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A

Problem Setting: Certification of Neural Network Robustness




Black-Box ML in Critical Applications: Why not?
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Black-Box ML in Critical Applications: Why not?

(Athalye et al (2018))
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https://youtu.be/YXy6oX1iNoA

Black-Box ML in Critical Applications: Why not?

Naive Question: Why are adversarial examples an issue?
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Black-Box ML in Critical Applications: Why not?

Naive Question: Why are adversarial examples an issue?

® |ntuitively: “similar” inputs — “similar” outputs
Adv. examples are indicator of bad generalization

® Measurements are often noisy
Classification might be unstable

® (Intentional) misclassification might have dangerous consequences

Adversarial examples are a security risk
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Black-Box ML in Critical Applications: How?

We formalize: “similar” inputs — “similar” outputs
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Black-Box ML in Critical Applications: How?

We formalize: “similar” inputs — “similar” outputs

Definition (Robust Classifier) R

We call a classifier f : X — R" robust around a point
X € X iff W' € N(x) : class(f(x’)) = class(f(x))

We focus on certification of robustness
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Adversarial Robustness: Projected Gradient Descent
(PGD)
One of many adversarial attacks

Idea: use gradient descent to optimize input towards a
given class y
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Adversarial Robustness: Projected Gradient Descent
(PGD)

One of many adversarial attacks
Idea: use gradient descent to optimize input towards a o —
given class y N(x) //

Start with input x, classifier f and neighborhood N (x)

and then iteratively

X = M (X + asgn(VyL(x, y))) (1)

Where I(.) projects its argument back into N/ (x)
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Adversarial Robustness: Projected Gradient Descent
(PGD)

One of many adversarial attacks
Idea: use gradient descent to optimize input towards a o —
given class y N(x)
Start with input x, classifier f and neighborhood N (x)
and then iteratively

X" = M (XY + asgn(VL(x, y)) (1)
Where I(.) projects its argument back into N/ (x)

Good at finding adversaries. .. but not exhaustive!
(Finding adversarial examples is hard )
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Adversarial Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?
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Adversarial Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?

Adversarial Approach: Just test a bunch

of inputs!

But: How to interpret results? AT ResNet18
MART ResNet18

Method  Architecture

TRADES ResNet18

AT ResNet18
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Image Source: MAIR Framework Github
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Adversarial Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?

Adversarial Approach: Just test a bunch
of inputs!

But: How to interpret results? AT ResNet18
MART ResNet18

Method  Architecture

® Results depend attack parameters

X . o TRADES =~ ResNet18
® |nformation gain about f is limited = -
MART ResNet18

TRADES ResNet18

PGD10

528/8;
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Formal Verification of NN Robustness

Question: How do we test if a classifier is robust for all inputs?
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Formal Verification of NN Robustness

Question: How do we test if a classifier is robust for all inputs?

Formal Verification Approach: Prove there exists no counter example (MIP, SMT)!

® Requires encoding of f as constraint model
® fisrobust around x iff following formula holds

vx' € N(x) : class(f(x)) = class(f(x)) (2)

® How to show f is globally robust?

Vx € X : VX € N(x) : class(f(x)) = class(f(x'))
(3)

Is too strict!
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Formal Verification of NN Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?

Formal Verification Approach: Prove there exists no counter example (MIP, SMT)!

We give the network the option to abstain and only
consider confident predictions

Vx € X : WX € N(x) : confe(x) > k = class(f(x)) = class(f(x'))
(4)
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Formal Verification of NN Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?

Formal Verification Approach: Prove there exists no counter example (MIP, SMT)!

