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How I got interested about it
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Imposing the RG
Renormalised Graph Representations for Node Classification

F. Caso, A. Bacciu, G. Trappolini, P. Liò, F. Silvestri
IJCNN 2025
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• Barabasi-Albert Graph with 
N=512 m=1

• Local Topology:
• Neighbourhoods - edges

• Bigger Scale Topology:
• Intersection of 

neighbourhoods - paths
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Going Deeper Is Not the Same as Seeing Further
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Original Deep

• Mesoscopic patterns are 
not reconstructed by just 
adding layers



Going Deeper Is Not the Same as Seeing Further
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Original Rewired + Deep

• Rewiring surface hidden 
topological signals by 
altering/erasing some 
patterns.
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Can we define an approach that 
rewires the graph based on scale?

Selectively discarding fine-grained details, 
preserving coarser structure



Renormalization Group (RG): Looking at Graphs from Different 
Scales

• RG: how a model should 
change when we change the 
scale. 

• In Euclidean space, scale is 
intuitive. 
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Laplacian Renormalization Group (LRG): Looking at Graphs 
from Different Scales

• In graphs, scale is not as 
intuitive.

• Instead of redefining scale, 
we modify the spatial 
operators. 

• The Laplacian, that defines 
diffusion.
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Villegas et al. 2023

https://arxiv.org/pdf/2203.07230


Diffusion and Entropy on Graphs
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•

•

•

•

Lij = [(δij ∑
k

Aik) − Aij]

ρ(τ) =
e−τL

Tr(e−τL)

v(τ) = ρ(τ)v(0)

S[ρ(τ)] = −
1

log(N )

N

∑
i=1

μi(τ)log μi(τ)
Villegas et al. 2022

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.033196


Characteristic Scale: A Theoretically-Grounded Choice
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•

• The peak in the entropy’s 
derivative (heat capacity) 
reveals the characteristic 
scale, representing strong 
intra-cluster coupling.

C = −
dS

d(log τ)
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• Condition:  

• Then:  

ρi, j(τ) > max{ρii, ρjj}

𝒩i′￼= 𝒩i ∪ 𝒩j
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Original Grouped

• Condition:  

• Then:  

ρi, j(τ) > max{ρii, ρjj}

𝒩i′￼= 𝒩i ∪ 𝒩j

Rewired



Our Framework: Rewiring the Graph
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Original Grouped Rewired+Sparsified

• Intra-macro-node 
sparsification



Our Framework: Rewiring the Graph
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Original Grouped Rewired + Sparsified Coarse



Our Framework: Processing Multiple Graph Scales in Parallel
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G
N

N
 Encoder 1

G
N

N
 Encoder 2

C
oncatenate

Classifier Output

• Encoders can be GCN, 
GAT, or any architecture.

• The model learns to 
combine local and 
mesoscopic 
information. 
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Is it beneficial to observe multiple 
scales of a graph for performing a 
node classification task?



Experimental Setup: Datasets and Training Configuration
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Dataset Nodes Edges Features Classes
Citeseer 3,327 4,732 3,703 6

Cora 2,708 5,429 1,433 7
Europe 399 5,995 399 4
PubMed 19,717 44,338 500 3
Photo 238162 7650 745 8
Computers 491722 13752 767 10

• Datasets (from 
citation, air traffic, 
and product 
networks)

• We propagate only 
on the train 
subgraph during 
training!
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• SB = Single Base
• MB = Multi Base (more 

encoders, only original 
graph)

• MR = Multi Renormalised 
(encoders on graph at 
different resolutions)

• + = statistically 
significant improvement 
(Wilcoxon test)

• Red: best
• Orange: second best
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• SB = Single Base
• MB = Multi Base (more 

encoders, only original 
graph)

• MR = Multi Renormalised 
(encoders on graph at 
different resolutions)

• + = statistically 
significant improvement 
(Wilcoxon test)

• Red: best
• Orange: second best



Multiscale Advantage Is Consistent During Training

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025



Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

Can we systematically identify the 
optimal scales using spectral 
entropy?



