IT4<mark>I</mark>

Machine learning and fuzzy transform

Pavel Vlašánek

Institute for Research and Applications of Fuzzy Modeling University of Ostrava

pavel.vlasanek@osu.cz

Seminář strojového učení a modelování

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

10/05/2018 1 / 19

Decision making

- Is this a person?
- Is this a number?
- Is this a ...

YES/NO

• = • • э

Decision making

- Is this a person?
- Is this a number?
- Is this a ...

YES/NO

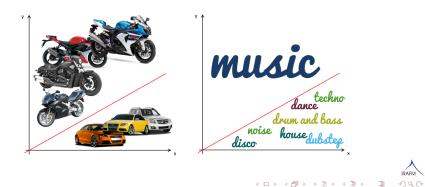
∃ > 4 э

ID A EM 990

Decision making

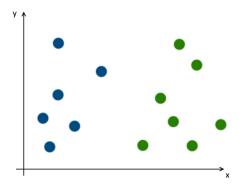
- Is this a person?
- Is this a number?
- Is this a ...

YES/NO



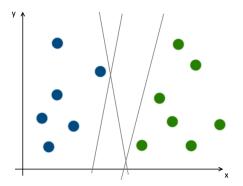
Binary classification

- Two types of linearly separable data in the set.
- What is the ideal separation line?
- What to do if data are not linearly separable?



Binary classification

- Two types of linearly separable data in the set.
- What is the ideal separation line?
- What to do if data are not linearly separable?



Binary classification

- Two types of linearly separable data in the set.
- What is the ideal separation line?
- What to do if data are not linearly separable?

Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.

< ∃ ► <

- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ▶ For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - The points closest to them are called support vector.

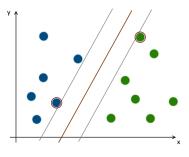
→ Ξ →

- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ► For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - The points closest to them are called support vector.

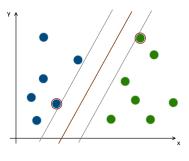
→ Ξ →

- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ► For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - The points closest to them are called support vector.

- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ► For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - ▶ The points closest to them are called *support vector*.



- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ► For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - ▶ The points closest to them are called *support vector*.



- Data are separated by *hyperplane* with dimension one less than number of feature parameters.
 - ► For our example of 2D points, the separation will be given by a line.
- The line is defined such as $w^T x + b = y$.
- Let's draw two lines, as close to the two groups as possible.
 - The points closest to them are called support vector.

Let hyperplane (line) closer to one group is given such as $w^T x + b = -1$ and second one such as $w^T x + b = +1$. Our target is to maximise the distance between them.

For a simplification of our data, we should use another representation.

- Colours.
- F-transform components.
- Gradients.

∃ ▶ ∢

For a simplification of our data, we should use another representation.

- Colours.
- F-transform components.
- Gradients.

∃ ≻

For a simplification of our data, we should use another representation.

- Colours.
- F-transform components.
- Gradients.

Vlašánek, P. and Perfilieva, I. "Patch based inpainting inspired by the F¹-transform". International Journal of Hybrid Intelligent Systems. 2016, č. 13, s. 39-48. ISSN 1448-5869.

 Hurtík, P., Hodáková, P. and Perfilieva, I. "Approximate Pattern Matching Algorithm."
 International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2016.

For a simplification of our data, we should use another representation.

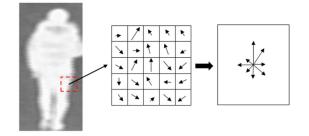
- Colours.
- F-transform components.
- Gradients.

