPN

- For an unknown sequence of the visits to the regions, there are $O(n^2k^2)$ possible edges.
- Finding the shortest path is NP-hard, as it can be formulated as the Generalized TSP.

Petr Váňa, Computational Robotics Laboratory

Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to ∞ (or 2M).

To ensure all vertices of the cluster are visited before leaving the cluster.

2. For each edge (q_i^m, q_j^n) create an edge (q_i^m, q_j^{n+1}) with a value increased by large *M*.

To ensure visit of all vertices in a cluster before the next cluster.

Petr Váňa, Computational Robotics Laboratory

Planning with Curvature-constrained Paths

General aviation

Unmanned vehicles

Flying cars

Petr Váňa, Computational Robotics Laboratory

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.
- Consider a fixed-wing aerial vehicle.
- Exploit the Dubins vehicle model
 - Minimal turning radius ρ .
 - Constant forward velocity v.
 - State of the vehicle is $q = (x, y, \theta)$.

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = v \begin{bmatrix} \cos \theta \\ \sin \theta \\ \frac{u}{\rho} \end{bmatrix}, \quad |u| \le 1,$$
 (1)

Traveling Salesmen Problem (TSP)

Petr Váňa, Computational Robotics Laboratory https://co

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.
- Consider a fixed-wing aerial vehicle.
- Exploit the **Dubins vehicle** model
 - Minimal turning radius ρ .
 - Constant forward velocity v.
 - State of the vehicle is $q = (x, y, \theta)$.

Petr Váňa, Computational Robotics Laboratory

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = v \begin{bmatrix} \cos \theta \\ \sin \theta \\ \frac{u}{\rho} \end{bmatrix}, \quad |u| \le 1,$$
 (1)

Dubins TSP (DTSP)

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.
- Consider a fixed-wing aerial vehicle.
- Exploit the **Dubins vehicle** model
 - Minimal turning radius ρ .
 - Constant forward velocity v.

Petr Váňa, Computational Robotics Laboratory

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.
- Consider a fixed-wing aerial vehicle.
- Exploit the Dubins vehicle model
 - Minimal turning radius ρ .
 - Constant forward velocity v.

Dubins TSP (DTSP)

Petr Váňa, Computational Robotics Laboratory

Dubins Traveling Salesman Problem with Neighborhoods

- Utilizes non-zero sensing radius of the sensor.
- Decreases length of the tour.
- Makes the problem more challenging.

DTSPN

Petr Váňa, Computational Robotics Laboratory

Existing Approaches to the DTSP(N)

- Heuristic (decoupled & evolutionary) approaches
 - Savla et al., 2005
 - Ma and Castanon, 2006
 - Macharet et al., 2011
 - Macharet et al., 2012
 - Ny et al., 2012
 - Yu and Hang, 2012
 - Macharet et al., 2013
 - Zhant et al., 2014

- Macharet and Campost, 2014
- Váňa and Faigl, 2015
- Isaiah and Shima, 2015

Petr Váňa, Computational Robotics Laboratory

- Sampling-based approaches
 - Obermeyer, 2009
 - Oberlin et al., 2010
 - Macharet et al., 2016
- Convex optimization
 - (Only if the locations are far enough)
 - Goac et al., 2013
- Lower bound for the DTSP
 - Dubins Interval Problem (DIP)
 - Manyam et al., 2016
 - DIP-based inform sampling
 - Váňa and Faigl, 2017

Lower bound for the DTSPN

- Using Generalized DIP (GDIP)
- Váňa and Faigl, 2018, 2020, 2022 (In review)

Properties of the Dubins distance function

- Piecewise-continuous function.
- Closed form expression.
- Fast to compute 0.5μ s.
- Continuous for d > 4, where $d = \frac{\|p_2 - p_1\|}{\rho}$.
- Normalized form
 - $q_1 = (p_1, \theta_1) = (0, 0, \theta_1),$ • $q_2 = (p_2, \theta_2) = (d\rho, 0, \theta_2).$

Petr Váňa, Computational Robotics Laboratory

Dubins Interval Problem (DIP)

Determine the shortest Dubins maneuver connecting p_1 and p_2 given the angle intervals $\theta_1 \in [\theta_1^{min}, \theta_1^{max}]$ and $\theta_2 \in [\theta_2^{min}, \theta_2^{max}]$. (closed-form solution)