We give the network the option to abstain and only —
consider confident predictions
Vx € X : WX € N(x) : confe(x) > k = class(f(x)) = class(f(x')) ° °
(4) x| © 3
conf¢(x) can be e.g. the Softmax confidence S1a550 -
Very expensive, infeasible above 100s of neurons g
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Global Robustness: Adversarial vs. Formal

Adversarial Robustness Techniques
® sample based
® fast

(often) no bounds

limited information required

How to choose parameters?
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Global Robustness: Adversarial vs. Formal

Adversarial Robustness Techniques Formal Verification
® sample based ® expensive locally
® fast ® intractable globally
® (often) no bounds ® Proof or Counterexample
® |imited information required ® Model needs to be encoded
® How to choose parameters? ® Where to verify robustness?
Our Objective:

® give sample based guarantees about global robustness
® Stay model-agnostic

® Give specific robustness bounds for each prediction
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A

Background: Probabilistic Coverage Guarantees with
Epsilon-nets



e-Nets

For a classifier f : X — R", we want to define a notion of coverage of a space under a
data distribution D
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e-Nets

For a classifier f : X — R", we want to define a notion of coverage of a space under a
data distribution D

Definition (Range-Space)
Let X’ be a set and R a set of ranges, where R € R : R C X Then (X, R) is a range space

Definition (e-Nets)
Given a range space (X, R) and a probability distribution D, a finite set N C X is called
an e-net, iff N intersects each e-probable R € R, i.e.,

VRER:Pr(R)>e=NNRF) & (5)
YVReER:NNR=0=Pr(R) < e (6)
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e-Nets: Example

We consider the range space (R2, B), with BB is some set of circles

-
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e-Nets: Example

We consider the range space (R2, B), with BB is some set of circles

An e-net intersects all likely enough circles
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Vapnik-Chervonenkis-Dimension

Definition (VC-Dimension )
Let (X, R) be a range space. The Vapnik-Chervonenkis (VC) dimension d of (X', R) is the
size of the largest set S C X, such that

VS CS:FJReR:RNS=5 (7)

where we say S is shattered by R
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Vapnik-Chervonenkis-Dimension

Definition (VC-Dimension )
Let (X, R) be a range space. The Vapnik-Chervonenkis (VC) dimension d of (X', R) is the
size of the largest set S C X, such that

VS CS:FJReR:RNS=5 (7)

where we say S is shattered by R

o
Example (Rectangles in R?)
® 35:|S| = 4 with shattering=d > 4
® VS :|S| > 5, no shattering = d < 4 ° o ®
o
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Vapnik-Chervonenkis-Dimension

Definition (VC-Dimension )
Let (X, R) be a range space. The Vapnik-Chervonenkis (VC) dimension d of (X', R) is the
size of the largest set S C X, such that

VS CS:FJReR:RNS=5 (7)

where we say S is shattered by R

o
Example (Rectangles in R?)
® 35:|S| = 4 with shattering=d > 4
® VS :|S| > 5, no shattering = d < 4 ° o ®
Well studied for common hypothesis spaces A
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e-Nets from iid Samples

Theorem (e-nets from iid samples )

Let (X, R) be a range-space with VC-dimension d and D be a probability distribution. For
anyo < d,e < % an iid sample N will be an e-net with probability at least 1 — ¢ iff

]N\=O(dlnd+1ln1> (8)
€ € € 0
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e-Nets from iid Samples

Theorem (e-nets from iid samples )

Let (X, R) be a range-space with VC-dimension d and D be a probability distribution. For
anyo < d,e < % an iid sample N will be an e-net with probability at least 1 — ¢ iff

]N\=O(dlnd+1ln1> (8)
e € € 0

We are interested in obtaining minimal samples of sufficient size, so we find [N| = s with

s(e, 0, d) = [Sréilg {s 15> % <Iog (;) +d|og(2s))} (9)
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A

Distillation with probably approximately global coverage




Problem Setting

We have formal tools that can prove global robustness for only very small NNs

Formal Verification?
—_— Robustness Proof
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Problem Setting

We have formal tools that can prove global robustness for only very small NNs

Question: How can we use these tools for larger networks?

