
Stochastic Graph Algorithms: Stochastic Graph Algorithms: 
Clique Covering and ClusteringClique Covering and Clustering

David ChalupaDavid Chalupa
Slovak University of TechnologySlovak University of Technology
Institute of Applied Informatics

Faculty of Informatics and Information Technologies

David ChalupaDavid Chalupa
Slovak University of TechnologySlovak University of Technology
Institute of Applied Informatics

Faculty of Informatics and Information Technologies

David ChalupaDavid Chalupa
Slovak University of TechnologySlovak University of Technology
Institute of Applied Informatics

Faculty of Informatics and Information Technologies

David ChalupaDavid Chalupa
Slovak University of TechnologySlovak University of Technology
Institute of Applied Informatics

Faculty of Informatics and Information Technologies

David ChalupaDavid Chalupa
Slovak University of TechnologySlovak University of Technology
Institute of Applied Informatics

Faculty of Informatics and Information Technologies

Seminar of Machine Learning and Modeling 
Prague, 11 October 2012



OutlineOutline of the Talk of the Talk
● problems: theory and applications
● concepts of solving for the studied problems

● algorithmic strategies for the clique covering problem 
(CCP) and graph clustering 

● analytical vs. experimental methodology of evaluation
● current results

● an order-based representation for CCP and order-based 
algorithms: IG and RLS 

● multicriteria construction procedures (MCPs) for graph 
clustering

● conclusions, discussion, references



Clique Covering and Graph Clustering Clique Covering and Graph Clustering 
ProblemsProblems



Problems: Clique Covering and Graph Problems: Clique Covering and Graph 
ClusteringClustering

● visual illustration on a small social network

     clique covering  graph clustering



MotivationMotivation

● computational hardness
• clique covering is NP-hard [Karp, 1972]
• graph clustering is difficult even to define, many 

meaningful quality measures are NP-complete 
[Schaeffer, 2007]

● real-world applications of this type of problems
● data mining [Sun et al., 2008] and web mining [Tang 

et al., 2011]
● social network analysis [Chalupa, 2011a], social 

media marketing [Schaeffer, 2007]



MotivationMotivation
● research citation network analysis [Sun et al., 2008]
● protein interaction in bioinformatics [Gao et al., 2009]
● gene-activation dependencies in bioinformatics [Boyer 

et al. 2005]
● analysis of terrorist organization networks [Patillo et 

al., 2012]
● infectious diseases epidemiology [Rothenberg et al., 

1996]
● scheduling and timetabling [Burke et al., 2007]
● frequency assignment in mobile radio networks [Smith 

et al., 1998]
● and even more...



Clique Covering and Graph ColoringClique Covering and Graph Coloring

● (vertex) clique covering problem (CCP)
● „inverse graph coloring“
● reduction from one problem to another [Karp, 1972]: 

let H = G‘ (complementary graph); then coloring of G‘ 
corresponds to clique covering of H and vice versa

● clique covering number: ϑ(G), chromatic number: χ(G), 
ϑ(G) = χ(G‘)

● coloring is inapproximable within O(|V|1-ε) for any ε > 0 
unless P = NP [Zuckerman, 2007]; the same holds 
probably also for the CCP 

● however, the problems are still not the same



Relationship Between Clique Covering and Relationship Between Clique Covering and 
Coloring ProblemsColoring Problems

● G – graph coloring
● to choose a color, we have to 

scan the neighbors
● we simply use a graph 

coloring heuristic on G
● G – clique covering

● to choose a color, it is not 
enough to scan neighbors 
(without an additional 
information)

 



Graph ClusteringGraph Clustering
● a set of related decomposition problems

● the aim is to decompose
the graph into groups of
“similar“ vertices

● “similarity” can be measured
using density, connectivity,
centrality, distribution, etc.

● it is still not generally agreed,
what is a “good clustering”
[Schaeffer, 2007]



Concepts of Solving for Clique Covering Concepts of Solving for Clique Covering 
and Graph Clusteringand Graph Clustering



Concepts of Solving for Clique Covering Concepts of Solving for Clique Covering 
and Graph Clusteringand Graph Clustering

● clique covering (CCP)
● classical coloring heuristics ([Brélaz, 1979]) - fast, 

quality strongly depends on the structure of the 
graph

● k-fixed local search and evolutionary algorithms 
([Galinier and Hao, 1999], [Titiloye and Crispin, 
2011]) – solid quality of results, slow convergence, 
very inefficient if k is highly overestimated

● non-k-fixed stochastic algorithms are less common 
([Culberson and Luo, 1996])



