Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Petr Váňa
(Supervisor: Jan Faigl)

Computational Robotics Laboratory
Artificial Intelligence Center
Center for Robotics and Autonomous Systems
Faculty of Electrical Engineering
Czech Technical University in Prague

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Traveling Salesman Problem (TSP)

Problem 1 TSP

Given a set of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city.

■ Exact solutions
■ Concorde math.uwaterloo.ca/tsp/concorde.html (Integer Linear Programming (ILP))

■ Heuristic algorithms '

- LKH - K. Helsgaun efficient implementation of the LinKernighan heuristic (1998). http://www.akira.ruc. dk/~keld/research/LKH/

https://www.math.uwaterloo.ca/tsp/pubs/

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Multi-Goal Planning

Problem 2 Multi-Goal Planning

Having a set of locations or neighborhoods to be visited, determine the cost-efficient path or trajectory to visit them.

Alatartsev, S., Stellmacher, S., Ortmeier, F. (2015): Robotic Task Sequencing Problem: A Survey. Journal of Intelligent \& Robotic Systems.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Decoupled Solution of Multi-Goal Planning

First, determine the sequence.

A solution of the TSP for the centers of the disks

Second, solve the Touring problem.

A solution of the CETSP

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Sampling-based Solution of the Touring problem

■ Sample each region (neighborhood) with k samples, e.g., $k=6$.

- Construct graph and find the shortest tour in by graph search in $\mathcal{O}\left(n k^{3}\right)$ for n regions and $n k^{2}$ edges in the sequence.

For the closed path, we need to examine all k possible starting locations.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Sampling-based Solution of the TSPN

■ For an unknown sequence of the visits to the regions, there are $\mathcal{O}\left(n^{2} k^{2}\right)$ possible edges.

- Finding the shortest path is NP-hard, as it can be formulated as the Generalized TSP.

Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to ∞ (or 2 M).

To ensure all vertices of the cluster are visited before leaving the cluster.
2. For each edge $\left(q_{i}^{m}, q_{j}^{n}\right)$ create an edge $\left(q_{i}^{m}, q_{j}^{n+1}\right)$ with a value increased by large M.

To ensure visit of all vertices in a cluster before the next cluster.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Planning with Curvature-constrained Paths

General aviation

Unmanned vehicles

Flying cars

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Traveling Salesman Problem

■ Visit the given set of locations.

- Collect required data at the locations.

Traveling Salesmen Problem (TSP)

■ Consider a fixed-wing aerial vehicle.
■ Exploit the Dubins vehicle model

- Minimal turning radius ρ.
- Constant forward velocity v.
- State of the vehicle is $q=(x, y, \theta)$.

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=v\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
\frac{u}{\rho}
\end{array}\right], \quad|u| \leq 1
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Traveling Salesman Problem

■ Visit the given set of locations.

- Collect required data at the locations.

Dubins TSP (DTSP)

■ Consider a fixed-wing aerial vehicle.
■ Exploit the Dubins vehicle model
■ Minimal turning radius ρ.

- Constant forward velocity v.
- State of the vehicle is $q=(x, y, \theta)$.

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=v\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
\underline{u}
\end{array}\right], \quad|u| \leq 1
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.

■ Consider a fixed-wing aerial vehicle.
■ Exploit the Dubins vehicle model
■ Minimal turning radius ρ.

- Constant forward velocity v.

Dubins, 1961.

Dubins TSP (DTSP)

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Traveling Salesman Problem

- Visit the given set of locations.
- Collect required data at the locations.

Dubins TSP (DTSP)

■ Consider a fixed-wing aerial vehicle.
■ Exploit the Dubins vehicle model
■ Minimal turning radius ρ.

- Constant forward velocity v.

Dubins, 1961.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Traveling Salesman Problem with Neighborhoods

- Utilizes non-zero sensing radius of the sensor.
- Decreases length of the tour.

DTSPN

- Makes the problem more challenging.

Existing Approaches to the DTSP(N)

■ Heuristic (decoupled \& evolutionary) approaches

- Savla et al., 2005
- Ma and Castanon, 2006
- Macharet et al., 2011
- Macharet et al., 2012
- Ny et al., 2012
- Yu and Hang, 2012
- Macharet et al., 2013
- Zhant et al., 2014
- Macharet and Campost, 2014
- Váňa and Faigl, 2015
- Isaiah and Shima, 2015

■ ...

■ Sampling-based approaches

- Obermeyer, 2009
- Oberlin et al., 2010

■ Macharet et al., 2016

- Convex optimization
- (Only if the locations are far enough)

■ Goac et al., 2013
■ Lower bound for the DTSP
■ Dubins Interval Problem (DIP)

- Manyam et al., 2016
- DIP-based inform sampling
- Váňa and Faigl, 2017

■ Lower bound for the DTSPN
■ Using Generalized DIP (GDIP)
■ Váňa and Faigl, 2018, 2020, 2022 (In review)

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Properties of the Dubins distance function

- Piecewise-continuous function.
- Closed form expression.

■ Fast to compute $0.5 \mu \mathrm{~s}$.

