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Problem Setting: Certification of Neural Network Robustness
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Black-Box ML in Critical Applications: Why not?
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Black-Box ML in Critical Applications: Why not?
Goodfellow et al (2015)

Image Source: Goodfellow et al (2015)
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Black-Box ML in Critical Applications: Why not?
Athalye et al (2018)

Image Source: Youtube Video

https://youtu.be/YXy6oX1iNoA
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Black-Box ML in Critical Applications: Why not?

Naive Question: Why are adversarial examples an issue?

• Intuitively: “similar” inputs → “similar” outputs
Adv. examples are indicator of bad generalization

• Measurements are often noisy
Classification might be unstable

• (Intentional) misclassification might have dangerous consequences

Adversarial examples are a security risk
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Black-Box ML in Critical Applications: How?

We formalize: “similar” inputs → “similar” outputs

Definition (Robust Classifier)
We call a classifier f : X → Rn robust around a point
x ∈ X iff ∀x′ ∈ N (x) : class(f(x′)) = class(f(x))

We focus on certification of robustness
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Adversarial Robustness: Projected Gradient Descent
(PGD) Madry et al (2018)

One ofmany adversarial attacks
Idea: use gradient descent to optimize input towards a
given class y

Start with input x, classifier f and neighborhood N (x)
and then iteratively

x(t+1) = ΠN (x)(x(t) + αsgn(∇xL(x, y))) (1)

Where Π(.) projects its argument back into N (x)
Good at finding adversaries. . .but not exhaustive!
(Finding adversarial examples is hard Carlini and Wagner (2017) )
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Adversarial Robustness ctd.

Question: How do we test if a classifier is robust for all inputs?

Adversarial Approach: Just test a bunch
of inputs!
But: How to interpret results?

• Results depend attack parameters
• Information gain about f is limited
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Image Source: MAIR Framework Github

https://github.com/Harry24k/MAIR
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Formal Verification of NN Robustness

Question: How do we test if a classifier is robust for all inputs?

Formal Verification Approach: Prove there exists no counter example (MIP, SMT)!

• Requires encoding of f as constraint model
• f is robust around x iff following formula holds

∀x′ ∈ N (x) : class(f(x)) = class(f(x′)) (2)

• How to show f is globally robust?

∀x ∈ X : ∀x′ ∈ N (x) : class(f(x)) = class(f(x′))
(3)

Is too strict! Image Source: Athavale et al (2024)
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Formal Verification of NN Robustness ctd.
Leino et al (2021); Athavale et al (2024)

Question: How do we test if a classifier is robust for all inputs?

Formal Verification Approach: Prove there exists no counter example (MIP, SMT)!

We give the network the option to abstain and only
consider confident predictions

∀x ∈ X : ∀x′ ∈ N (x) : conff(x) ≥ κ ⇒ class(f(x)) = class(f(x′))
(4)

conff(x) can be e.g. the Softmax confidence
Very expensive, infeasible above 100s of neurons
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Global Robustness: Adversarial vs. Formal

Adversarial Robustness Techniques
• sample based
• fast
• (often) no bounds
• limited information required
• How to choose parameters?

Formal Verification
• expensive locally
• intractable globally
• Proof or Counterexample
• Model needs to be encoded
• Where to verify robustness?

Our Objective:

• give sample based guarantees about global robustness
• Stay model-agnostic
• Give specific robustness bounds for each prediction
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Background: Probabilistic Coverage Guarantees with
Epsilon-nets
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ϵ-Nets

For a classifier f : X → Rn, we want to define a notion of coverage of a space under a
data distribution D

Definition (Range-Space)
Let X be a set and R a set of ranges, where R ∈ R : R ⊂ X Then (X , R) is a range space

Definition (ϵ-Nets)
Given a range space (X , R) and a probability distribution D, a finite set N ⊂ X is called
an ϵ-net, iff N intersects each ϵ-probable R ∈ R, i.e.,

∀R ∈ R : Pr(R) ≥ ϵ ⇒ N ∩ R ̸= ∅ ⇔ (5)
∀R ∈ R :N ∩ R = ∅ ⇒ Pr(R) < ϵ (6)
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ϵ-Nets: Example

We consider the range space (R2, B), with B is some set of circles

An ϵ-net intersects all likely enough circles
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Vapnik-Chervonenkis-Dimension

Definition (VC-Dimension Vapnik and Chervonenkis (2015) )
Let (X , R) be a range space. The Vapnik-Chervonenkis (VC) dimension d of (X , R) is the
size of the largest set S ⊆ X , such that