Concepts of Solving for Clique Covering Concepts of Solving for Clique Covering 
and Graph Clusteringand Graph Clustering

● graph clustering
● hierarchical methods ([Girvan and Newman, 2002]) 

– dendrogram-based, a popular metric is a 
betweenness of an edge

● centrality-based methods ([Kaufman and 
Rouseeuw, 1990]) – typically k-medoids, using 
vertices as central points and optimizing their 
choice

● local search and evolutionary algorithms 
([Schaeffer, 2007])



Efficiency IssuesEfficiency Issues

● analytical view
● classical techniques of analysis and complexity
● analytical techniques for evolutionary algorithms

● experimental view
● benchmarking – quite a lot of data (DIMACS, 

network analysis benchmarks, real-world networks, 
etc.)

● clique covering – easy evaluation and comparison, 
ϑ(G) is a particular number

● graph clustering – not so straightforward, 
comparison to manually created solutions



Evaluation Techniques for Stochastic Graph Evaluation Techniques for Stochastic Graph 
AlgorithmsAlgorithms

● analytical techniques
● a combination of classical graph-theoretical 

approach and evolutionary algorithm analysis
● the choice of analytical method depends on the 

studied issue
● experimental techniques

● optimality, success rate, statistical significance, 
etc.

● “When, we do not know, how to analyze...“



Analytical Techniques for Evolutionary Analytical Techniques for Evolutionary 
Algorithms [Neumann and Witt, 2010]Algorithms [Neumann and Witt, 2010]

● fitness-based landscape partitions
● the search space is divided into m partitions, where 

the last one contains only the optimum
● probability of augmentation – a lower bound on the 

probability that the algorithm jumps from partition i 
to i+1 (p

i
)

● waiting time – the number of iterations, until the 
algorithm jumps to a higher partition (from 
geometric distribution, its expectation is 1/p

i
)

● expected time complexity – the sum of waiting 
times, until partition m is reached



An Order-based Representation for CCPAn Order-based Representation for CCP
[Chalupa, 2012][Chalupa, 2012]



An Order-based Representation for CCPAn Order-based Representation for CCP
● genotype-phenotype mapping based approach 

● greedy graph coloring 
[Welsh and Powell, 1967] 
can be used 

● the key issue is efficiency 
for real-world graphs

● G – graph coloring
● to choose a color, we have 

to scan the neighbors
● G – clique covering

● to choose a color, it is not enough to scan neighbors 
(without an additional information)



Greedy Clique Covering (GCC)Greedy Clique Covering (GCC)



Optimality / Suboptimality Issues in GCCOptimality / Suboptimality Issues in GCC

● the basic issue in GCC – optimality
● Theorem: For an arbitrary graph G = [V,E], there is a 

permutation, for which the greedy clique covering will 
produce the optimal solution with ϑ(G) cliques.

● Proof: Let S = {V1, V2, ..., Vϑ(G)} be the optimal solution to 
the CCP. Then, the optimal permutation P can be 
constructed in the way that the vertices from the same 
classes are next to each other in P, i.e. P = [Vs1,Vs2,...,Vsϑ(G)], 
where s1, s2, ..., sϑ(G) is an arbitrary permutation of integers 
from 1 to ϑ(G). Since vertices of each of the 
subpermutations form the correct cliques, this permutation 
will surely lead to the optimal clique covering. QED.



Efficiency Issues in GCCEfficiency Issues in GCC

● GCC
● computational complexity O(|E(G)|)
● space complexity O(|V|)

● greedy graph coloring
● computational complexity O(|E(G’)|)
● space complexity O(|V|2)

● GCC is more efficient for sparse graphs
● with current implementation techniques, GCC is faster 

than greedy coloring for graphs with density less than 
ca. 4/21



Stochastic Order-based Approach to CCP: Stochastic Order-based Approach to CCP: 
Iterated Greedy (IG) AlgorithmIterated Greedy (IG) Algorithm



Block-based MutationBlock-based Mutation
● block-based properties of the representation

● the identified cliques represent blocks of the solution
● by reordering but (internally) preserving these blocks, 

the solution can be equally good or even superior to the 
previous one, similarly to the coloring problem 
[Culberson and Luo, 1996]

● thus, although IG reminds one of random optimization, 
the fitness behaves similarly to local search

● reorderings of permutations
● random order, reverse order



Iterated Greedy Algorithm with Iterated Greedy Algorithm with GCCGCC



IG on Graphs with Planted CliquesIG on Graphs with Planted Cliques

● a simple model of “clustered“ graphs
● ϑ(G) embedded cliques of constant size r
● probability pout of generating an edge between two 

cliques
● complements of k-colorable graphs in the coloring 

problem [Culberson and Luo, 1996]
● the key questions

● How hard is it to find the right solution with ϑ(G) 
cliques?