Our Scale Is Optimal: No Tuning Required
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• Characteristic 
scale derived from 
spectral entropy.

• Outperforms all 
randomly chosen 
scales (30 tested 
across 3 ranges).

• No tuning, no 
cross-validation: 
selected before 
training.



Limitations and Future Directions

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

Limitations
• LRG applies only to undirected, unweighted, single-component graphs. 
• Does not consider edge features or node features during scale selection.
• On large dense graphs (e.g. Amazon Computers), performance may 

degrade. 

Future Work
• Extend RG methods to directed or weighted graphs.
• Define feature-aware spectral entropies for task-specific scaling.
• Apply to graph classification or link prediction.



Conclusions…of this project
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• Can we build a bridge between rewiring and rescaling? Yes

• Is it beneficial to observe multiple scales of a graph for performing a node classification task? Yes

• Can we systematically identify the optimal scales using spectral entropy? Yes

• We need to include features in the definition of graph entropy.



Learning the RG
Symmetry and Generalisation in Neural Approximations of 

Renormalisation Transformations
C. Ashworth, P. Liò, F. Caso

Preprint on arXiv
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Fischer et al. Antal et al.

https://arxiv.org/abs/2202.04925
https://arxiv.org/pdf/cond-mat/0308442


Motivation: Are Neural Networks RG flows?
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• In the pedagogical case of a  theory, RG flows reduces to few equations 
evolving few variables.

• In real cases (e.g. fermionic systems) RG is computationally difficult (  
equations) but has proven useful. 

• E.g. the Hubbard model represents cuprates and organic superconductors

                   

ϕ4

O(105)

H = − t ∑
⟨i, j⟩,s

c†
i,scj,s − t′￼ ∑

⟨⟨i, j⟩⟩,s

c†
i,scj,s + U∑

i

ni,↑ni,↓
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Background: NNs as mapping Cumulants
Moments: 

Cumulants: 

We can define the cumulant generating function:

< x > , < x2 > , …

< x > , < x2 > − ( < x > )2, …

𝒲y|θ( j) = ln⟨exp( j⊤y)⟩y|θ

= ln⟨exp( j⊤g(x; θ))⟩x,
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Background: NNs as mapping Cumulants
Moments: 

Cumulants: 

We can define the cumulant generating function:

Which…generates cumulants:

< x > , < x2 > , …

< x > , < x2 > − ( < x > )2, …

𝒲y|θ( j) = ln⟨exp( j⊤y)⟩y|θ

= ln⟨exp( j⊤g(x; θ))⟩x,

k(n)
y|θ =

dn𝒲y|θ( j)
djn

j=0

.
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Background: NNs as mapping Cumulants
An MLP is composed by an affine transform:

zl
i =

Nl−1

∑
j=1

Wl
ij yl−1

j + bl
i
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Background: NNs as mapping Cumulants
An MLP is composed by an affine transform:

And an activation function:

zl
i =

Nl−1

∑
j=1

Wl
ij yl−1

j + bl
i

yl
i = ϕ(zl

i) = ϕ
Nl−1

∑
j=1

Wl
ij yl−1

j + bl
i .
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An MLP is composed by an affine transform:       

   ; 

zl
i =

Nl−1

∑
j=1

Wl
ij yl−1

j + bl
i ;

𝒲zl( j) = ln⟨exp( j⊤zl)⟩zl

= ln⟨exp( j⊤Wlyl−1 + j⊤bl)⟩yl−1

= 𝒲yl−1((Wl)⊤ j) + j⊤bl;
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An MLP is composed by an affine transform:       

   ;  
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∑
j=1

Wl
ij yl−1

j + bl
i ;

𝒲zl( j) = ln⟨exp( j⊤zl)⟩zl

= ln⟨exp( j⊤Wlyl−1 + j⊤bl)⟩yl−1

= 𝒲yl−1((Wl)⊤ j) + j⊤bl;

k(n)
zl,i1,…,in

= ∑
s1,…,sn

Wl
i1s1

⋯Wl
insn

k(n)
yl−1,s1,…,sn
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Fischer et al.
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Cumulant do mix and  
we need to approximate it

