Continuous Optimization

- Seeks a (global) minimum of an arbitrary continuous function
- The function is usually complex, multimodal and multidimensional
- Usually an analytical gradient is available, but not always
- Even less usual is analytical Hessian
- The function is considered a black box \implies black-box optimization
- Many different approaches, exhaustively mapped
Application Environment

JCool

- Project resulting from M. Hvizdos’ Master’s Thesis
- Testing and benchmarking of optimization methods
- Currently contains 18 methods and 33 testing functions
Gradient Methods

- Different use of the Hessian matrix:
 1. Conjugate Gradient: does not use at all
 2. Levenberg-Marquardt: uses and adjusts
 3. *quasi*Newton: not directly, approximates

4. Orthogonal search – optimization dimension by dimension

5. Powell’s method – improved OS by folding the already taken steps

Covariance Matrix Adaptation Evolution Strategy

- Sampling of a normal distribution of a multidimensional vector
- Covariance matrix used to describe dependence between parameters
Implemented Optimization Techniques
Nature Inspired Optimization Techniques

Ant Colony Algorithms
- Directly simulate ant behaviour (CACO, API)
- Extension of the original algorithm by discretization (AACA)
- Extension of the original algorithm by probabilistic sampling (ACO*, DACO)

Genetic Algorithms
- Differential Evolution (DE, SADE)
- Vector of probabilities used to sample the population (PBIL)
- Simulation of a bevy in search of food (PSO)
- Combined algorithms (HGAPSO)
Implemented Test Functions

Suite of test functions

- Unimodal and multimodal functions
- Multidimensional functions, many of which configurable by parameters
- For the most of these analytical gradient and Hessian is available
- Values of the global minima are known, including their positions

Figure: Examples of implemented test functions.
Benchmarksing

- 100 runs, limit to 2000 iterations
- Each parameter tested in its full range
- Success rate and # of iterations recorded

Figure: PBIL, likelihood of a mutation, step-size 0.05
Benchmarksing

- Recommended values of optimization method parameters
- Different sets of parameter values for different function types

Figure: Comparison of the original and recommended parameter values
Early Results
Comparison of the Implemented Optimization Methods

Numeric Methods
- Very precise
- More effective
- Poor global convergence
- Useful for landmarking

Nature Inspired Methods
- Although less precise, these can handle hard functions
- Time demanding computation, more iterations needed
Optimization of Optimization

- Technique of identifying the best algorithm for the given task
- *No free lunch theorem* (Wolpert and Macready, 1997)
- Once identified, optimal parameter values should be supplied as well
- Ultimately a repository will be created, storing
 - meta-features
 - algorithm + parameter values
 - achieved results
- Optimizing GAME models
Meta-Optimization

Basic Principle
Landmarking

- Sampling the function value surface either by a grid or by a simple and fast algorithm
 - *quasi*-Newton method selected
- Since the function is a black box, no other information can be collected
- Aiming to answer which method should be used, with what parameter values and where is a good starting point
 - Average Delta Value
 - Average Step Length
 - Number of Different Minima
 - Value Difference to Trip Length
 - ...

Vladimir Bicik (CTU Prague)
Current Stage
Dynamic Meta-features

Early Data
Landmarking

- More complex functions are needed
 - or at least multidimensional functions must be tested
- Computational cost of finding a symmetry
- Broader set of static meta-features is yet to be identified