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• Further resources



Introduction

• Bayesian approach is quite simillar to the way humans learn
• Having some form prior knowleadge
• Discovering some new information
• Intercorporating the new knowleadge into what we have already known

Current knowleadge & new informa)on → update knowleadge



State-space models

• General state-space model

• Example can be a constant velocity model (CVM)
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Filtration: estimation of state by Kalman filter

• Starting with prior distribution

• Transform it during prediction

• Update by the Bayes’ theorem

• Problem is the need-to-know covariances 𝑅! a 𝑄! in both 
steps
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Variational inference

• Unknown 𝜃! = [𝑥! , 𝑃! , 𝑅!]
• Bayes’ theorem does not lead to analytically 

tractable posterior distribution
• Approximation using

• Using variational inference to minimize divergence

𝜌%(𝜃!) ≡ 𝜌% 𝑥! 𝜌% 𝑃! 𝜌%(𝑅!)

𝒟 𝜌% 𝜃! ||𝜋% 𝜃! ∆%,! = 𝔼.! /" log
𝜌%(𝜃!)
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Variational inference

• Op)miza)on of divegence is 
equivalent to maximaliza)on of 
nega)ve evidence lower bound 
(ELBO)
• Can be done by coordinate-ascent 

varia)onal inference (CAVI)
• IteraIve opImizaIon algorithm

• Need to have matching conjugate 
priors



Optimazation of !𝑄!,#
• User provided set of O𝑄%,! matrices

• Selection of the matrix that maximizes

• Based on the available measurements of 𝑦%,!

𝒬%,! = { O𝑄%,!
# , … , O𝑄%,!

0 }



Summary of the proposed solu?on

• Approximation of 𝑥! , 𝑃! and 𝑅!
using variational inference by 
means of message passing.
• Approximation of 𝑄! is done 

using a cheap hypotheses-testing 
procedure and an intrinsic 
optimization of a
relevant prior distribution



Testing

• 2 dimensional target tracking

• Simulated using constant 
velocity model

• CAVI algorithm is always set to 4 
itterations



Results (non distributed seDng)



What about distributed setting?



Distributed setting intuition

• Combining information from more sources
• Using information from multiple sources can prove usefull
• Problem can be with source with high trust but incorrect information
• A lot of different ways to communicate

• Many open topics
• How to detect that both sources observe the same object?
• How to handle various sources in different conditions?
• What is the optimal way to weight informations provided by different 

sources?
• What is the best way to intercorporate the indidual weeknesses of various 

sources?



Does such a situa?on even occur?



Communication approaches: Fusion Center

• All nodes send information to 
single processing node
• All computations done in one node 

only
• Risky, since processing node is 

single point of failure



Comunication approaches: Diffusion

• No specialized node for processing
• Nodes share informa)on with their 

neighbours (usually in 1-step 
distance)
• Any node can fail and the network 

will s)ll run
• Done in two steps:
• AdaptaIon
• CombinaIon



Diffusion strategy

• Adaptation step
• Interoperating observations from the neighbours into the nodes knowledge

• Combination step
• Posterior information of the node is shared back to its neighbour nodes

• Two variants possible:
• ATC – Adapt Then Combine (used in this case)
• CTA – Combine Then Adapt



Adaptation step

• Using the available measurements of 𝑦1,! from neighbours node to 
accelerate convergence of the es)mates of 𝜃!
• The measurement update step gets extended by the measurements 

from neighbours
• CAVI updates are replaced by expected sufficient sta)s)cs



Combination step

• Agent acquires posterior estimates for its neighbours 
• In this case it is represented by variational factors
• 𝜌!(𝑥")
• 𝜌!(𝑅")

• Through out time by means of fusion the information is diffused 
between all interconnected nodes
• Different combination rules are possible with various properties



Distributed optimization of !𝑄!,#
• Advantage of having increased amount of measurents provided by its 

neighbourghs
• They are independent iden)cally distributed (iid)
• Joint predic)ve density is just a product of individual densi)es

• Op)mal solu)on is therefore



Results (distributed setting)

• Simulated data 2 dimensional target 
tracking
• Generated using constant velocity

model
• 15 agents with independent 

observations of the target
• Results of 300 independent runs
• Two experiments
• Static R matrix
• Time-varying R matrix



Results (static R matrix)



Results (?me varying R matrix)
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2. K. Dedecius and O. Tich ý, “Collabora)ve sequen)al state es)ma)on
under unknown heterogeneous noise covariance matrices,” IEEE 
Trans.
Signal Process., vol. 68, pp. 5365–5378, 2020.



Thanks for your attention