Formal Verification? {*
—— | Probabilistic Robustness

. /

Transfer
Guarantee

Transfer
Robustness

Formal Verification
% —_— Robustness Proof
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Gradient-Aligned Distillation

We train a small NN fs to simulate a given NN fr
The training tries to minimize the difference in assigned labels, logits and gradients
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Gradient-Aligned Distillation

We train a small NN fs to simulate a given NN fr
The training tries to minimize the difference in assigned labels, logits and gradients

We optimize for

Lce(fs(x), y) + L (fs(x), fe(x))+

(10)
| VxLee(fe(x),y) — ViLee(fs(x), y)||

Where we will use y = class(fr(x))
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We optimize for A ‘

Lce(fs(x), y) + L (fs(x), fe(x))+

(10)
| VxLee(fe(x),y) — ViLee(fs(x), y)||

Where we will use y = class(fr(x))
Under perfect conditions, fs is as robust as fr
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Gradient-Aligned Distillation

We train a small NN fs to simulate a given NN fr
The training tries to minimize the difference in assigned labels, logits and gradients

|
Lee(fs(X), y) + Ly (Fs (), Fe(x))+ | fr

(10)
| VxLee(fe(x),y) — ViLee(fs(x), y)||

We optimize for A

Where we will use y = class(fr(x))
Under perfect conditions, fs is as robust as fr
Assumes both functions are linear in a metric ball B/(x)!

v

X ———— — —
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Transferring Robustness Guarantees

Question: How can we transfer guarantees back from fs to f1?
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Distill on an e-net N over metric balls!
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Transferring Robustness Guarantees

Question: How can we transfer guarantees back from fs to f1?

Distill on an e-net N over metric balls! Informally:

1. We will intersect all e-likely metric balls under D
2. Forx € N, fs and fr have same robustness around x in B,(x)
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Question: How can we transfer guarantees back from fs to f1?

Distill on an e-net N over metric balls! Informally:

1. We will intersect all e-likely metric balls under D
2. Forx € N, fs and fr have same robustness around x in B,(x)
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Transferring Robustness Guarantees

Question: How can we transfer guarantees back from fs to f1?

Distill on an e-net N over metric balls! Informally:

1. We will intersect all e-likely metric balls under D
2. Forx € N, fs and fr have same robustness around x in B,(x)
= If fs is globally robust, f1 is robust in all e-likely metric balls

We sample sufficiently N iid from some dataset with additive noise
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Does It Work? Experimental Results

We constructed fr with known robustness properties and checked if robustness

transferred through distillation
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Does It Work? Issues With This Approach
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® We construct an e-net over metric balls in the input space
N scales linearly with the input dimension, expensive for high dimensional data

® We cover all e-likely metric balls
But what does this mean?
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- If we consider balls of any size: we require local linearity at arbitrary scale
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Does It Work? Issues With This Approach

® Robustness around x transfers if fs,fr are linear around x
This trivializes checking robustness! Why not use tangent planes directly?

® We construct an e-net over metric balls in the input space
N scales linearly with the input dimension, expensive for high dimensional data

® We cover all e-likely metric balls
But what does this mean?

- How can we detect e-likely balls?
- If we consider balls of any size: we require local linearity at arbitrary scale
- If we consider only small balls: maybe none are e-likely (high dimensional data)
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Property-Based Robustness Guarantees




Addressing issues: Local Robustness Checks

Question: Why not check local robustness directly for any f?
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Addressing issues: Local Robustness Checks
Question: Why not check local robustness directly for any f?

® |ocal Robustness verification is tractable

® \We can use different assumptions about f to use different tools
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Addressing issues: Local Robustness Checks

Question: Why not check local robustness directly for any f?

® |ocal Robustness verification is tractable

® \We can use different assumptions about f to use different tools

Definition ((Local) Robustness Oracle)
For a classifier f : X — R", a robustness oracle is defined as

robg(x) = min {||x — || : class(x) 7 class(x')} (11)
X' eN(x)

and returns the robustness radius p
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Addressing issues: Local Robustness Checks

Question: Why not check local robustness directly for any f?