● How much time does IG need to find them?



Running time of IG on Sparse Graphs with Running time of IG on Sparse Graphs with 
Planted CliquesPlanted Cliques

● empirical study of the performance of IG
● |V| = 3000 30000, r = 3 8, pout = 10-3

● pout is small  results indicate polynomial performance



Analytical View on the Behavior of IG Analytical View on the Behavior of IG 
on Graphs with Planted Cliqueson Graphs with Planted Cliques

● overestimation by GCC
● suppose that we re-represent the permutation 

[v1, v2,...,v|V|] as [[v1,v2], [v2,v3], ..., [v|V|-1,v|V|]]
● there are two ways, how GCC overestimates

1. an inter-clique edge between two cliques precedes all 
intra-clique edges from the cliques it connects
2. an inter-clique couple [vi,vi+1] without an edge precedes a 
vertex adjacent to both vi and vi+1, which is in the same 
clique as vi+1, but the First Fit strategy will falsely put in the 
same clique as vi



Analytical View on the Behavior of IG Analytical View on the Behavior of IG 
on Graphs with Planted Cliqueson Graphs with Planted Cliques

● overestimation in sparse biclique graphs
● complements of bipartite graphs
● Theorem: Let G = [V,E] be a graph with planted cliques for 

ϑ = |V|/r = 2 and |E|out < r. Then, for each clique covering 
generated by GCC, a random reordering of its cliques will 
lead to the optimum with probability at least 1/[|V|/r+r−1].

● Proof: By induction from small cases, evaluated exhaustively. 
An important implication of the property that |E|out < r is that 
there is a clique inside one of the expected ones.

● Consequence: On these graphs, IG finds optimal clique 
covering in O(|V|3) time.



Analytical View on the Behavior of IG Analytical View on the Behavior of IG 
on Graphs with Planted Cliqueson Graphs with Planted Cliques

● generalization of the previous result
● Theorem: Let G = [V,E] be a graph with planted cliques 

K
r,1

,K
r,2

, ...,K
r,|V|/r

. Suppose that S
i
 = {V

1,i
,V

2,i
,...,V

ki,i
} is the 

current clique covering at the i-th iteration of IG. 
Furthermore, suppose that at each iteration i, there are j and 
m, such that there is a clique G(Vki,j) ∈ Si, which is a 
subgraph of some expected clique Kr,m (G(Vki,j) ≠ Kr,m). Then, 
IG with GCC and random reorderings will converge to the 
optimal solution in O(|V|4) time.

● Proof: A sketch: At each iteration, there is a clique G(Vki,j) 
that is a subgraph of some of the expected cliques. This 
implies an O(|V|) waiting time for an augmentation. The 
structure of the graph also implies that the number of fitness 
levels is O(|V|). Overall, this implies an O(|V|4) upper bound.



Experimental EvaluationExperimental Evaluation
● three algorithms

● BRE - Brélaz's coloring 
heuristic

● SAT-GCC – saturation-
based GCC 
(permutation is 
determined greedily)

● IG-GCC – iterated 
greedy with GCC 
(permutation is 
evolved)

● best results are 
highlighted with bold



Current ResearchCurrent Research

● analysis of order-based algorithms
● IG – it seems that on one hand, IG is very efficient 

for graphs with planted cliques, as well as real 
world data

● however, there are graphs, where IG performs 
really badly

● RLS – another interesting algorithm, using vertex-
based mutations, instead of block-based

● seems more robust but not so efficient in practice 



Multicriteria Construction Procedures Multicriteria Construction Procedures 
(MCPs) for Graph Clustering(MCPs) for Graph Clustering

[Chalupa and Pospíchal, 2012][Chalupa and Pospíchal, 2012]



Multicriteria Construction ProceduresMulticriteria Construction Procedures
● constructive algorithms for graph clustering

● a mapping of a permutation of vertices to a graph 
clustering



Criteria for Graph ClusteringCriteria for Graph Clustering

1. Each vertex is clustered and the clusters are non overlapping.
2. The clusters are more dense than the whole graph:

∀ i = 1..k d(G(Vi)) > d(G), where d is the density.
3. The relative connectivity of a vertex to be newly added to the 

cluster must be higher than its relative connectivity to the 
residual, currently non-clustered subgraph:
w

c
 / |V

c,i
| > δ

r
 / [|V

r
|-1]

where V
c,i

 is the set of vertices in cluster c at the iteration i of 
the MCP, 
w

c
 is the number edges, brought into the cluster by the vertex 

to be newly added and 
|V

r
| and δ

r
 are the number of vertices and the degree of the 

newly added vertex in the subgraph containing only the 
currently non-clustered vertices.