∀S′ ⊆ S : ∃R ∈ R : R ∩ S = S′ (7)

where we say S is shattered by R

Example (Rectangles in R2)
• ∃S : |S| = 4 with shattering ⇒ d ≥ 4

• ∀S : |S| ≥ 5, no shattering ⇒ d ≤ 4

Well studied for common hypothesis spaces
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ϵ-Nets from iid Samples

Theorem (ϵ-nets from iid samples Mitzenmacher and Upfal (2017) )
Let (X , R) be a range-space with VC-dimension d and D be a probability distribution. For
any 0 < δ, ϵ ≤ 1

2 , an iid sample N will be an ϵ-net with probability at least 1 − δ iff

|N| = O
(d

ϵ
ln

d
ϵ

+
1
ϵ

ln
1
δ

)
(8)

We are interested in obtaining minimal samples of sufficient size, so we find |N| = s with

s(ϵ, δ, d) = min
s∈N

{
s : s ≥ 2

ϵ

(
log

(2
δ

)
+ d log(2s)

)}
(9)
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Distillation with probably approximately global coverage
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Problem Setting Indri et al (2024)

We have formal tools that can prove global robustness for only very small NNs

Question: How can we use these tools for larger networks?

Robustness Proof
  Formal Verification?
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Problem Setting Indri et al (2024)

We have formal tools that can prove global robustness for only very small NNs

Question: How can we use these tools for larger networks?

Probabilistic Robustness

Robustness Proof
Formal Verification

Transfer
Robustness

Transfer
Guarantee

  Formal Verification?
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Gradient-Aligned Distillation Shao et al (2021)

We train a small NN fS to simulate a given NN fT
The training tries to minimize the difference in assigned labels, logits and gradients

We optimize for

LCE(fs(x), y) + LKL(fs(x), ft(x))+
∥∇xLCE(ft(x), y) − ∇xLCE(fs(x), y)∥

(10)

Where we will use y = class(fT(x))
Under perfect conditions, fS is as robust as fT
Assumes both functions are linear in a metric ball Br(x)!
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Transferring Robustness Guarantees

Question: How can we transfer guarantees back from fS to fT?

Distill on an ϵ-net N over metric balls! Informally:

1. We will intersect all ϵ-likely metric balls under D
2. For x ∈ N, fS and fT have same robustness around x in Br(x)

⇒ If fS is globally robust, fT is robust in all ϵ-likely metric balls

We sample sufficiently N iid from some dataset with additive noise
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Does It Work? Experimental Results

We constructed fT with known robustness properties and checked if robustness
transferred through distillation

Image Source: Indri et al (2024)
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Does It Work? Issues With This Approach

• Robustness around x transfers if fS,fT are linear around x
This trivializes checking robustness! Why not use tangent planes directly?

• We construct an ϵ-net over metric balls in the input space
N scales linearly with the input dimension, expensive for high dimensional data

• We cover all ϵ-likely metric balls
But what does this mean?

– How can we detect ϵ-likely balls?
– If we consider balls of any size: we require local linearity at arbitrary scale
– If we consider only small balls: maybe none are ϵ-likely (high dimensional data)
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Property-Based Robustness Guarantees
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Addressing issues: Local Robustness Checks

Question: Why not check local robustness directly for any f?

• Local Robustness verification is tractable
• We can use different assumptions about f to use different tools

Definition ((Local) Robustness Oracle)
For a classifier f : X → Rn, a robustness oracle is defined as

robf(x) = min
x′∈N (x)

{∥x − x′∥ : class(x) ̸= class(x′)} (11)

and returns the robustness radius ρ

We can also use (non-exact) oracles that find a counterexample with attacks (e.g. PGD)
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Quality Space

Question: Do we really need to cover the input space?

We recall when f is (ρ, κ)-robust:

∄x ∈ X : robf(x) < ρ ∧ conff(x) ≥ κ (12)

We can assume an explicit map into R2:

q(x) 7→ (robf(x), conff(x)) (13)

We call this space the quality space Q = R2 and define
all counterexamples to robustness

R(ρ, κ) = {(ρ′, κ′) ∈ R2 : ρ′ < ρ, κ′ ≥ κ} (14)
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Quality Space ctd.

Question: How does the representation in Q help us here?

We want to prove a relaxed version of global robustness

∄x ∈ X : conff(x) ≥ κ ∧ robf(x) < ρ (15)

We can bound the probability of a random point X being a counterexample:

Pr(robf(X) < ρ ∧ conff(X) ≥ κ) = Pr(R(ρ, κ)) < ϵ (16)

Answer: We can sample ϵ-nets in Q!
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Quality Space ctd.