® |ocal Robustness verification is tractable

® \We can use different assumptions about f to use different tools

Definition ((Local) Robustness Oracle)
For a classifier f : X — R", a robustness oracle is defined as

robg(x) = min {||x — || : class(x) 7 class(x')} (11)
X' eN(x)
and returns the robustness radius p

We can also use (non-exact) oracles that find a counterexample with attacks (e.g. PGD)
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Quality Space

Question: Do we really need to cover the input space?
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Quality Space

Question: Do we really need to cover the input space?
We recall when f is (p, x)-robust:

Px € X : robg(x) < p A confs(x) > & (12)
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Quality Space
Question: Do we really need to cover the input space?
We recall when f is (p, x)-robust:
Px € X : robg(x) < p A confs(x) > & (12)
We can assume an explicit map into R2:
a(x) — (robg(x), conf¢(x)) (13)

We call this space the quality space Q = R?

Peter Blohm, Research Unit Machine Learning @ TU Wien | PAG Robustness Certification

Robustness

q(x)

>

I

Confidence

25/36



Quality Space

Question: Do we really need to cover the input space? Y
We recall when f is (p, x)-robust:

Bx € X : robg(x) < p A conf(x) > K (12) .
e

We can assume an explicit map into R2:

24
[0
q(x) — (robg(x), conf(x)) (13) % (oo
2 K
Q A
We call this space the quality space Q = R? and define € q(x)’
all counterexamples to robustness | R(p, k)
R(p, k) ={(p, k') e R?: p' < p,k' > Kk}  (14) | >
Confidence
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Quality Space ctd.

Question: How does the representation in Q help us here?

Peter Blohm, Research Unit Machine Learning @ TU Wien | PAG Robustness Certification 26/36



Quality Space ctd.

Question: How does the representation in Q help us here?

We want to prove a relaxed version of global robustness

#x € X : confs(x) > Kk A robg(x) < p
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Quality Space ctd.

Question: How does the representation in Q help us here?

We want to prove a relaxed version of global robustness
#x € X : confs(x) > Kk A robg(x) < p (15)
We can bound the probability of a random point X being a counterexample:

Pr(rob¢(X) < p A confe(X) > k) = Pr(R(p, k)) < € (16)
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Quality Space ctd.

Question: How does the representation in Q help us here?

We want to prove a relaxed version of global robustness
#x € X : confs(x) > Kk A robg(x) < p (15)
We can bound the probability of a random point X being a counterexample:
Pr(rob¢(X) < p A confe(X) > k) = Pr(R(p, k)) < € (16)

Answer: We can sample e-nets in Q!
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Quality Space ctd.

Let the family of ranges be

R ={R(p, k) : (p, k) € R*} (17)
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Quality Space ctd.

Let the family of ranges be
R = {R(p, k) : (p, k) € R?} (17)
If Nis an e-net of (Q, R) then

Vp,k € R:NNR(p, k) =0 = Pr(R(p, k) <e (18)
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Let the family of ranges be § 4
R ={R(p, k) : (p, k) € R*} (17) g q(x) Fr .
If N'is an e-net of (Q, R) then . :* | R(p, k)
Vp,k € R:NNR(p,k) =0 = Pr(R(p, k) < e (18) — | >
Confidence
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Quality Space ctd.

Let the family of ranges be é A
R ={R(p, k) : (p, k) € R*} (17) % q(x) ‘pr S
If N'is an e-net of (Q, R) then . .* | R(p, k)
Vp,k € R:NNR(p, k) =0 = Pr(R(p, k) <e (18) 77 | |
Confidence

IN| = s(e, 9, d) depends only on the VC-dimension d of
R, noton X
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Counterexample Robustness

We can now efficiently decide counterexample robustness V(p, k).
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Counterexample Robustness

We can now efficiently decide counterexample robustness V(p, k).
Question: But what information do we gain?

Example (Abstract)
We choose (ps,k4) and N tells us f is (p4,k4) robust with probability at least 1 — ¢
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We can now efficiently decide counterexample robustness V(p, k).
Question: But what information do we gain?

Example (Abstract)

We choose (ps,44) and N tells us f is (p4,k4) robust with probability at least 1 — ¢
Now we use f and obtain 100 points with confidence exactly x,

We measure their robustness: None of them are p robust!

How can this happen?
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Counterexample Robustness

We can now efficiently decide counterexample robustness V(p, ).
Question: But what information do we gain?