- Continuous for $d>4$, where $d=\frac{\left\|p_{2}-p_{1}\right\|}{\rho}$.
■ Normalized form
- $q_{1}=\left(p_{1}, \theta_{1}\right)=\left(0,0, \theta_{1}\right)$,
- $q_{2}=\left(p_{2}, \theta_{2}\right)=\left(d \rho, 0, \theta_{2}\right)$.

Maneuver types $(d=1.00)$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Dubins Interval Problem (DIP)

- Determine the shortest Dubins maneuver connecting p_{1} and p_{2} given the angle intervals $\theta_{1} \in\left[\theta_{1}^{\min }, \theta_{1}^{\max }\right]$ and $\theta_{2} \in\left[\theta_{2}^{\min }, \theta_{2}^{\max }\right]$. (closed-form solution)

Dubins Interval Problem (DIP)

Manyam, Rathinam, and Casbeer, 2016

Case	Maneuvers		Conditions on θ_{1} and θ_{2}
1)	${\mathrm{S} \text { or } \mathrm{L}_{\psi} \text { or } \mathrm{R}_{\psi}{ }^{1}}$		
2)	LS or LR_{ψ}	for	$\theta_{1}=\theta_{1}^{\max }$ and $\theta_{2} \in \Theta_{2}$
3)	${\mathrm{RS} \text { or } \mathrm{RL}_{\psi}}^{\text {4) }}$	for	$\theta_{1}=\theta_{1}^{\min }$ and $\theta_{2} \in \Theta_{2}$
4)	${\mathrm{SL} \text { or } \mathrm{R}_{\psi} \mathrm{L}}^{\text {5) }}$	SR or $\mathrm{L}_{\psi} \mathrm{R}$	for
$\theta_{1} \in \Theta_{1}$ and $\theta_{2}=\theta_{2}^{\min }$			
$\theta_{1} \in \Theta_{1}$ and $\theta_{2}=\theta_{2}^{\max }$			
6)	LSR	for	$\theta_{1}=\theta_{1}^{\max }$ and $\theta_{2}=\theta_{2}^{\max }$
7)	LSL or $\mathrm{LR}_{\psi} \mathrm{L}$	for	$\theta_{1}=\theta_{1}^{\max }$ and $\theta_{2}=\theta_{2}^{\min }$
8)	RSL	for	$\theta_{1}=\theta_{1}^{\min }$ and $\theta_{2}=\theta_{2}^{\min }$
9)	RSR or $\mathrm{RL}_{\psi} \mathrm{R}$	for	$\theta_{1}=\theta_{1}^{\min }$ and $\theta_{2}=\theta_{2}^{\max }$

Satyanarayana G Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcia. Tightly bounding the shortest dubins paths through a sequence of points. Journal of Intelligent \& Robotic Systems, 88(2):495-511, 2017.

Dubins Interval Problem (DIP)

- Determine the shortest Dubins maneuver connecting p_{1} and p_{2} given the angle intervals $\theta_{1} \in\left[\theta_{1}^{\text {min }}, \theta_{1}^{\text {max }}\right]$ and $\theta_{2} \in\left[\theta_{2}^{\text {min }}, \theta_{2}^{\text {max }}\right] \quad$ (closed-form solution)

Dubins Interval Problem (DIP)
Dubins Touring Problem (DTP)

Manyam, Rathinam, and Casbeer, 2016

J Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurný. On solution of the dubins touring problem. In European Conf. on Mobile Robots (ECMR), pages 1-6. IEEE, 2017.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning CTU IN PRAGUE

First attempt to solve DTSP optimally (2016)

■ Find the optimum without a priory known sequence using Noon-Bean transformation.

Dubins TSP (unknown sequence)

Quality of the solution found in 60s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

How to remove (bound) intervals?

■ Remove heading angle intervals which cannot contribute to the optimum.
■ Testing one location takes $\mathcal{O}\left(k^{3}\right)$.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

How to remove (bound) intervals?

(a) Lower bound for $w=1$

- \mathcal{L}_{L} - Lower bound.
- \mathcal{L}_{U} - Upper bound.
(b) Upper bound for $w=1$

Condition 1 for NOT removing interval Θ_{i}

$$
\exists \Theta_{i-w} \in H_{i-w}, \exists \Theta_{i+w} \in H_{i+w}: \mathcal{L}_{L}\left(\Theta_{i-w}, \Theta_{i}\right)+\mathcal{L}_{L}\left(\Theta_{i-w}, \Theta_{i}\right) \leq \mathcal{L}_{U}\left(\Theta_{i-w}, \Theta_{i+w}\right)
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP
 Max-DIP

Dubins Touring Problem (DTP)

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.
Petr Váňa, Computational Robotics Laboratory

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 8 , samples: 78

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\min }, \theta_{j}^{\max }\right]$.
■ Remove heading angle intervals which cannot contribute to the optimum. Max-DIP

Dubins Touring Problem (DTP)

4
Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
■ Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 32, samples: 185

Petr Váña and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 64, samples: 248

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 128, samples: 285

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 256, samples: 331

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Maximization Dubins Interval Problem (Max-DIP)

- Determine the longest Dubins maneuver connecting p_{i} and p_{j} given the angle intervals $\theta_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]$ and $\theta_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]$.
- Remove heading angle intervals which cannot contribute to the optimum.

