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Optimization Continuous optimization

Metaheuristics, black-box functions

Optimization

@ optimization (minimization) is finding such x* € R” that
oo
f(x") = min f(x)
@ “near-optimal” solution is usually sufficient

f(x)

f(x)
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Optimization Continuous optimization

Metaheuristics, black-box functions

Continuous white-box optimization

also known as numerical optimization methods
requirements:
@ gradients: Vf(x)
e ...can be approximated by finite difference approximations
@ and sometimes also Hessians: V*f(x)

@ gradient descend (1% order)

© Newthon method (2" order)

© quasi-Newthon methods (2" order approximated)
Q trust-region, conjugate gradients
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Optimization

Continuous optimization
Metaheuristics, black-box functions

1st order: gradient descend

@ iterative steps in the direction of negative gradient
xHD = x(®0) _ 5y (x®)

@ o — step size, usually changes every iteration, adapted, for
example, using a line search along the gradient direction

source: (CC) Wikipedia
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Optimization Continuous optimization

Metaheuristics, black-box functions

2nd order: Newton’s method

@ take into account the second-order term of a Taylor
expansion of f(x) around x®):

F® +h) = ¢®(h) = £(x®) + nTvr0 4 %hT (V3] n
@ the next iterate is then
kD) — (X(k) + h("))

where h®) minimizes ¢ (h)

Lukas Bajer Gaussian processes: surrogates for cont. optimization 6



Optimization Continuous optimization

Metaheuristics, black-box functions

Quasi-Newton’s methods

@ Hessian matrix  V?f®) is not computed,
only iteratively approximated B i), B+1); - - -
@ Hessians' inverses are often calculated without inversions

BFGS

@ the most successful for the last three decades

@ independently discovered by 4 (!) people in 1970

C. G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
Hessian approximation updated via rank-two updates
works even without derivatives (with finite differences)

shown to behave well on a variety of (even multimodal) functions
L-BFGS — a popular memory-limited version (Nocedal, 1980)
in every optimization package (Matlab, Python,...)
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Optimization

Continuous optimization
Metaheuristics, black-box functions

Other numerical optimization techniques

@ quadratic approximations:
by far the most popular optimization technique

@ trust-region methods
e quadratic approximations around current point x(¥)
@ minimizes the model within region of trust

NEWOUA, BOBYQA (J. D. Powell, 2004, 2009)

@ construct the quadratic model using much fewer points
than (n + 1)(n + 2)/2 using additional minimizing a norm

@ that saves time and enhances performance

@ conjugate gradients
e do not approximate Hessians
@ conjugate vectors —a momentum guiding the search
e cheaper variant to quasi-Newton’s methods
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Optimization

Continuous optimization
Metaheuristics, black-box functions

Optimization of black-box functions

@ black-box functions

o=

@ only evaluation of the function value, no derivatives or
gradients — no gradient methods available

Pl--------0
Pl---------0

@ we consider continuous domain: x ¢ R”
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Optimization

Continuous optimization
Metaheuristics, black-box functions

Optimization of empirical black-box functions

empirical function:

@ assessing the function-value via an experiment
(measuring, intensive calculation, evaluating a prototype)

@ evaluating such functions are expensive (time and/or
money)

@ search cost ~ the number of function evaluations

wall thicknesses
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Optimization Continuous optimization

Metaheuristics, black-box functions

Metaheuristics

Metaheuristic

@ optimization techniques finding sufficiently good solution
@ treat the objective function as black-box

@ sample a set of candidate solutions
(search space often too large to be completely sampled)

@ often nature-inspired

@ particle/swarn optimization

@ simulated annealing

o ...

@ evolutionary computation (EA, GA, ES, ...)
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Optimization

Continuous optimization
Metaheuristics, black-box functions

EA’s for empirical black-box optimization

what can help with decreasing
the number of function evaluations:
@ utilize already measured values
(at least prevent measuring the same thing twice)
@ learn the shape of the function landscape
or learn the (global) gradient or step direction & size

source: (GNU) Wikipedia, author: Johann "nojhan" Dréo
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Optimization Continuous optimization

Metaheuristics, black-box functions

Model-based methods accelerating the convergence

several methods are used in order to decrease
the number of objective function evaluations needed by EA’s

@ Bayesian optimization (EGO)
@ Surrogate modelling
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Optimization Continuous optimization

