Automated data clustering
Guided Unsupervised Search

Tomas Barton
tomas.barton@fit.cvut.cz

May 23, 2019– Prague
Cluster analysis

1. Group similar items into same clusters and dissimilar into different clusters
2. Finds clusters in high-density regions
Clustering is the organization of data points into a finite set of categories by abstracting the underlying structure of the data.

– Hartigan JA (1975) Clustering Algorithms
Clustering algorithms

There are many clustering algorithms:

- *k*-means
- Hierarchical clustering
- DBSCAN
- CLARANS
- Markov clustering
- Affinity propagation
- *x*-means
- Spectral clustering
- Self Organizing Maps
- Fanny
- Transitivity clustering
- CLUTO
- clusterdp
- Chinese Whispers
- Fast Community
- ... and many others
k-means clustering

- most algorithms optimize single objective
- e.g. minimize square distance inside a cluster
- fast, but inaccurate
Single-Link clustering

- capable of discovering arbitrary shaped clusters
- but too sensitive to noise
Problems with clustering

1. Too many existing algorithms
2. Absence of “correct” objective function
3. Difficult to compare results
4. Too many parameters to optimize
Clustering validation

- Ball-Hall
- TraceW
- AIC
- Caliński-Harabasz
- Dunn index
- Gamma
- Tau
- McClain-Rao
- C-index
- BIC
- Ratkowsky-Lance
- Davies and Bouldin
- Silhouette
- Krzanowski-Lai
- Xie-Beni
- Banfield-Raftery
- GDI
- Ray-Turi
- SD index
- S_DbW
- PBM
- Overall deviation
- Connectivity
- Compactness
- and many others...
Clustering validation

Most metrics considers following criteria:

\[f(C) = \frac{\sum \text{distances in a cluster}}{\sum \text{distances between clusters}} \]
Clustering validation

Most metrics considers following criteria:

\[f(\mathbb{C}) = \frac{\sum \text{distances in a cluster}}{\sum \text{distances between clusters}} \]

Other concepts:
- variance-covariance
- entropy
- disconcordant pairs
Clustering objectives
C-index

\[f_{c\text{-index}}(\mathcal{C}) = \frac{S_w - S_{\min}}{S_{\max} - S_{\min}} \]

where

- \(S_w \) is the sum of the within cluster distances
- \(S_{\min} \) is the sum of the \(N_w \) smallest distances between all the pairs of points in the entire dataset. There are \(N_t \) such pairs
- \(S_{\max} \) is the sum of the \(N_w \) largest distances between all the pairs of points in the entire dataset
Clustering objectives

Davies-Bouldin

Davies-Bouldin index combines two measures, one related to dispersion and the other to the separation between different clusters

\[f_{\text{DB}}(C) = \frac{1}{K} \sum_{i=1}^{K} \max_{i \neq j} \left(\frac{\bar{d}_i + \bar{d}_j}{d(c_i, c_j)} \right) \]

where \(d(c_i, c_j) \) corresponds to the distance between the center of clusters \(C_i \) and \(C_j \), \(\bar{d}_i \) is the average within-group distance for cluster \(C_i \).

\[\bar{d}_i = \frac{1}{|C_i|} \sum_{l=1}^{|C_i|} d(x_i(l), \bar{x}_i) \]
No evaluation objective can outperform all others in all scenarios.
Clustering Evaluation

On clustering evaluation criteria

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage.

– Jain and Dubes, 1988
Problems with clustering evaluation

1. Unstable
2. Data biased
3. Some minimized other maximized
4. Unbounded definition range
Clustering Ranking

• Given a set \mathcal{R} of clustering solution $\{\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_\pi\}$ created from the same dataset

• We use a supervised function as reference

 $f_{\text{supervised}}(\mathcal{R}) \rightarrow \tau_{\text{sup}} = \text{rank}\{\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_\pi\}$

• And an unsupervised function

 $g_{\text{unsupervised}}(\mathcal{R}) \rightarrow \tau_{\text{unsup}} = \text{rank}\{\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_\pi\}$
• aggregation dataset – 7 clusters
Visualization of objectives

supervised objective

unsupervised objective
• Over-optimized clustering (highest C-index)
Ideal objective
C-index
Davies-Bouldin
Point-Bi serial
Clustering correlations between sortings
Combinations of evaluation metrics

How to improve current state of single evaluation criterion?

