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Decision making
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Binary classification

@ Two types of linearly separable data in the set.
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Binary classification

@ Two types of linearly separable data in the set.
@ What is the ideal separation line?
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Binary classification

@ Two types of linearly separable data in the set.
@ What is the ideal separation line?
@ What to do if data are not linearly separable?
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Support vector machine

Cortes, Corinna, and Vladimir Vapnik. " Support-vector networks.” Machine learning
20.3 (1995): 273-297.
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Support vector machine

@ Data are separated by hyperplane with dimension one less than
number of feature parameters.
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number of feature parameters.
» For our example of 2D points, the separation will be given by a line.
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Support vector machine

@ Data are separated by hyperplane with dimension one less than
number of feature parameters.
» For our example of 2D points, the separation will be given by a line.
@ The line is defined such as w x+b=y.
@ Let’s draw two lines, as close to the two groups as possible.
» The points closest to them are called support vector.

Let hyperplane (line) closer to one group is given such as w'x+ b= —1
and second one such as w’x+ b= +1. Our target is to maximise the

distance between them.
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Feature vector

For a simplification of our data, we should use another representation. )

@ Colours.
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Feature vector

For a simplification of our data, we should use another representation. )

@ Colours.
@ F-transform components.

Vlaganek, P. and Perfilieva, |. " Patch based inpainting inspired by the Fl-transform”.
International Journal of Hybrid Intelligent Systems. 2016, &. 13, s. 39-48. ISSN
1448-5869.

Hurtik, P., Hoddkova, P. and Perfilieva, I. " Approximate Pattern Matching Algorithm.”
International Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems. Springer International Publishing, 2016.
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Feature vector

For a simplification of our data, we should use another representation. J

@ Colours.
@ F-transform components.
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Feature vector

For a simplification of our data, we should use another representation. J

@ Colours.
@ F-transform components.
o Gradients.
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Histogram of Oriented gradients

Dalal, Navneet, and Bill Triggs. " Histograms of oriented gradients for human
detection.” 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05). Vol. 1. IEEE, 2005.
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Histogram of Oriented gradients

@ Gradient computation.
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Histogram of Oriented gradients

@ Gradient computation.

of
Vf = [gx} = |9
8y oy
8x = [_17071]
8y = [_17071]T
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Histogram of Oriented gradients

@ Gradient computation.

0 =tan?! [gy]
8x

&8yl = /&2 + &2
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Histogram of Oriented gradients
@ Gradient computation.

(SIFT).

@ The HoG method is used in a Scale-invariant feature transform
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Histogram of Oriented gradients

@ Gradient computation.

@ The HoG method is used in a Scale-invariant feature transform
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform

(SIFT).
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform

(SIFT).
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Histogram of Oriented gradients
@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform
(SIFT).

@ Variant proposed by Dalal and Navneet.
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform
(SIFT).
@ Variant proposed by Dalal and Navneet.
» Each cell is 8 x 8 pixels big.
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform
(SIFT).
@ Variant proposed by Dalal and Navneet.
» Each cell is 8 x 8 pixels big.
» Four cells are connected to 16 x 16 block.
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform
(SIFT).
@ Variant proposed by Dalal and Navneet.
» Each cell is 8 x 8 pixels big.
» Four cells are connected to 16 x 16 block.
» For proposed size 64 x 128 pixels for a person, we receive 105 blocks in
total.
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Histogram of Oriented gradients

@ Gradient computation.
@ The HoG method is used in a Scale-invariant feature transform
(SIFT).
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F-transform

@ The separate regions are processed independently.
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F-transform

@ The separate regions are processed independently.
@ Kernel is based on the basic functions.

g=ABT
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2D discrete FO-transform

@ Direct F-transform.

A, B, -
Zx:O Zyzo Ik/(X,}/)g(X,}/)

Fa = A, B
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2D discrete FO-transform

@ Direct F-transform.
@ Inverse F-transform.

b= i i FOA)BI(Y)
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2D discrete Fl-transform

@ Direct F-transform.