165	165.	166	166	162	158	161	122	95	1 66	158	160	148	145	159	158	158	159	1612
164.	165.	166.	166	154.	137.	151.	152.	114.	114.	157.	151.	117.	116.	157.	158.	158.	160.	161
																		160;
164,	164,	164,	163,	149,	112,	120,	119,	99,	91,	96,	106,	103,	113,	156,	159,	157,	161,	160;
163,	163,	164,	163,	154,	124,	119,	108,	85,	71,	67,	77,	92,	109,	153,	159,	121,	142,	
	162.																	
159,	160.	162,	161,	155,	142,	125,	102.	136,	. 99,	65,	62,	61,	87,	142.	154,	24,	39,	
158,	158,	152,	159.	156.	141,	124,	120,	131.	105,	72,	66,	51.	bb,	136.	152,	23.	39,	
124-	155.	155.	155.	155-	156.	142.	157.	181	105.	85.	27	64.	.87.	135.	154.	96.	39,	38:
	149.																	
	119.																	
68.	28.	85.	91.	192	137.	164.	169.	169.	153.	136.	124.	95.	66.	89,	144.	155.	153.	109
48.	62.	71.	25.	84.	131.	171.	172.	157.	133.	118.	98.	71.	46.	61.	109.	125.	131.	133
43,	44,		51,	66,	130,	170,	172,	153,	131,	105,	84,	52,	42,	53,	62,	62,	65,	
57,	52,	42,		50,	110,	156,	152,	149,	121,	111,	84,	47,	57,	53,	42,	46,	50,	52;
82.	66,	39,	35,								91.			44.	31.	43.	55,	54;
110.	.99,	.74,	47.	40,	. 96 -	146,	124.	. 25,	143,	128,	85,	44,	48,	45,	57,	82,	. 98,	102;
150,	145,	128,	101,	83,	128,	137,	116,	111,	151,	113,	22,	49,	. 29,	114,	142,	161,	123,	176
120														188, 215.				
120														219.				

∃ ▶ ∢

For a simplification of our data, we should use another representation.

- Colours.
- F-transform components.
- Gradients.



Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. IEEE, 2005.

• Gradient computation.

- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

$$abla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} rac{\partial f}{\partial x} \\ rac{\partial f}{\partial y} \end{bmatrix}$$

→ Ξ >

• Gradient computation.

- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

$$\nabla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$
$$g_x = \begin{bmatrix} -1, 0, 1 \end{bmatrix}$$
$$g_y = \begin{bmatrix} -1, 0, 1 \end{bmatrix}^T$$

→ Ξ >

• Gradient computation.

- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

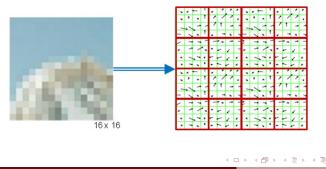
$$\theta = \tan^{-1} \left[\frac{g_y}{g_x} \right]$$
$$|g_x, g_y| = \sqrt{g_x^2 + g_y^2}$$

→ Ξ >

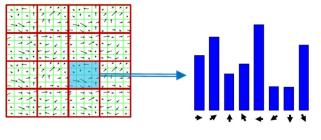
- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

★ Ξ →

- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.



- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ▶ Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.



- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - Each cell is 8×8 pixels big.
 - ▶ Four cells are connected to 16 × 16 block.
 - For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

Talah Galah Galah Kalah Kalah Kalah Kalah Kalah

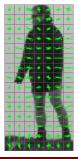
- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - Each cell is 8×8 pixels big.
 - Four cells are connected to 16×16 block.
 - ▶ For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - Each cell is 8×8 pixels big.
 - Four cells are connected to 16×16 block.
 - ▶ For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - Each cell is 8×8 pixels big.
 - \blacktriangleright Four cells are connected to 16 \times 16 block.
 - ▶ For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - ► Each cell is 8 × 8 pixels big.
 - Four cells are connected to 16×16 block.
 - ► For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.