Case	Maneuvers		Conditions on θ_1 and θ_2
1)	S or L $_\psi$ or R $_\psi$ 1		
2) 3) 4) 5)	LS or LR $_{\psi}$ RS or RL $_{\psi}$ SL or R $_{\psi}$ L SR or L $_{\psi}$ R	for for for for	$\begin{array}{l} \theta_1 = \theta_1^{\max} \text{ and } \theta_2 \in \Theta_2 \\ \theta_1 = \theta_1^{\min} \text{ and } \theta_2 \in \Theta_2 \\ \theta_1 \in \Theta_1 \text{ and } \theta_2 = \theta_2^{\min} \\ \theta_1 \in \Theta_1 \text{ and } \theta_2 = \theta_2^{\max} \end{array}$
6) 7) 8) 9)	LSR LSL or LR $_\psi$ L RSL RSR or RL $_\psi$ R	for for for for	$ \begin{array}{l} \theta_1 = \theta_1^{\max} \text{ and } \theta_2 = \theta_2^{\max} \\ \theta_1 = \theta_1^{\max} \text{ and } \theta_2 = \theta_2^{\min} \\ \theta_1 = \theta_1^{\min} \text{ and } \theta_2 = \theta_2^{\min} \\ \theta_1 = \theta_1^{\min} \text{ and } \theta_2 = \theta_2^{\max} \end{array} $

Satyanarayana G Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcia. Tightly bounding the shortest dubins paths through a sequence of points. *Journal of Intelligent & Robotic Systems*, 88(2):495–511, 2017.

Petr Váňa, Computational Robotics Laboratory

Dubins Interval Problem (DIP)

■ Determine the shortest Dubins maneuver connecting p_1 and p_2 given the angle intervals $\theta_1 \in [\theta_1^{min}, \theta_1^{max}]$ and $\theta_2 \in [\theta_2^{min}, \theta_2^{max}]$ (closed-form solution)

Dubins Interval Problem (DIP)

Dubins Touring Problem (DTP)

Manyam, Rathinam, and Casbeer, 2016

Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurný. On solution of the dubins touring problem. In European Conf. on Mobile Robots (ECMR), pages 1–6. IEEE, 2017.

Petr Váňa, Computational Robotics Laboratory

First attempt to solve DTSP optimally (2016)

Find the optimum without a priory known sequence using Noon-Bean transformation.

Petr Váňa, Computational Robotics Laboratory

Quality of the solution found in 60s

How to remove (bound) intervals?

- Remove heading angle intervals which cannot contribute to the optimum.
- Testing one location takes $\mathcal{O}(k^3)$.

Petr Váňa, Computational Robotics Laboratory

How to remove (bound) intervals?

• \mathcal{L}_L - Lower bound.

•
$$\mathcal{L}_U$$
 - Upper bound.

Condition 1 for NOT removing interval Θ_i

 $\exists \, \Theta_{i-w} \in \mathcal{H}_{i-w}, \exists \, \Theta_{i+w} \in \mathcal{H}_{i+w} : \mathcal{L}_L(\Theta_{i-w}, \Theta_i) + \mathcal{L}_L(\Theta_{i-w}, \Theta_i) \leq \mathcal{L}_U(\Theta_{i-w}, \Theta_{i+w}).$

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 4, samples: 40

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 8, samples: 78

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 16, samples: 120

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 32, samples: 185

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

 $\begin{array}{c} \theta_{i}^{max} \\ \theta_{i} \\ \theta_{i} \\ \theta_{i} \\ \theta_{i} \\ \theta_{i} \\ \theta_{i} \\ \theta_{j} \\ \theta$

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 64, samples: 248

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Maximum resolution: 128, samples: 285

Dubins Touring Problem (DTP)

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_j^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

Petr Váňa, Computational Robotics Laboratory

Maximization Dubins Interval Problem (Max-DIP)

- Determine the **longest** Dubins maneuver connecting p_i and p_j given the angle intervals $\theta_i \in [\theta_i^{min}, \theta_i^{max}]$ and $\theta_j \in [\theta_i^{min}, \theta_j^{max}]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

 θ^{min}

RSR maneuver

Dubins Touring Problem (DTP)

Maximum resolution: 512, samples: 483

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.