Fischer et al.
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Backgorund: RG as mapping Probability distributions

CLT: Let  i.i.d. random variables from a distribution with variance 

Then,    

ξ1, …, ξn, … σ2

∑i (ξi − 𝔼(ξi))

σ n
n→∞ N(0,1) .
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Backgorund: RG as mapping Probability distributions

CLT: Let  i.i.d. random variables from a distribution with variance 

Then,    

As an RG:

ξ1, …, ξn, … σ2

∑i (ξi − 𝔼(ξi))

σ n
n→∞ N(0,1) .

pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .
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Results: RG as mapping cumulants

pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .
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Results: RG as mapping cumulants

Cumulant generating function:          

pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .

𝒲n+1(s) = ln∫
∞

−∞
esx pn+1(x) dx .
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Results: RG as mapping cumulants

Cumulant generating function:          

Obtaining   

pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .

𝒲n+1(s) = ln∫
∞

−∞
esx pn+1(x) dx .

κ(n+1)
r = 21−r/2κ(n)

r for r ≥ 1.
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Results: Symmetry and linearity
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ξ1 ξ2 ξn… … pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .



Results: Symmetry and linearity
Symmetry and linearity

Solution:

ϕ(x) = x

w0 =
1

w2 2
− w1

b2 = − 2w2b1 .
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Solution:

ϕ(x) = x + αx2

2w2(w0 + w1) = 2
2w2α(w0 + w1)2 = 0
2w2α(w2

0 + w2
1 ) = 0.
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Results: Symmetry and linearity
Symmetry and linearity

Solution:

ϕ(x) = x

w0 =
1

w2 2
− w1

b2 = − 2w2b1 .
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Symmetry and (minimal) non-linearity

Solution:

ϕ(x) = x + αx2

2w2(w0 + w1) = 2
2w2α(w0 + w1)2 = 0
2w2α(w2

0 + w2
1 ) = 0.

ξ1 ξ2 ξn… … pn+1(x) = 2 ∫ dy pn( 2x − y) pn(y) = (ℛpn)(x) .

Inconsistent



Results: Only Symmetry
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Results: No constraints
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Limitations and Future Directions
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Limitations
• CLT is a solvable toy RG flow. 
• We didn’t use encoders/decoders.

Future Work
• We are testing on more complex architectures.
• We are analysing the Hubbard model.



Conclusions
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• Are NNs representing and RG flow? Yes (in Jona-Lasinio formalism)

• What can we learn from the RG flow framework? To not focus only 
on symmetry but also on the order of mixing required



Submodules via Entropy
Composable Sparse Subnetworks via Maximum-Entropy Principle

F. Caso, S. Fonio, N. Saccomanno, S. Monaco, F. Silvestri
NeurIPS 2025 Workshop on Mechanistic Interpretability
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Motivation: Circuits
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Spurious circuits entangled to other classes

Olah et al.

https://distill.pub/2020/circuits/zoom-in/
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Can we train class-specialised 
subnetworks that remain ignorant 
outside their domain and compose 
into generalist model?



The lottery ticket hypothesis
Frankle and Carbin proposed that


A randomly-initialized, dense neural network contains a subnetwork that is 
initialized such that—when trained in isolation—it can match the test accuracy 
of the original network after training for at most the same number of iterations.
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https://arxiv.org/pdf/1803.03635
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Initialisation Training  
• Loss 
• Data 
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Pruning
Reset 
weight to 
their 
initialisation 
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Maximum Entropy Principle

Between the distributions that satisfy given constraints the most agnostic one is 
the one that maximazies entropy.
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Our framework: The MaxEnt Loss
Let  be the full set of classes and  the set of rewarded classesC R ⊆ C
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Our framework: The MaxEnt Loss
Let  be the full set of classes and  the set of rewarded classes

For a training sample , where ,

C R ⊆ C

(x, y) y ∈ C
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Our framework: The MaxEnt Loss
Let  be the full set of classes and  the set of rewarded classes