Fia(x,y) = R + cif (x = xk) + R (x = y1)
w Bw ;
00 ZQ:O Zy:() IkI(X,}/)g(X,y)
Cul = A, B,
Ay B, -
ClO . ZXZOZy:() Ik/(X7.y)(X —Xk)g(X,y)
kI — w B,
Yo Xy o(x — xk)2g(x,y)
w Bw !
01 _ Zﬁ:ozy:o ’kI(X)y)(y —}/I)g(xv}’)
o w BW
):f:o Zy:o(y - y,)2g(x,y)
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2D discrete Fl-transform

@ Direct F-transform.
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2D discrete Fl-transform

@ Direct F-transform.
@ Inverse F-transform.

(x,y) = Z Z Fk/Ak (x)Bi(y)
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Comparison

@ The output images.
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Comparison

@ The output images.
@ The components.
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Applications

@ Inpainting.
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Applications

@ Inpainting.
@ Denoising.
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Applications

@ Inpainting.
@ Denoising.
@ Upsampling.
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Applications

Inpainting.
Denoising.
Upsampling.
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o Filtering.
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Applications

@ Inpainting.
@ Denoising.
@ Upsampling.
o Filtering.

@ Image creation.
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Applications

Inpainting.
Denoising.
Upsampling.
Filtering.

Image creation.
Edge detection.
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Experiments

HOG descriptors F-transform descriptors

@ Setting the constants and @ Setting the constants for the
directories containing training algorithm.
and testing data. @ Loading the positive and

@ Loading the positive and negative training data and their
negative training data and their respective labels.
respective labels. @ Calculating the F-transform

@ Initializing the HOG descriptor components for all training
with given parameters and examples.

calculating the descriptors for all Q Initializing the SVM and train it

training examples. using the given training data
@ |Initializing the SVM and train it and respective labels.

using the given training data

and respective labels.
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Experiments

@ Training data consist of 1000 images of size 60x160 px.

» Positive examples - 500 containing a pedestrian
» Negative examples - 500 without a pedestrian
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Experiments

@ Training data consist of 1000 images of size 60x160 px.

» Positive examples - 500 containing a pedestrian
» Negative examples - 500 without a pedestrian

@ Testing data consist of 500 images of size 60x160 px.

» Positive examples - 250 containing a pedestrian

> Negative examples - 250 without a pedestrian
@ Accuracy is computed as follows:

@ load all positive and negative testing examples and calculate either
their HOG descriptors and F-transform descriptors,
iterate through positive and negative testing examples and use our
trained SVM to predict the result,
if it is correct, increment respective counter,
aggregate the results and print out to console.

©0 ©
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Results

Measured accuracy and learning time of HOG descriptors. J
Cell size SVM learning time [ms] Accuracy [%]
8 227590.325 99.4
9 170642.722 99.6
10 162687.595 99.8
12 102559.346 100.0
14 60867.981 99.8
16 30479.193 99.0
18 22983.823 99.4
20 21601.116 99.4
22 9018.104 99.6
24 7708.107 99.2
26 7432.598 99.0
28 6425.163 99.4
30 6082.247 99.0
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Results

Measured accuracy and learning time of F-transform descriptors.

Radius size

SVM learning time [ms]

Accuracy [%]

8
9
10
11
12
13
14
15
18
20
22
24
25
26
28
30

12643.460
9544.399
9701.500
7300.129
6641.180
5588.764
5799.976
5450.073
4383.862
4175.740
3276.331
3379.141
3126.122
3252.264
3265.752
2996.050

91.4
94.8
95.6
96.8
97.2
96.2
96.6
96.8
96.0
96.8
94.4
93.4
92.6
92.8
93.6
93.2
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Results

HOG cell size HOG cell size
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Thank you for your attention!

Machine learning and fuzzy transform J

Pavel Vlasanek
Institute for Research and Applications of Fuzzy Modeling
University of Ostrava

pavel.vlasanek@Qosu.cz
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