• Select best performing criteria
• Combine them using ensemble approach
Combinations of evaluation metrics

How to improve current state of single evaluation criterion?

• Select best performing criteria
• Combine them using ensemble approach
Combinations of evaluation metrics

How to improve current state of single evaluation criterion?

• Select best performing criteria
• Combine them using ensemble approach

1. Score based
2. Rank based
3. Multi-Objective sorting
Score based Evaluation Ensembles

- Score normalization is needed
- Convert minimization to maximization – e.g. by flipping values around their mean

Strategies (Vendramin L. at al. 2013):

1. *Mean* arithmetic mean
2. *Harmonic Mean* penalize worst performing clusterings with a low score in at least one criterion
3. *Mean-2* remove most discrepant values
4. *Median* The median of the evaluation scores
Rank based Evaluation Ensembles

Borda count method

- Classical voting scheme
- Can be adapted to minimization or to maximization of criteria
- Corresponds to mean of ranks
- Alternatively could be computed as median of ranks
Footrule

- Computes distance between two rankings

\[
\text{Footrule}(\mathbb{R}) = \arg \min_{\pi} \left(\sum_{\tau \in \mathbb{R}} d(\tau, \pi) \right)
\]

Distance between rankings:

\[
d(\tau_1, \tau_2) = \sum_{i=1}^{|	au|} |\tau_1(i) - \tau_2(i)|
\]
Rank based Evaluation Ensembles

Inconsistency

- Relative contribution is based on tendency to agree with the rest of the pool
- Inconsistency for given f_i criterion:

\[
\text{Inconsistency}(\tau_{f_i}) = \sum_{j=1}^{\text{|}\tau_{f_i}\text{|}} (\tau_{f_i}(j) - \mu(j))^2
\]

Weight for each ranked list:

\[
W(\tau_{f_i}) = \frac{\text{Inconsistency}(\tau_{f_i})}{\sum_{j=1}^{\text{|}\tau\text{|}} \text{Inconsistency}(\tau_{f_j})}
\]
Evaluation Ensembles

Problems

• Criteria needs to be carefully selected

• Improvement only over the weakest member of the ensemble
C-index (Iris dataset)

- correlation -0.81
• correlation = 0.13
• correlation = -0.47
Pareto front projection
• correlation = 0.12
AIC & Point BiSerial (Iris dataset)

- correlation = 0.62
Meta-features

- $\log_2 N$ Input data size.
- $\log_2 D$ Number of attributes.
- \textbf{AV} – Average attribute variance (σ).
- \textbf{CV} – Coefficient of variation (CV) defined as the ratio of the standard deviation σ to the attribute mean.
- $\textbf{CVQ1-4}$ Standard deviation of all attribute’s first quartiles divided by their means.
- \textbf{SKEW} – The Pearson median skewness
- \textbf{KURT} – Kurtosis (min, max, mean, std).
- $\textbf{KNN4}$ – Average distance to 4th nearest neighbor.
- $\textbf{N2ER}$ – Node to edge ratio after k-NN graph bisection.
- \textbf{PCA} – Basic statistics of the principal component.
AutoML clustering

1: procedure AutoMLCLUSTERING(dataset)
2: extract meta-features
3: choose ranking metric(s)
4: landmarking - run fast templates
5: find top-N templates based on meta-features
6: rank clusterings
7: while max. explored states not reached or time limit not reached do
8: expand top performing templates
9: remove worst solution from population
10: end while
11: end procedure
AutoML exploration

• Goal is to be able to obtain diverse set of clusterings
Conclusion

- There are combinations of objectives that work in many cases, but are data dependent.
- Evaluation ensembles need to combine complementary objectives.
- AutoML clustering heavily depends on training datasets and chosen objectives.
Questions?

Thank you for your attention

tomas.barton@fit.cvut.cz