Example (Abstract)

We choose (ps,44) and N tells us f is (p4,k4) robust with probability at least 1 — ¢
Now we use f and obtain 100 points with confidence exactly x,

We measure their robustness: None of them are p robust!

How can this happen?

Pr(robs(x) < p A confe(x) > k) < € (19)
Pr(rob¢(x) < p | conf¢(x) > K)Pr(confs(x) > x) < € (20)
Pr(robg(x) < p | confe(x) > k) < ; (21)
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Approximately Global Robustness

Question: Why is a conditional probability bound more useful?
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Approximately Global Robustness
Question: Why is a conditional probability bound more useful?

e conf¢(x) is known at inference time

® rob¢(x) needs to invoke the robustness oracle
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Approximately Global Robustness

Question: Why is a conditional probability bound more useful?

e conf¢(x) is known at inference time

® rob¢(x) needs to invoke the robustness oracle

If we can give a conditional statement V(p, k) we can obtain a robustness radius from the
confidence:

M(k) = max : Pr(rob¢(x) < p | confe(x) > k) < € (22)
pER
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Approximately Global Robustness

Question: Why is a conditional probability bound more useful?

e conf¢(x) is known at inference time

® rob¢(x) needs to invoke the robustness oracle

If we can give a conditional statement V(p, k) we can obtain a robustness radius from the
confidence:

M(k) = max : Pr(rob¢(x) < p | confe(x) > k) < € (22)
pER

We can use conditional guarantees to give "customized" robustness lower bounds for
each prediction!
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Obtaining Constant Bounds
With e-nets we can only get the bound

€

= Priconfyx) > ) =

Pr(rob¢(x) < p | confs(x) > k)
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Obtaining Constant Bounds

With e-nets we can only get the bound
For the case Pr(conf¢(x) > k) > 1 — pmax

€ €
< <
Pr(conf¢(x) > k) 1 — Pmax

Pr(rob¢(x) < p | confs(x) > k) (23)
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Obtaining Constant Bounds

With e-nets we can only get the bound

For the case Pr(conf¢(x) > k) > 1 — pmax

€ €
< <
Pr(conf¢(x) > k) 1 — Pmax

Pr(rob¢(x) < p | confs(x) > k) (23)

Question: How do we know for which x: Pr(confs(x) < %) < pmax
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Obtaining Constant Bounds

With e-nets we can only get the bound

For the case Pr(conf¢(x) > k) > 1 — pmax

€ €

< < 2
Pr(conff(x) > /‘i) 1 — Pmax ( 3)

Pr(rob¢(x) < p | confs(x) > k)

Question: How do we know for which x: Pr(confs(x) < %) < pmax

We use rank statistics to estimate a bound from the sample!
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Obtaining Constant Bounds with Rank Statistics

Given a sample N, for which x:
Pr(conf¢(x) < k) < Pmax?

< pmax \/'max

Confidence
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Obtaining Constant Bounds with Rank Statistics

Given a sample N, for which x:
Pr(conf¢(x) < k) < Pmax?
We estimate the rank of the pmax-quantile Kmay of ~...

< Pmax  \/'max

Confidence

# less confident elements in N
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Obtaining Constant Bounds with Rank Statistics

Given a sample N, for which x:

Pr(conf¢(x) < k) < Pmax?

We estimate the rank of the pmax-quantile Kmay of ~...
Let N;) be the element in N with ith-biggest confidence

< pmax \/'max

Kpmae 2 Nij) 21 = | [N|Pmax] (24) Confidence

# less confident elements in N
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Obtaining Constant Bounds with Rank Statistics

Given a sample N, for which x:

Pr(conf¢(x) < k) < Pmax?