 θ_j^{max}

 θ^{min}

 Θ_i

Petr Váňa, Computational Robotics Laboratory

Generalized Dubins Interval Problem (GDIP)

Determine the **shortest** Dubins maneuver connecting P_1 and P_2 given the angle intervals $\theta_1 \in [\theta_1^{min}, \theta_1^{max}]$ and $\theta_2 \in [\theta_2^{min}, \theta_2^{max}]$

■ Transformation from the GDIP to the OS-GDIP:

$$P'_1 = \{p'_1\} = \{(0,0)\}$$

П

$$\blacksquare P_2' = P_2 \oplus \check{P_1} = \cup \{p_b - p_a, p_a \in P_1, p_b \in P_2\}$$

Petr Váňa and Jan Faigl. Optimal Solution of the Generalized Dubins Interval Problem. In Robotics: Science and Systems (RSS), 2018. Best student paper award nominee.

Petr Váňa, Computational Robotics Laboratory

Optimal Solution of the GDIP

Petr Váňa, Computational Robotics Laboratory

Convex optimization (7)

Average computational time

Problem	Time [μ s]	Ratio
Dubins maneuver	0.58	1.00
DIP	2.86	4.93
GDIP	12.63	21.78

Computing bounds for a single sequence of the DTSPN

Resolution: 4

Gap

Gap: 69.3 %

Time: 0.079 s

Petr Váňa, Computational Robotics Laboratory

Computing bounds for a single sequence of the DTSPN

Resolution: 8

Gap: 39.4 %

Time: 0.211 s

Petr Váňa, Computational Robotics Laboratory

Computing bounds for a single sequence of the DTSPN

Resolution: 16

Gap: 19.9 %

Time: 0.552 s

Petr Váňa, Computational Robotics Laboratory

Computing bounds for a single sequence of the DTSPN

Resolution: 32

Gap: 10.7 %

Time: 1.292 s

Petr Váňa, Computational Robotics Laboratory

Time: 3.183 s

Computing bounds for a single sequence of the DTSPN

Petr Váňa, Computational Robotics Laboratory

Computing bounds for a single sequence of the DTSPN

Resolution: 128

Gap: 2.6 %

Time: 8.994 s

Petr Váňa, Computational Robotics Laboratory

Computing bounds for a single sequence of the DTSPN

Resolution: 256

Gap: 1.3 %

Time: 33.474 s

Petr Váňa, Computational Robotics Laboratory

Convergence for a single sequence of the DTSPN

The computational time can be approximated by $\mathcal{O}(n\omega_{\max}^{1.8})$ where ω_{\max} is maximal resolution.

Petr Váňa, Computational Robotics Laboratory

Branch-and-Bound (BNB) framework

Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and Anand Subramanian. A branch-and-bound algorithm for the close-enough traveling salesman problem. *INFORMS Journal on Computing*, 28(4):752–765, 2016.

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Proposed Branch-and-Bound (BNB) algorithm

Proposed Branch-and-Bound (BNB) algorithm

Proposed Branch-and-Bound (BNB) algorithm

Proposed Branch-and-Bound (BNB) algorithm

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

Petr Váňa, Computational Robotics Laboratory

Proposed Branch-and-Bound (BNB) algorithm

R₇

R₉ R₂₆

*R₂₀

×R₄

Example solutions for the DTSPN

Various sensing radius

*Re

[×]R₂₅

R10 [×]R₂₁

Petr Váňa, Computational Robotics Laboratory

https://comrob.fel.cvut.cz

*R29 *R27

R

*****R11

*R15 *R1

Summary and empirical results

- Proposed BNB for the DTSPN

 - $\blacksquare Sequencing part \rightarrow branching.$
 - Sub-sequences bounded by LB/UB.
 - $\blacksquare \ Neighborhoods \rightarrow faster \ solutions.$
- BNB algorithm implemented in Julia.
- Optimal GDIP solution in C++11.

https://github.com/comrob/OptimalDTSPN

Petr Váňa, Computational Robotics Laboratory

Than you for your attention!

Satyanarayana G Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcia. Tightly bounding the shortest dubins paths through a sequence of points. Journal of Intelligent & Robotic Systems, 88(2):495–511, 2017.
Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurný. On solution of the dubins touring problem. In European Conf. on Mobile Robots (ECMR), pages 1–6. IEEE, 2017.
Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770–773, 2022.
Petr Váňa and Jan Faigl. Optimal Solution of the Generalized Dubins Interval Problem. In Robotics: Science and Systems (RSS), 2018. Best student paper award nominee.
Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and Anand Subramanian. A branch-and-bound algorithm for the close-enough traveling salesman problem. <i>INFORMS Journal on Computing</i> , 28(4):752–765, 2016.

Petr Váňa, Computational Robotics Laboratory