Criteria for Graph ClusteringCriteria for Graph Clustering

4. If there are more candidate clusters, the one with highest 
connectivity is taken:
c = arg

c
max w

c
 / |V

c,i
| 

where for the cluster c, w
c
 / |V

c,i
| must be a feasible value, 

according to the previous rule. 
5. The vertex to be newly added must bring at least as many 
edges, as is the current average intra-cluster degree in the 
particular cluster, while a small tolerance τ may be sometimes 
allowed:
w

c 
+ τ ≥  2|E

c,i
| / |V

c,i
|,

where |E
c,i

| is the number of edges in G(V
c,i

).



Multicriteria Construction Procedure Based Multicriteria Construction Procedure Based 
on Density and Connectivity (MCP-DC)on Density and Connectivity (MCP-DC)

● MCP-DC implements the previous 5 criteria as follows
• local density needed in criterion 2 is fulfilled if:

d(G) |V
c,i

| (|V
c,i

|+1) – 2|E
c,i

| - 2w
c
 < 0

• the local connectivity in criterion 3 is fulfilled if the following 
holds:
|V

c,i
| - w

c
 [|V

r
| - 1] / δ

r
 < 0

• the maximization of the connectivity in criterion 4, i.e. the 
ratio w

c
 / |V

c,i
|, can be implemented simultaneously with 

criterion 3, since the necessary values are calculated in the 
verification of criterion 3

• the criterion 5 yields the following condition, where τ ≥ 0 is a 
parameter of tolerance for the intra-cluster degree of the 
newly added vertex:
2|E

c,i
| / |V

c,i
| - τ - w

c
 ≤ 0



Multicriteria Construction Procedure Based Multicriteria Construction Procedure Based 
on Density and Connectivity (MCP-DC)on Density and Connectivity (MCP-DC)

● the advantage of this implementation of criteria in MCP-DC is 
that the complexity is favorable for sparse graphs

● Theorem. MCP-DC can be implemented to run in 
O(δ|V|) = O(|E|) time.

● Proof. |V
c,i

| and |E
c,i

| can be trivially recalculated in O(1) time per 
iteration. The previous formulations of the MCP-DC criteria can 
be implemented by iterative subtracting of a constant (in the 
cases of criteria 2 and 5) or the ratio 
[|V

r
| - 1] / δ

r
 (in the case of criterion 3) from the respective 

values. Explicit storage of values wc yields the same for 
criterion 4. Restoration of the former values after subtraction 
can be done by simulating the inverse process. All these 
operations need O(δ) average time per iteration, thus, they lead 
to an O(δ|V|) = O(|E|) running time of MCP-DC. QED.



Metaheuristic Optimization for MCPsMetaheuristic Optimization for MCPs
● a simple local search algorithm

● we begin with a random permutation of vertices and 
use an MCP to construct a clustering

● mutation: at each iteration, we try a single random 
vertex exchange in the permutation and evaluate the 
new number of clusters using the MCP

● acceptance of mutation: we accept if the new 
clustering has at most as many clusters as the 
current one

● stopping criterion: maximum of smax iterations 
without improvement



The Emergence of a Good ClusteringThe Emergence of a Good Clustering

0 iterations 100 iterations



The Emergence of a Good ClusteringThe Emergence of a Good Clustering

1000 iterations 10000 iterations



Results on Benchmark InstancesResults on Benchmark Instances

● a comparison of pure MCP-DC and MCP-DC with the 
metaheuristic on several graphs
● network clustering benchmarks: Zachary karate club 

[Zachary, 1977] and American college football network 
[Girvan and Newman, 2002]

● extracts of two different social networks
● an artificial model from [Chalupa, 2011a]



Other ResultsOther Results

● a clustering of data 
obtained from a Slovak 
social network
● shows a clear presence 

of hubs – in MCP, we 
preferred a centrality-
based strategy



ConclusionsConclusions



ConclusionsConclusions

● introduction to stochastic graph algorithms
● problems: clique covering, graph clustering
● strategies, methodologies of evaluation

● an order-based representation for CCP
● interesting analytical results and promising 

on real-world networks
● multicriteria construction procedures 

(MCPs) for graph clustering
● show promise in both clustering and 

determining the nature of clustering 
problem formulation

Thank you for your attention! 
chalupa@fiit.stuba.sk
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