Let the family of ranges be

R = {R(ρ, κ) : (ρ, κ) ∈ R2} (17)

If N is an ϵ-net of (Q, R) then

∀ρ, κ ∈ R : N ∩ R(ρ, κ) = ∅ ⇒ Pr(R(ρ, κ)) < ϵ (18)

|N| = s(ϵ, δ, d) depends only on the VC-dimension d of
R, not on X
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Counterexample Robustness

We can now efficiently decide counterexample robustness ∀(ρ, κ).

Question: But what information do we gain?

Example (Abstract)
We choose (ρ1,κ1) and N tells us f is (ρ1,κ1) robust with probability at least 1 − ϵ

Now we use f and obtain 100 points with confidence exactly κ1
We measure their robustness: None of them are ρ robust!
How can this happen?

Pr(robf(x) < ρ ∧ conff(x) ≥ κ) < ϵ (19)
Pr(robf(x) < ρ | conff(x) ≥ κ)Pr(conff(x) ≥ κ) < ϵ (20)

Pr(robf(x) < ρ | conff(x) ≥ κ) <
ϵ

Pr(conff(x) ≥ κ)
(21)
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Approximately Global Robustness

Question: Why is a conditional probability bound more useful?

• conff(x) is known at inference time
• robf(x) needs to invoke the robustness oracle

If we can give a conditional statement ∀(ρ, κ) we can obtain a robustness radius from the
confidence:

M(κ) = max
ρ∈R

: Pr(robf(x) < ρ | conff(x) ≥ κ) < ϵ (22)

We can use conditional guarantees to give "customized" robustness lower bounds for
each prediction!
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Obtaining Constant Bounds

With ϵ-nets we can only get the bound

For the case Pr(conff(x) ≥ κ) > 1 − pmax

Pr(robf(x) < ρ | conff(x) ≥ κ) <
ϵ

Pr(conff(x) ≥ κ)

<
ϵ

1 − pmax

(23)

Question: How do we know for which κ: Pr(conff(x) < κ) ≤ pmax

We use rank statistics to estimate a bound from the sample!
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Obtaining Constant Bounds with Rank Statistics

Given a sample N, for which κ:
Pr(conff(x) < κ) ≤ pmax?

We estimate the rank of the pmax-quantile κmax of κ. . .
Let N(i) be the element in N with ith-biggest confidence

κpmax ≊ N(i) : i = ⌊|N|pmax⌋ (24)

. . . and use Chernoff bounds

Pr(κmax < N(i)) < δ s.t.

(25)

i < c(|N|, pmax, δ) =
⌊

|N|pmax −
√
2|N|pmax ln

( 1
δ

)⌋
(26)

Confidence
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Probably Approximately Global Robustness Certification

Theorem (PAG Robustness)

Given a classifier f : X → Rn, a robustness oracle robf and a data distribution D over X
For parameters ϵ, δ, pmax we take an iid sample N ⊂ X with |N| ≥ s

(
ϵ, δ

2 , 2
)
and let

κmax = c
(
|N|, pmax,

δ
2

)
Then it holds with probability at least 1 − δ that

∀ρ∀κ ≤ κmax : {q(x) : x ∈ N} ∩ R(ρ, κ) = ∅ ⇒ Pr
(
robf(X) < ρ| conff(X) ≥ κ

)
<

ϵ

1 − pmax

(27)

If we have no counterexample in N, f is probably approximately globally (ρ, κ)-robust
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Experiments: Setup

Question 1: Do our guarantees hold for unseen data in real problems?

Question 2: Do our guarantees provide constructive information about classifiers?

We tested MNIST and CIFAR10 classifiers for adversarial robustness against PGD

We chose ϵ = 10−4, pmax = 0.99, δ = 0.02, with s(10−4,0.01, 2) = 670312 samples

D is estimated by Gaussian noise around a validation split of the dataset

We expect for a given κ

Pr(robf(x) < M(κ) | conff(x) ≥ κ) < 0.01 (28)
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Summary: Strength of PAG Robustness

• We perform local robustness checks with the oracle robf
We abstract away from the type of robustness we check we use

• We construct an ϵ-net over metric balls in the quality space Q
N is constant with respect to the data-space and the properties of f

• We cover all ϵ-likely counterexample-ranges
But what does this mean?

– We can upper-bound probability of empty ranges (no counterexamples found in N)
– We can obtain robustness lower-bounds for predictions with a given confidence
– We need only one sample N and with probability at least 1− δ our guarantee hold for all κ < κmax

This method also generalizes to learning other rules in black-box ML
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– We can obtain robustness lower-bounds for predictions with a given confidence
– We need only one sample N and with probability at least 1− δ our guarantee hold for all κ < κmax

This method also generalizes to learning other rules in black-box ML
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