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Protein—protein interactions
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Directly linked to the development and treatment of viruses, stroke, cancer, Alzheimer, …
Video source: YouTube channel Vaccine Makers Project

https://www.youtube.com/watch?v=2NDc9Q_m-W0
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Staphylokinase: thrombolytic drug candidate

Stroke

Brain image source: Bel Marra Health website

https://www.belmarrahealth.com/causes-blood-clots-brain/
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Staphylokinase: thrombolytic drug candidate

How to enhance the binding affinity of the interaction for effective thrombolysis?

Stroke

Brain image source: Bel Marra Health website

https://www.belmarrahealth.com/causes-blood-clots-brain/
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What is a protein?
20 amino acids (building block types) Protein: a folded chain of amino acids
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Staphylokinase—microplasmin interaction

How to enhance the binding affinity of the interaction?
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Staphylokinase—microplasmin interaction

What amino acids of staphylokinase to mutate and how? 20n combinations



1. Screen thousands or millions of mutations according to ΔΔG — binding energy 
change upon mutation ranging roughly in [-12, 12] 

2. Select several best candidates (with lowest ΔΔG) and test in a lab

6

Staphylokinase mutants

Standard approach: ΔΔG screening
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State of the art for predicting ΔΔG

• Rely on small data (7K annotated mutations from SKEMPI2) → unstable, weak generalization 

• Often require mutant 3D structure → slow 

• Weak evaluation protocol → poor generalization
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(Fall 2022 round of designing 
the staphylokinase thrombolytic) (Accepted at ICLR2023)
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Labeled data (SKEMPI2) 
300 interactions, 7K mutations

Protein I, amino acid 45 
Leu → Ser 
ΔΔG = 1.17 

Protein C, amino acid 21 
Cys → Val 
ΔΔG = -0.025
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PPIRef: New large dataset of PPIs
Labeled data (SKEMPI2) 

300 interactions, 7K mutations
Unlabeled data (Protein Data Bank) 

322K interactions in our PPIRef, 41K in DIPS

Protein I, amino acid 45 
Leu → Ser 
ΔΔG = 1.17 

Protein C, amino acid 21 
Cys → Val 
ΔΔG = -0.025



iDist: Scalable comparison of PPIs
• iDist accurately approximates iAlign18 (TM-score for PPIs) 

    (near-duplicate detection with 99% precision and 97% recall) 

• iDist is ~500 times faster than iAlign

iDist = 0.0035
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PPIformer
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PPIformer
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PPIformer

• Leverages big data (millions of masked examples from PPIRef during pre-training) 

• Very fast, requires a single forward pass on the native 3D structure 

• Fine-tuned and evaluated on non-leaking ΔΔG data using practically-important metrics
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PPIformer captures biochemical principles
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Emergence of mutation scoring capabilities
Self-supervised pre-training

Training step
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Pre-training is crucial for fine-tuning
Supervised ΔΔG fine-tuning 
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Pre-training from PPIRef is crucial

Pre-training
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Other key ingredients

Pre-training



Comparison with the state of the art: 5 independent PPIs from SKEMPI
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Comparison with the state of the art: COVID
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Comparison with the state of the art: stroke
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PPIformer Github

anton.bushuiev@cvut.cz

mailto:anton.bushuiev@cvut.cz
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