Max-DIP

Dubins Touring Problem (DTP)

Maximum resolution: 512, samples: 483

\squarePetr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Generalized Dubins Interval Problem (GDIP)

■ Determine the shortest Dubins maneuver connecting P_{1} and P_{2} given the angle intervals $\theta_{1} \in\left[\theta_{1}^{\min }, \theta_{1}^{\text {max }}\right]$ and $\theta_{2} \in\left[\theta_{2}^{\min }, \theta_{2}^{\text {max }}\right]$

Full problem (GDIP)

■ Transformation from the GDIP to the OS-GDIP:

- $P_{1}^{\prime}=\left\{p_{1}^{\prime}\right\}=\{(0,0)\}$

■ $P_{2}^{\prime}=P_{2} \oplus \check{P}_{1}=\cup\left\{p_{b}-p_{a}, p_{a} \in P_{1}, p_{b} \in P_{2}\right\}$
Petr Váňa and Jan Faigl. Optimal Solution of the Generalized Dubins Interval Problem. In Robotics: Science and Systems (RSS), 2018. Best student paper award nominee.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Optimal Solution of the GDIP

Closed-form expressions (1-6)

2) CS type

3) \mathbf{C}_{ψ} type

4) CSC type

5) CSC type

6) $\mathbf{C} \overline{\mathbf{C}}_{\psi} \mathbf{C}$ type

Convex optimization (7)
7) $\mathbf{C} \overline{\mathbf{C}}_{\psi}$ type

Average computational time

Problem	Time $[\mu \mathrm{s}]$	Ratio
Dubins maneuver	0.58	1.00
DIP	2.86	4.93
GDIP	12.63	21.78

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 4 Gap: 69.3% Time: 0.079 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 8 Gap: 39.4 \% Time: 0.211 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 16 Gap: 19.9 \% Time: 0.552 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 32 Gap: 10.7% Time: 1.292 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 64 Gap: 5.3% Time: 3.183 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 128 Gap: 2.6 \% Time: 8.994 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Computing bounds for a single sequence of the DTSPN

Resolution: 256

Gap: 1.3 \%
Time: 33.474 s

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Convergence for a single sequence of the DTSPN

Convergence for 10 regions

Various number of regions

- The computational time can be approximated by $\mathcal{O}\left(n \omega_{\max }^{1.8}\right)$ where $\omega_{\max }$ is maximal resolution.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning CTU IN PRAGUE

Branch-and-Bound (BNB) framework

Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and Anand Subramanian. A branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS Journal on Computing, 28(4):752-765, 2016.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

$$
\begin{gathered}
\Sigma=[1,3,7], \omega=8, \\
\text { LB: } 12.1 \\
\text { UB: } 20.9
\end{gathered}
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

$$
\begin{gathered}
\Sigma=[6,5,1,3,7], \omega=32 \\
\quad \mathrm{LB}=16.0
\end{gathered}
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning CTU IN PRAGUE

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

$$
\begin{gathered}
\Sigma=[6,1,3,5,7], \omega=32 \\
-\quad \text { LB }=17.2 \\
\cdots \cdots \quad \text { UB }=18.4
\end{gathered}
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

$$
\begin{gathered}
\Sigma=[1,3,6,7], \omega=32 \\
\quad \text { LB }=18.5 \\
\cdots \cdots \quad \text { UB }=19.6
\end{gathered}
$$

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Proposed Branch-and-Bound (BNB) algorithm

Optimal sequence found!

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Example solutions for the DTSPN

Uniform sensing radius

Various sensing radius

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Summary and empirical results

■ Proposed BNB for the DTSPN

- Continuous part \rightarrow GDIP.
- Sequencing part \rightarrow branching.
- Sub-sequences bounded by LB/UB.
- Neighborhoods \rightarrow faster solutions.

■ BNB algorithm implemented in Julia.
■ Optimal GDIP solution in $\mathbf{C}++11$.

Combining Continuous and Combinatorial Optimization for Multi-goal Trajectory Planning

Than you for your attention!

Satyanarayana G Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcia. Tightly bounding the shortest dubins paths through a sequence of points. Journal of Intelligent \& Robotic Systems, 88(2):495-511, 2017.

Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurný. On solution of the dubins touring problem. In European Conf. on Mobile Robots (ECMR), pages 1-6. IEEE, 2017.

Petr Váňa and Jan Faigl. Bounding optimal headings in the dubins touring problem. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 770-773, 2022.Petr Váňa and Jan Faigl. Optimal Solution of the Generalized Dubins Interval Problem. In Robotics: Science and Systems (RSS), 2018. Best student paper award nominee.Walton Pereira Coutinho, Roberto Quirino do Nascimento, Artur Alves Pessoa, and Anand Subramanian. A branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS Journal on Computing, 28(4):752-765, 2016.