For a training sample , where , we define the 

target distribution  as 

C R ⊆ C

(x, y) y ∈ C

ỹ ∈ ℝ|c|

ỹi =
δi=y if y ∈ R

1
|C |

otherwise
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Our framework: The MaxEnt Loss

If  and 

ỹi =
δi=y if y ∈ R

1
|C |

otherwise

C = {0,1,2} R = {0}
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Our framework: The MaxEnt Loss

If  and 

 for class 0 and

ỹi =
δi=y if y ∈ R

1
|C |

otherwise

C = {0,1,2} R = {0}

ỹ = (1,0,0)
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Our framework: The MaxEnt Loss

If  and 

 for class 0 and

 for classes 1 and 2

ỹi =
δi=y if y ∈ R

1
|C |

otherwise

C = {0,1,2} R = {0}

ỹ = (1,0,0)

ỹ = (0.33,0.33,0.33)
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Our framework: The MaxEnt Loss

With 

ỹi =
δi=y if y ∈ R

1
|C |

otherwise

ℒME(x, y) = KL(ỹ ∥ ̂y) =
|𝒞|

∑
i=1

ỹi log ( ỹi

̂yi )
̂y = softmax( fθ(x))
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Original IMP
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Our framework: The MaxEnt Loss
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Initialisation Training  
• MaxEnt 

Loss 
• Data 
• Optimiser 

Pruning
Reset 
weight to 
their 
initialisation 
values
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Sanity check: do the modules 
specialise?



Results: specialization
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Results: specialization
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Can submodules be composed?



Mode connectivity
Following Frankle et al. and Lubana et al., we say that  and  are mode 
connected along a path  if:

θ1 θ2
γ(t)
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Mode connectivity
Following Frankle et al. and Lubana et al., we say that  and  are mode 
connected along a path  if:

θ1 θ2
γ(t)

∀t ∈ [0,1], ℒ( fγ(t)(𝒟)) ≤ (1 − t)ℒ( fθ1
(𝒟)) + tℒ( fθ2

(𝒟)) + ϵ
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Mode connectivity
Following Frankle et al. and Lubana et al., we say that  and  are mode 
connected along a path  if:

θ1 θ2
γ(t)

∀t ∈ [0,1], ℒ( fγ(t)(𝒟)) ≤ (1 − t)ℒ( fθ1
(𝒟)) + tℒ( fθ2

(𝒟)) + ϵ

γθ1→θ2
(t) = {θ1 + 2t ⋅ θ2 if t ≤ 0.5

2(1 − t) ⋅ θ1 + θ2 if t > 0.5
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https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2211.08422
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Our framework: Model merging
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...

...
Example of
Complete
Merge
by sum

Class-specific
functional
modules

Merged
models

IMP
+
ME

IMP
+
ME

IMP
+
ME

ME ME ME

Algo. 1
applied
for each
class



Our framework: Model merging
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What’s the effect of the IMP 
procedure?



Results: IMP procedure
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Can we quantify the effect of the 
MaxEnt loss?



Our framework: baselines
CrossEntropy:

In this case the model is exposed only to  and not to the whole .R C
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Our framework: baselines
CrossEntropy:

In this case the model is exposed only to  and not to the whole .

Quasi-MaxEnt:

R C

ỹi =
δi=y if y ∈ ℛ

δi≠j, j∈ℛ
1

|𝒞∖ℛ |
otherwise
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Results: MaxEnt Loss
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Results: MaxEnt Loss
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How far can we go with the naive 
merge?



Results: Full merge on shallow MLP
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Results: Full merge on deep MLP
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Results: Full merge on CNN

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025



Results: Full merge
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Limitations and Future Directions
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Limitations
• Simple datasets. 
• Simple architectures.
• Simple merging procedure. 
• How are submodules and circuits connected?

Future Work
• We are testing more complex datasets.
• We are testing more complex architectures.
• We are testing SOTA merging procedures.