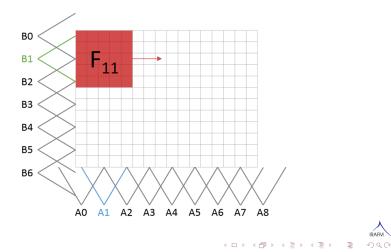
- Gradient computation.
- The HoG method is used in a *Scale-invariant feature transform* (SIFT).
- Variant proposed by Dalal and Navneet.
 - Each cell is 8×8 pixels big.
 - Four cells are connected to 16×16 block.
 - ► For proposed size 64 × 128 pixels for a person, we receive 105 blocks in total.



F-transform

• The separate regions are processed independently.

• Kernel is based on the basic functions.



F-transform

- The separate regions are processed independently.
- Kernel is based on the basic functions.

$$g = AB$$

$$B \qquad \begin{pmatrix} 0 \\ .5 \\ 1 \\ .5 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & .25 & .5 & .25 & 0 \\ 0 & .5 & 1 & .5 & 0 \\ 0 & .25 & .5 & .25 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(0, .5, 1, .5, 0)$$

ADT

Pavel Vlašánek

DQA

2D discrete F⁰-transform

- Direct F-transform.
- Inverse F-transform.

$$F_{kl}^{0} = \frac{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} i_{kl}(x, y) g(x, y)}{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} g(x, y)}$$

-

< ∃ >

DQC

2D discrete F⁰-transform

- Direct F-transform.
- Inverse F-transform.

$$O^{0}(x,y) = \sum_{k=0}^{m} \sum_{l=0}^{n} F_{kl}^{0} A_{k}(x) B_{l}(y)$$

10/05/2018 10 / 19

2D discrete F¹-transform

- Direct F-transform.
- Inverse F-transform.

$$F_{kl}^{1}(x,y) = c_{kl}^{00} + c_{kl}^{10}(x - x_{k}) + c_{kl}^{01}(x - y_{l})$$

$$c_{kl}^{00} = \frac{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} i_{kl}(x,y)g(x,y)}{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} g(x,y)}$$

$$c_{kl}^{10} = \frac{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} i_{kl}(x,y)(x - x_{k})g(x,y)}{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} (x - x_{k})^{2}g(x,y)}$$

$$c_{kl}^{01} = \frac{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} i_{kl}(x,y)(y - y_{l})g(x,y)}{\sum_{x=0}^{A_{w}} \sum_{y=0}^{B_{w}} (y - y_{l})^{2}g(x,y)}$$

Pavel Vlašánek

э 10/05/2018 11 / 19

イロト イポト イヨト イヨト

DQC

2D discrete F¹-transform

- Direct F-transform.
- Inverse F-transform.

< ∃ >

2D discrete F¹-transform

- Direct F-transform.
- Inverse F-transform.

$$O^{1}(x,y) = \sum_{k=0}^{m} \sum_{l=0}^{n} F_{kl}^{1} A_{k}(x) B_{l}(y)$$

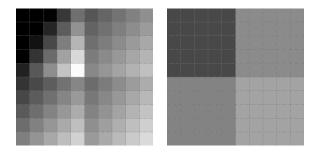
10/05/2018 11 / 19

Comparison

The output images.The components.

Comparison

- The output images.
- The components.



< Ξ.

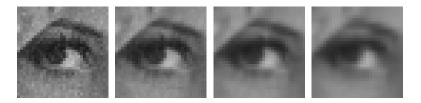
• Inpainting.

- Denoising
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.

 $\exists \rightarrow$

・日・ ・ ヨ・・

- Inpainting.
- Denoising.
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.



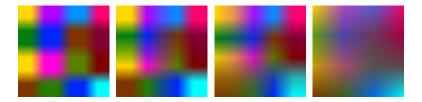
Э

< ≥ ► <

-

10/05/2018

- Inpainting.
- Denoising.
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.



トイヨトイ

10/05/2018

- Inpainting.
- Denoising.
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.

-

990

- Inpainting.
- Denoising.
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.

- 4 ∃ ▶

- Inpainting.
- Denoising.
- Upsampling.
- Filtering.
- Image creation.
- Edge detection.