Metaheuristics, black-box functions

Bayesian optimization

Bayesian optimizer

Input : objective function £, the size of the initial sample d
X1, ...,Xq < generate an initial sample
A {(xi, )} /* initialize the archive */

for generation g = 1,2, ... until stopping conditions met do
M <+ generate the probabilistic model based on A
X, ... < choose next points x € X accord. to C((x)
Viyeoo = f(x1),. .. /* evaluate the new point(s) */
A+~ AU{(x1,y1),...} /* update the archive */

@ suitable for very low budgets of f-evaluations (~ 10 - D)
@ Gaussian processes used in the criterion Caq most often
@ existing algorithms: EGO (D. R. Jones, 1998),
SPOT (T. Bartz-Beielstein, 2005), SMAC (F. Hutter, 2011) etc.
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Optimization

Continuous optimization
Metaheuristics, black-box functions

Surrogate modelling

Surrogate modelling

@ technique which builds an approximating model
of the fitness function landscape

@ the model provides a cheap and fast,
but also inaccurate replacement of the fitness function
for part of the population

@ inaccurate approximating model can deceive the optimizer




Gaussian process prediction
Gaussian process covariance functions

Gaussian processes

Gaussian Process

GP is a stochastic approximation method based on Gaussian
distributions

Squared exponential

GP can express uncertainty of the prediction in a new point x:
it gives a probability distribution of the output value
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Gaussian process prediction

Gaussian processes a q
Gaussian process covariance functions

Gaussian Process

Gaussian Process

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its

@ mean function m(x) = E[fgp(x)]

@ covariance function  cov(x;,x;) = cov(fgp(x1),for(X2))
and we write the Gaussian process as

f(x) ~ GP(m(x), cov(x,X)).

(Rasmussen, Williams, 2006)
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Gaussian process prediction
Gaussian process covariance functions

Gaussian processes

Gaussian Process

Squared exponential

@ given a set of N training points Xy = (x;...xy)", x; € RY,
and measured = (1, 9n)
of a function f being approximated

=f(x;), i=1,...,N

GP considers vector of these as a sample
from N-variate Gaussian distribution

~ N(0, Cy)
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Gaussian process prediction

Gaussian processes a q
Gaussian process covariance functions

Gaussian Process prior distribution

3 3 3
2 2 2
1 1 1
0 0 0
1 1 1
2 2 2
-3 -3 3
5 0 5 -5 0 5 5 0 5

Draws from Gaussian processes prior for three different covariance functions
Kse, KY22/2, K4=3/2 (in that order), all of them with the parameters ¢ = 1 and

Matern * “*Matern

o7 = 1 without noise

ian processes: surrogates for col



Gaussian process prediction

Gaussian processes i )
Gaussian process covariance functions

Gaussian Process prediction (posterior)

Making predictions
Let Cy41 be extended covariance matrix — extended by entries
belonging to an unseen point (x, y*). Because yy is known and

the inverse Cj ., can be expressed using inverse of the training
covariance Cy !,

the density in a new point marginalize to 1D Gaussian density

* 1(y" = In+1)?
PO [ X1, ¥N) o exp <_2(s2+)

YN+1
where
the mean yy4; and the
H 2
variance sy,
is easily expressible from

’ Cy~land yy.
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Gaussian process prediction

Gaussian processes i )
Gaussian process covariance functions

Gaussian Process prediction (posterior)

3 3 3
2 2 2
1 1 1
0 0 0
1 -1 1
-2 -2 -2
3 3 3
5 0 5 5 0 5 5 0 5

Graphs of Gaussian processes prediction N = 2, 3,4 training data. (+) —
training set, thick line — mean prediction, thin lines — three draws from the GP
posterior (without noise). Predictions 3* and +-2s* are generated for 101
points, computationally stable as the matrix inversion only for the training
covariace Cy.
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Gaussian process prediction

Gaussian processes . q
Gaussian process covariance functions

Gaussian Process covariance

The covariance matrix Cy is determined by the covariance
function cov(x;, x;) which is defined on pairs from the input
space

(C)lj = COV(X,‘,X]), Xij € Rd

expressing the degree of correlations between two points’
values; typically decreasing functions on two points distance

d(x;,x;)
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Gaussian process prediction

Gaussian processes a a q
Gaussian process covariance functions

Gaussian Process covariance

The most frequent covariance function is squared-exponential

(K)y = cov®(x;, %)) = 0 exp (;;(Xi —x) " (xi — Xj)>

with the parameters (usually fitted by MLE)
/- (scales the correlation)
@ / — characteristic length scale
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Gaussian process prediction