Conclusions
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• Can we train class-specialised subnetwork? Yes, through the 
MaxEnt principle

• Can we compose them via naive sum? Yes for couple merging, 
more merges probably require more complex procedures



Entropy-Lens
The Information Signature of Transformer Computations

F. Caso*, R. Ali*, C. Irwin*, P. Liò
Under Review, Preprint on arXiv, * equal contribution
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Motivation: Transformers from afar
• Look from afar 

transformers are easy.
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Motivation: Transformers from afar
• Look from afar 

transformers are easy.

• Each block is composed 
by other elements but 
we don’t need to go that 
much into the details.
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Motivation: Transformers from afar
• Look from afar 

transformers are easy.

• W := softmax ∘ D
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Motivation: Early-exit
• It can be helpful, 

depending on the task, 
to exit earlier
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Motivation: Early-exit
• It can be helpful, 

depending on the task, 
to exit earlier

• So we can imagine to 
have a distribution for 
each token and layer

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮



Motivation: Early-exit
• These distributions are:
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Motivation: Early-exit
• These distributions are:

• High dimensional
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction→
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction

    Moments, cumulants

→
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction

    Moments, cumulants

→

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮



Why moments and cumulants don’t work anymore
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Why moments and cumulants don’t work anymore

• High variance
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Why moments and cumulants don’t work anymore

• High variance
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Why moments and cumulants don’t work anymore

• High variance

• Low variance
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction

    Moments, cumulants

→
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction

• Unordered support  (Rényi) Entropy

    

→

→
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Motivation: Early-exit
• These distributions are:

• High dimensional  Dimensionality reduction

• Unordered support  (Rényi) Entropy

• DISCLAIMER: we’ll show experimentally that we

can use Shannon entropy instead of Rényi one.

→

→
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Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy
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Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮



Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy
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Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy
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Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy

• We aggregate the entropy 
profiles from different tokens
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Our framework: Entropy profiles
• We look at the evolution of the 

probability distribution through 
entropy

• We aggregate the entropy 
profiles from different tokens

• We study which kind of 
information they retain

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮



Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

Can entropy profiles identify models?



Motivation: Graphs encode structure at multiple levels
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• 12 models, 4 families (GPT, LLaMA, 
Gemma, Qwen).

• t-SNE clusters by family, 
independent of model size. 
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Motivation: Graphs encode structure at multiple levels
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• 12 models, 4 families (GPT, LLaMA, 
Gemma, Qwen).

• t-SNE clusters by family, 
independent of model size.

• After depth normalisation, shapes 
are invariant. 
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Motivation: Graphs encode structure at multiple levels
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Motivation: Graphs encode structure at multiple levels
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• 12 models, 4 families (GPT, LLaMA, 
Gemma, Qwen).

• t-SNE clusters by family, 
independent of model size.

• After depth normalisation, shapes 
are invariant. 
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Can entropy profiles identify the task?



Results: Task differentiation
• Dataset: TinyStories  generative, syntactic, semantic tasks.→
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Results: Task differentiation
• Dataset: TinyStories  generative, syntactic, semantic tasks.

• Three prompt templates: Base, Reversed, and Scrambled

• Total of 2400 prompts

→
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Results: Task differentiation
• Dataset: TinyStories  generative, syntactic, semantic tasks.

• Three prompt templates: Base, Reversed, and Scrambled

• Total of 2400 prompts

• 10-fold cross validation ROC-AUC (1-vs-rest)

→
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Results: Task differentiation
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Do entropy profiles correlate with 
correct task execution?



Results: Correct execution
• Dataset: MMLU —> correct, incorrect.
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• Three prompt templates: Base, Instruct, and Humble
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Results: Correct execution
• Dataset: MMLU —> correct, incorrect.

• Three prompt templates: Base, Instruct, and Humble

• 10-fold cross validation ROC-AUC (1-vs-rest)

• Dummy model: sampled from distribution reflecting the proportion of correct and 
incorrect answers.
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Results: Correct execution
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Is Shannon entropy a good choice?



Shannon entropy
• For a discrete random variable  with output  and probability mass function X xi p
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Shannon entropy
• For a discrete random variable  with output  and probability mass function 

•
Shannon Entropy 

X xi p

H(X ) = − ∑
i

p(xi)log p(xi)
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Rényi entropy
• For a discrete random variable  with output  and probability mass function . X xi p
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Rényi entropy
• For a discrete random variable  with output  and probability mass function . 