We estimate the rank of the pmax-quantile Kmax of k...
Let N;) be the element in N with ith-biggest confidence

< pmax \/'max

Kpmae 2 Nij) 21 = | [N|Pmax] (24) Confidence

...and use Chernoff bounds

(25)

. 1
1< C(|N|apmaX56) = \‘|N|pmax - \/2’N|pmax In <5)J
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Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)
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Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)
Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X

For parameters ¢, §, Pmax
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Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)
Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X
For parameters €, 6, pmax We take an iid sample N C X with |N| > s <e, g, 2) and let

Kmax = C (‘N‘apmam g)
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Theorem (PAG Robustness)

Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X
For parameters €, 6, pmax We take an iid sample N C X with |N| > s <e, g, 2) and let
Kmax = C (‘N‘apmam g)

Then it holds with probability at least 1 — ¢§ that

Peter Blohm, Research Unit Machine Learning @ TU Wien | PAG Robustness Certification 32/36



Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)

Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X
For parameters €, 6, pmax We take an iid sample N C X with |N| > s <e, g, 2) and let
Kmax = C (‘N‘apmam g)

Then it holds with probability at least 1 — ¢§ that

VoV < Kmax & {a(x) : x € N} NR(p, k) =0
(27)

If we have no counterexample in N,
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Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X
For parameters €, 6, pmax We take an iid sample N C X with |N| > s <e, g, 2) and let
Kmax = C (‘N‘apmam g)

Then it holds with probability at least 1 — ¢§ that

VoV < Kmax & {a(x) : x € N} NR(p, k) =0
(27)

If we have no counterexample in N, f is probably
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Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)

Given a classifier f : X — R", a robustness oracle robs and a data distribution D over X
For parameters €, 6, pmax We take an iid sample N C X with |N| > s (e, g, 2) and let
Kmax = C (‘N‘apmam g)

Then it holds with probability at least 1 — ¢§ that

€

1 — Pmax
(27)

VpVK < Kmax : {a(x) : x € N} NR(p, k) = 0 = Pr (robg(X) < p| confe(X) > k) <

If we have no counterexample in N, f is probably approximately globally (p, k)-robust
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Experiments: Setup

Question 1: Do our guarantees hold for unseen data in real problems?

Question 2: Do our guarantees provide constructive information about classifiers?
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We tested MNIST and CIFAR10 classifiers for adversarial robustness against PGD
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Experiments: Setup

Question 1: Do our guarantees hold for unseen data in real problems?

Question 2: Do our guarantees provide constructive information about classifiers?
We tested MNIST and CIFAR10 classifiers for adversarial robustness against PGD
We chose € = 1074, pmax = 0.99, d = 0.02, with s(107%, 0.01, 2) = 670312 samples

D is estimated by Gaussian noise around a validation split of the dataset
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Experiments: Setup

Question 1: Do our guarantees hold for unseen data in real problems?

Question 2: Do our guarantees provide constructive information about classifiers?
We tested MNIST and CIFAR10 classifiers for adversarial robustness against PGD
We chose € = 1074, pmax = 0.99, d = 0.02, with s(107%, 0.01, 2) = 670312 samples
D is estimated by Gaussian noise around a validation split of the dataset

We expect for a given k

Pr(rob¢(x) < M(k) | conf¢(x) > k) < 0.01 (28)
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Experimental Results
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N is constant with respect to the data-space and the properties of f

® We cover all e-likely counterexample-ranges
But what does this mean?

- We can upper-bound probability of empty ranges (no counterexamples found in N)
- We can obtain robustness lower-bounds for predictions with a given confidence
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Summary: Strength of PAG Robustness

® We perform local robustness checks with the oracle roby
We abstract away from the type of robustness we check we use

® We construct an e-net over metric balls in the quality space Q
N is constant with respect to the data-space and the properties of f

® We cover all e-likely counterexample-ranges
But what does this mean?

- We can upper-bound probability of empty ranges (no counterexamples found in N)
- We can obtain robustness lower-bounds for predictions with a given confidence
- We need only one sample N and with probability at least 1 — ¢ our guarantee hold for all K < Kmax
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- We can upper-bound probability of empty ranges (no counterexamples found in N)
- We can obtain robustness lower-bounds for predictions with a given confidence
- We need only one sample N and with probability at least 1 — ¢ our guarantee hold for all K < Kmax

This method also generalizes to learning other rules in black-box ML
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