Gaussian processes a a q
Gaussian process covariance functions

Gaussian Process covariance

Another usual option in data-minig applications is
Matern covariance, which is for  r = (x; — x;)

atern V5r 57 V51
(K)j = COVI;A:tS/z(V) = <1 T T || T |

with the parameters (same as for squared exponential)
° —_
@ ( — characteristic length scale
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Gaussian process prediction
Gaussian processes ; - )
Gaussian process covariance functions

Gaussian Process covariance

v Squared exponential
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Stochastic search of Evolutionary algorithms

Stochastic black box search

initilize distribution parameters ¢
set population size A € N
while not terminate

@ sample distribution P(x|0) — xi,...,x) € R"
Q@ evaluate x;,...,x,onf
© update parameters ¢

(A. Auger, Tutorial CMA-ES, GECCO 2013)
@ schema of most of the evolutionary strategies (and EDA
algorithms)

@ as well as CMA-ES (Covariance Matrix Adaptation ES)
— current state of the art in continuous optimization
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

The CMA-ES

Input m e R", c e R,,A\eN
Initialize: C = I (and several other parameters)
Set the weights wy, ... w, appropriately

while not terminate

Q@ x,=m+oy, i~N(,C), fori=1,...,)\ sampling

Q@ m« > wix.n=m+oy, Wherey,=>" wy. update
mean

© update C

© update step-size o




CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Covariance matrix adaptation

@ eigenvectors of the covariance matrix C are the principle
components — the principle axes of the mutation ellipsoid

@ CMA-ES learns and updates a new Mahalanobis metric

@ successively approximates the inverse Hessian on
quadratic functions
— transforms ellipsoid function into sphere function
— it somehow holds for other functions, too (up to some
degree)

y  E—— /_\
)= - ) /

source: (S. Finck, N. He{nsen, R. Ros, and A. Auger, 2009)
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Is the CMA-ES the best for everything?

CMA-ES is state-of-the-art optimization algorithm,
especially for rugged and ill-conditioned objective functions

however, not the fastest if we can afford
only very few objective function evaluations

what we have already seen:
use a surrogate model!

however, original evaluated solutions are available
only along the search path

solution: construct
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Doubly trained Surrogate CMA-ES

CMA-ES
Doubly trained Surrogate CMA-ES
Experimental results

Doubly trained Surrogate CMA-ES
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Doubly trained Surrogate CMA-ES

@ sample a new population of size \ (standard CMA-ES
offspring),

@ train the first surrogate model on the original-evaluated
points from the archive A,

© select [a\] point(s) wrt. a criterion C, which is based on
the first model’s prediction,

@ evaluate these point(s) with the original fitness,
© re-train the surrogate model also using these new point(s),
and

© predict the fitness for the non-original evaluated points with
this second model.
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

@ GP predictive mean

@ GP predictive standard deviation

Cstp(%) = 5(x)
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

@ Expected improvement (El). ymin — the minimum so-far
fitness

Cei(x) = E((ymin — F(X)I(F(X) < ymin) | ¥1, - -,yn) . Where

1 for f(x) < Ymin
I(f(X) < Ymin) = { 0 for f(X) > )):min

@ Probability of improvement (Pol). the probability of finding
lower fitness than some threshold T

T —y(x
Croi(x,T) = P(f(x) < T|y1,...,yn8) = ® ( — 3 >>
5(x)
where @ is the CDF of NV (0, 1), T = ymin Or a slightly higher

value
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Criteria for the selection of original-evaluated points

selected unimodal COCO functions fi 2, fs...14

. 5D o 20-D
\ GP predictive mean (M) 1> Probabilty of improvement (Pol)
PR\ % GP predictive stand. deviation (STD) 2 A Expected RDE (ERDE)
Expected improvement (E)
3(]» -4 -4
6 6
8 A -8
multimodal COCO functions f; 4, fis...24
5-D 20-D
0 04
\ \
2 14 2ty
L
= N
g4 4L\
< = \
\
A\
% 6
= e —
[ S— —
8 -8
0 50 100 150 200 250 O 50 100 150 200 250
Number of evaluations / D Number of evaluations / D

The log,, of the median best f-value distances to the benchmarks’ optima
were scaled linearly to [—8, 0] for each COCO function.