•
Rényi Entropy  for , 

X xi p

Hα(X ) =
1

1 − α
log∑

i

p(xi)α α > 0 α ≠ 1.
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Rényi entropy
• For a discrete random variable  with output  and probability mass function . 

•
Rényi Entropy  for , 

•  is (very) roughly speaking like a temperature

X xi p

Hα(X ) =
1

1 − α
log∑

i

p(xi)α α > 0 α ≠ 1.

α
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Rényi entropy
• For a discrete random variable  with output  and probability mass function . 

•
Rényi Entropy  for , 

• It reduce to Shannon entropy in the limit .

X xi p

Hα(X ) =
1

1 − α
log∑

i

p(xi)α α > 0 α ≠ 1.

α → 1
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Rényi entropy
• For a discrete random variable  with output  and probability mass function . 

•
Rényi Entropy  for , 

• It reduce to Shannon entropy in the limit .

• And to other permutation invariant measures: collision entropy ( ), min-entropy 
( ), max-entropy ( )…

• It correlates with indexes like the Gini-Simpson one.

X xi p

Hα(X ) =
1

1 − α
log∑

i

p(xi)α α > 0 α ≠ 1.

α → 1

α = 2
α → ∞ α → 0
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The three regimes of Rényi entropy
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 saturates, all tokens are consideredα
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The profile collapse into considering only the most probable token
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Informative regime

It contains Shannon entropy
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Can entropy profiles identify text 
format?



Results: Text format
• Dataset: custom  poem, scientific piece, and chat log. (Topic-format dataset)→
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Results: Text format
• Dataset: custom  poem, scientific piece, and chat log. (Topic-format dataset)

• Across different  values in the informative range.

→

α
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Results: Text format
• Dataset: custom  poem, scientific piece, and chat log. (Topic-format dataset)

• Across different  values in the informative range.

→

α
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Results: Text format
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Can we give a theoretical 
explanation?



Memorization: From Shannon
• Training data distribution , data generating processes distribution  (the law), 

(training algorithm ,) trained models distribution .
X Θ

L : X → Θ̂ Θ̂
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L : X → Θ̂ Θ̂

mem(X, Θ̂) = I(X, Θ̂) = H(X ) − H(X | Θ̂)

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

Brown et al.

https://arxiv.org/abs/2012.06421


Memorization: From Shannon
• Training data distribution , data generating processes distribution  (the law), 

(training algorithm ,) trained models distribution .

•

X Θ
L : X → Θ̂ Θ̂

mem(X, Θ̂) = I(X, Θ̂) = H(X ) − H(X | Θ̂)

Renormalization and Entropy as Principles in Representation Learning  - 23/10/2025

How much info is in X

Brown et al.

https://arxiv.org/abs/2012.06421


Memorization: From Shannon
• Training data distribution , data generating processes distribution  (the law), 

(training algorithm ,) trained models distribution .

•

X Θ
L : X → Θ̂ Θ̂

mem(X, Θ̂) = I(X, Θ̂) = H(X ) − H(X | Θ̂)
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How much info is in  
BUT NOT in 

X
Θ̂

How much info is in X

Brown et al.

https://arxiv.org/abs/2012.06421


Memorization: To Kolmogorov
• Training data instance , data generating process  (the law), (training algorithm 

,) trained model .
x θ

L : x → ̂θ ̂θ
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Memorization: To Kolmogorov
• Training data instance , data generating process  (the law), (training algorithm 

,) trained model .

• Kolmogorov complexity of an instance  given model parameters  is

x θ
L : x → ̂θ ̂θ

x ̂θ

Hk(x | ̂θ) = min
s

{ |s | : f(s, ̂θ) = x}
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Memorization: To Kolmogorov
• Training data instance , data generating process  (the law), (training algorithm 

,) trained model .