HOG descriptors

- Setting the constants and directories containing training and testing data.
- Loading the positive and negative training data and their respective labels.
- Initializing the HOG descriptor with given parameters and calculating the descriptors for all training examples.
- Initializing the SVM and train it using the given training data and respective labels.

F-transform descriptors

- Setting the constants for the algorithm.
- Loading the positive and negative training data and their respective labels.
- Calculating the F-transform components for all training examples.
- Initializing the SVM and train it using the given training data and respective labels.

- Training data consist of 1000 images of size 60x160 px.
 - Positive examples 500 containing a pedestrian
 - Negative examples 500 without a pedestrian
- Testing data consist of 500 images of size 60x160 px.
 - Positive examples 250 containing a pedestrian
 - Negative examples 250 without a pedestrian
- Accuracy is computed as follows:
 - load all positive and negative testing examples and calculate either their HOG descriptors and F-transform descriptors,
 - iterate through positive and negative testing examples and use our trained SVM to predict the result,
 - if it is correct, increment respective counter,
 - aggregate the results and print out to console.

- Training data consist of 1000 images of size 60x160 px.
 - Positive examples 500 containing a pedestrian
 - Negative examples 500 without a pedestrian
- Testing data consist of 500 images of size 60x160 px.
 - Positive examples 250 containing a pedestrian
 - Negative examples 250 without a pedestrian
- Accuracy is computed as follows:
 - load all positive and negative testing examples and calculate either their HOG descriptors and F-transform descriptors,
 - iterate through positive and negative testing examples and use our trained SVM to predict the result,
 - if it is correct, increment respective counter,
 - aggregate the results and print out to console.

- Training data consist of 1000 images of size 60x160 px.
 - Positive examples 500 containing a pedestrian
 - Negative examples 500 without a pedestrian
- Testing data consist of 500 images of size 60x160 px.
 - Positive examples 250 containing a pedestrian
 - Negative examples 250 without a pedestrian
- Accuracy is computed as follows:
 - load all positive and negative testing examples and calculate either their HOG descriptors and F-transform descriptors,
 - iterate through positive and negative testing examples and use our trained SVM to predict the result,
 - If it is correct, increment respective counter,
 - aggregate the results and print out to console.

Results

Measured accuracy and learning time of HOG descriptors.

Cell size	SVM learning time [ms]	Accuracy [%]
8	227590.325	99.4
9	170642.722	99.6
10	162687.595	99.8
12	102559.346	100.0
14	60867.981	99.8
16	30479.193	99.0
18	22983.823	99.4
20	21601.116	99.4
22	9018.104	99.6
24	7708.107	99.2
26	7432.598	99.0
28	6425.163	99.4
30	6082.247	99.0

990

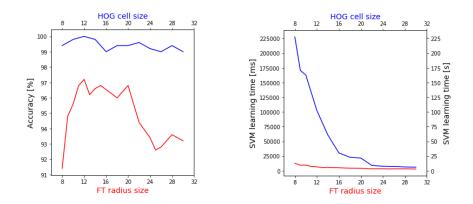
Results

Measured accuracy and learning time of F-transform descriptors.

Radius size	SVM learning time [ms]	Accuracy [%]
8	12643.460	91.4
9	9544.399	94.8
10	9701.500	95.6
11	7300.129	96.8
12	6641.180	97.2
13	5588.764	96.2
14	5799.976	96.6
15	5450.073	96.8
18	4383.862	96.0
20	4175.740	96.8
22	3276.331	94.4
24	3379.141	93.4
25	3126.122	92.6
26	3252.264	92.8
28	3265.752	93.6
30	2996.050	93.2

990

Results



10/05/2018 18 / 19

E

ъ

< ∃ >

< 17 ▶

IRAFM

Thank you for your attention!

Machine learning and fuzzy transform

Pavel Vlašánek

Institute for Research and Applications of Fuzzy Modeling University of Ostrava

pavel.vlasanek@osu.cz

Seminář strojového učení a modelování