CMA-ES
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Doubly trained Surrogate CMA-ES Experimental results

GP model training

trainModel(A, Nmax, TSS, riax, K, o

(Xy, vn) < select at most Nmax points from the archive A using 7SS
and r7,
Xy « transform the selected points into the (o())2C(®) basis with the
origin at m(®)
~ < standardize the f-values in yy to zero mean and unit variance
(mu,af,é, on) + fit the hyperparameters of 1(x) and K using ML
estimation
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Training set selection

@ TSSH1 taking up to Nmax most recently evaluated points

© TSS2 selecting the union of the k nearest neighbors of
every point for which the fitness should be predicted,
where k is maximal such that the total number of selected
points does not exceed Nmax,

© TSS3 clustering the points in the input space into Nmax
clusters and taking the points nearest to clusters’ centroids

© TSS4 selecting Nmax points which are closest to any point
in the current population.
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

GP model parameters

parameter considered values

training set selection method 78S  TSS1, TSS2 TSS3, TSS4
maximum distance 7, 2,/0,:(0.99,D), 4,/0,:(0.99,D)
Nmax 10-D, 15-D, 20-D
covariance function K Ksg, KiJ/2 ki=32

Parameters of the GP surrogate models. The maximum distance ri is
derived using the Mahalanobis distance given by the covariance matrix o>C.
0,2(0.99, D) is the 0.99-quantile of the x}, distribution, and therefore

0,2(0.99, D) is the 0.99-quantile of the norm of a D-dimensional normal
distributed random vector.

37

Lukas Bajer Gaussian processes: surrogates for cont. optimization



Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES

Gaussian process parameter settings — heatmap

[

9 1011121314151617181920212 1234678 9101112131415161718192021222324

parameter sets
parameter sets

COCO/BBOB functions COCO/BBOB functions
10-D 20-D

parameter sets
ey e e
el el el s
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CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Testing framework

Black-Box Optimization Benchmarking (BBOB)
COmparing Continuous Optimisers (COCO)
@ 24 artificial functions

@ different degree of separability, conditioning, modality or with or
without a global structure

@ testing sets defined for dimensions 2, 3, 5, 10, 20 (and 40:)
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Aggregated experimental results on BBOB

| 5-D
0 2D 0
S-CMA-ES +  CMA-ES 2pop
2 > 0.05/2pop DTS-CMAES | | O BIPOP-*'ACMES-k
&  adaptive DTS-CMA-ES Imm-CMA
MA-ES BOBYQA
8.4l v GPOP 4 SMAC
< < SAPEO % fmincon
X CMA-ES "
6 6
8 . . . . 8
10-D o 20-D

log
Ay

“o 50 100 150 200 250 0 50 100 150 200 250
Number of evaluations / D Number of evaluations / D
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Experimental results on BBOB (5 D)

f1 Sphere 5-D f2 Ellipsoidal 5-D
| S-CMA-ES 5 f +  CMA-ES 2pop
0 P> 0.05/2pop DTS-CMA-ES O BIPOP-* ACMES-k
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L2 : MA-ES q \ BOBYQA [
S. T V GPOP 0 3 Y SMAC 1
<, 9 < SAPEO ] fmincon g
\ b X CMAES A
-6 % R} 1 5 B .
8L P — o L2

f3 Rastrigin 5-D f4 Bueche-Rastrigin 5-D
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Experimental results on BBOB (5 D)
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Experimental results on BBOB (5 D)

f13 Sharp Ridge 5-D f15 Rastrigin, multi-modal 5-D

log

A

log
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Experimental results on BBOB (5 D)

f19 Composite Griewank-Rosenbrock F8F2 5-D 22 Gallagher's Gaussian 21-hi Peaks 5-D
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Experimental results on BBOB (20 D)

f1 Sphere 20-D 2 Ellipsoidal 20-D

CMA-ES 2pop
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Experimental results on BBOB (20 D)

5 Linear Slope 20-D 6 Attractive Sector 20-D

log

A

TN P VI S PRV B2V S R 1)

L AEd e e

f8 Rosenbrock, original 20-D

sian processes: surrogates for col



CMA-ES
Doubly trained Surrogate CMA-ES
Doubly trained Surrogate CMA-ES Experimental results

Experimental results on BBOB (20 D

f13 Sharp Ridge 20-D f15 Rastrigin, multi-modal 20-D
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Doubly trained Surrogate CMA-ES

Experimental results on BBOB (20 D)

f19 Composite Griewank-Rosenbrock F8F2 20-D
15
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