• Kolmogorov complexity of an instance  given model parameters  is

•

x θ
L : x → ̂θ ̂θ

x ̂θ

Hk(x | ̂θ) = min
s

{ |s | : f(s, ̂θ) = x}

Hk(x | ̂θ) ≈ − log p(x | ̂θ)
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Morris et al.

https://arxiv.org/pdf/2505.24832


Memorization: To Kolmogorov
• From Grunwald & Vitányi (2004)

I(X, Y ) − HK( f ) ≤ 𝔼(x,y)∼(X,Y )[IK(x, y)] ≤ I(X, Y ) + 2HK( f )
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Memorization: To Kolmogorov
• From Grunwald & Vitányi (2004)

• Remember ; then

I(X, Y ) − HK( f ) ≤ 𝔼(x,y)∼(X,Y )[IK(x, y)] ≤ I(X, Y ) + 2HK( f )

IK(x, x) = HK(x)
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Memorization: To Kolmogorov
• From Grunwald & Vitányi (2004)

• Remember ; then

•

I(X, Y ) − HK( f ) ≤ 𝔼(x,y)∼(X,Y )[IK(x, y)] ≤ I(X, Y ) + 2HK( f )

IK(x, x) = HK(x)

HK(X | Θ̂ = ̂θ) − HK( f ) ≤ 𝔼(x| ̂θ)∼(X|Θ̂= ̂θ)[H
K(x | ̂θ)] ≤ H(X | Θ̂ = ̂θ) + 2HK( f )
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Memorization: To Entropy profiles
• Hk(x | ̂θ) ≈ − log p(x | ̂θ)
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Memorization: To Entropy profiles
•

•

Hk(x | ̂θ) ≈ − log p(x | ̂θ)

H(X | Θ̂ = ̂θ) − HK( f ) ≤ 𝔼(x| ̂θ)∼(X|Θ̂= ̂θ)[H
K(x | ̂θ)] ≤ H(X | Θ̂ = ̂θ) + 2HK( f )
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Memorization: To Entropy profiles
•

•

•

Hk(x | ̂θ) ≈ − log p(x | ̂θ)

H(X | Θ̂ = ̂θ) − HK( f ) ≤ 𝔼(x| ̂θ)∼(X|Θ̂= ̂θ)[H
K(x | ̂θ)] ≤ H(X | Θ̂ = ̂θ) + 2HK( f )

H(X | Θ̂ = ̂θ) = H(X ) − I(X | Θ̂ = ̂θ) = H(X ) − mem(X, Θ̂ = ̂θ)
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Memorization: To Entropy profiles
• Morris et al. analysed memorisation for the whole model
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Memorization: To Entropy profiles
• Morris et al. analysed memorisation for the whole model

• We showed memorisation for sub-models composed of the first n-layers
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Memorization: To Entropy profiles
• Morris et al. analysed memorisation for the whole model

• We showed memorisation for sub-models composed of the first n-layers

• Surprisingly the growth is non-monotonic
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Memorization: To Entropy profiles
• Morris et al. analysed memorisation for the whole model

• We showed memorisation for sub-models composed of the first n-layers

• Surprisingly the growth is non-monotonic
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• It depends on family (architecture), 
task, and format.



Beyond language: Vision Transformers
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Limitations and Future Directions
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Limitations
• The idea of task is not well defined.
• The idea of format is not well defined.
• We don’t know why families show characteristic entropy profiles.

Future Work
• Understand which parts of the architecture influence the entropy 

profile.
• Further connect it to memorisation. 



Conclusions
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• Can we study how the probability of tokens evolve through the layers of a Transformer? Yes, 
through their entropy.

• What kind of information do entropy profiles contain? They contain information on which task is 
being computed, which kind of format is being produced and, surprisingly, the family and 
model processing the information. 

• Can we get a grasp on what these profile represent? These profiles tell us that different models 
memorise differently, also depending on task and format, and most importantly that their 
memorisation doesn’t grow with the number of parameters. 



Summary of links
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NNs as RG flow RG for GNNs

MaxEnt for circuits
Entropy for  
Transformers

Renormalization  
Group

Entropy






