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Two words on Statistical Mechanics
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Imposing the RG

Renormalised Graph Representations for Node Classification

F. Caso, A. Bacciu, G. Trappolini, P. Lio, F. Silvestri
I[JCNN 2025
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Motivation: Graphs encode structure at multiple levels

* Barabasi-Albert Graph with .-, T N .
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Motivation: Graphs encode structure at multiple levels
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Motivation: Graphs encode structure at multiple levels
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Going Deeper Is Not the Same as Seeing Further

Original
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Going Deeper Is Not the Same as Seeing Further

Original Shallow

—
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Going Deeper Is Not the Same as Seeing Further

Original Deep
* Mesoscopic patterns are
not reconstructed by just U
adding layers ./o/‘
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Going Deeper Is Not the Same as Seeing Further

Original Rewired + Deep

* Rewiring surface hidden
topological signals by
altering/erasing some
patterns.
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Can we define an approach that
rewires the graph based on scale?

Selectively discarding fine-grained details,
preserving coarser structure
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Renormalization Group (RG): Looking at Graphs from Different
Scales

* RG: how a model should
change when we change the

(o . N
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Villegas et al. 2023
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https://arxiv.org/pdf/2203.07230

Laplacian Renormalization Group (LRG): Looking at Graphs

from Different Scales

- In graphs, scale is not as
intuitive.

» Instead of redefining scale,
we modify the spatial
operators.

- The Laplacian, that defines
diffusion.

LRG transformation
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Diffusion and Entropy on Graphs
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https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.033196

Characteristic Scale: A Theoretically-Grounded Choice

dS N Plotof Cvs T
T d(log 1)

* The peak in the entropy’s |
derivative (heat capacity)
reveals the characteristic
scale, representing strong
intra-cluster coupling.
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Our Framework: Rewiring the Graph

Original
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Our Framework: Rewiring the Graph

Original Grouped

. Condition: p; () > max{p;, p;;}

. Then: ‘/’/l/:'/VZU‘/V]
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Our Framework: Rewiring the Graph

Original Grouped Rewired

. Condition: p; () > max{p;, p;;}

. Then: ﬂ/l/=/VlU/VJ
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Our Framework: Rewiring the Graph

Original
rigina Grouped Rewired+Sparsified

* Intra-macro-node
sparsification
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Our Framework: Rewiring the Graph

Original Grouped Rewired + Sparsified Coarse
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Our Framework: Processing Multiple Graph Scales in Parallel

* Encoders can be GCN,
GAT, or any architecture.
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Is it beneficial to observe multiple
scales of a graph for performing a
node classification task?
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Experimental Setup: Datasets and Training Configuration

- Datasets (from

citation, air traffic, mm-@z-m

and product Citeseer 3,327 4,732 3,703
networks)

- We propagate only Cora 2,708 5,429 1,433 7
on the train Europe 399 5,995 399 4
subgraph during PubMed 19,717 44,338 500 3
training! Photo 238162 7650 745 8

Computers 491722 13752 767 10

—
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

Red: best

: second best

Model Citeseer Cora Europe Pubmed Photo Computers
Base

dingle

GATsg 65.6+2.0 72.6+1.7 34.245.7 71.1£1.5 95.940.2 88.0+1.5
GCNgg 65.8+1.6 72.0+0.7 35.14+5.3 73.9+1.5 96.0+0.2 92.0+0.3
Mult

GATwMmB 66.3+2.4 73.6+1.4 30.8+4.6 71.9+1.2 96.1+0.3 91.54+0.4
GCNums 65.7+2.7 72.4+1.1 35.8+5.1 73.9+£1.0 96.240.2 92.640.2
Renormalized

Single

GATsg  67.5+1.7t  74.240.97 30.1+£7.7— 72.241.1T 92.14+0.7— 73.0+4.8~
GCNgg  69.441.5F 72.0£1.0 24.4+7.0 73.5+£1.5 90.3+0.6—  74.7+£3.2™
Multi

GATMR 7t 75.54+1.2%  29.9+4.5  73.6+0.8F 962404  89.74+1.0"
GCNMmRr )+2.5%  75.2+1.3% 38.6+4.6 76.1£1.21 96.3+0.2 91.940.3~
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

Red: best

: second best

Model Citeseer Cora Europe Pubmed Photo Computers
Base

Single

GATsg 65.6+2.0 72.6+1.7 34.245.7 71.1£1.5 95.940.2 88.0+1.5
GCNgg 65.8+1.6 72.0+0.7 35.14+5.3 73.941.5 96.0+0.2 92.0+0.3
Multi

GATwMmB 66.3+2.4 73.6+1.4 30.8+4.6 71.9+1.2 96.1+0.3 91.54+0.4
GCN 65.7+2.7 72.4+1.1 35.8+£5.1 73.9+£1.0 96.240.2 92.640.2
Renormalized

Single

GATsg  67.5+1.7t  74.240.97 30.1+£7.7— 72.241.1T 92.14+0.7— 73.0+4.8~
GCNgg  69.441.5F 72.0£1.0 24.4+7.0 73.5+£1.5 90.3+0.6—  74.7+£3.2™
Multi

GATMR 7t 75.54+1.2%  29.9+4.5  73.6+0.8F 962404  89.74+1.0"
GCNMmr )+2.5%  75.2+1.3% 38.6+4.6 76.1£1.21 96.3+0.2 91.940.3~
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

grap h ) 1i\’[odel Citeseer Cora Europe Pubmed Photo Computers
ase
o — i i Single
MR = MUltI Renormallsed GATsg 65.61+2.0 72.6+1.7 34.245.7 71.1£1.5 95.9+0.2 88.0%+1.5
(encoders on graph at GCNgg  65.8+1.6  72.040.7 351453  73.9+15  96.040.2  92.0+0.3
ifferent resolutions Mulii
d ere ) GATMB 66.31+2.4 73.6+1.4 30.8+4.6 71.94+1.2 96.11+0.3 91.5+0.4
- + = statistically GCNmp  65.7£2.7 72.4+1.1 35.8+5.1 73.9+1.0 96.2+0.2 92.640.2
. e . Renormalized
significant improvement STgle
(Wilcoxon test) GATsg  67.5+1.7F  74.240.91t  30.1+7.7~ 72241117  92.140.7~  73.0+4.8
69.4+1.51 72.0+1.0 24.4+7.0~ 73.5+£1.5 90.3+0.6~  74.743.2~
75.54+1.2F 29.9+4.5 73.64+0.81 96.24+0.4 89.7+1.0~
* Red: best 75.24+1.3F 386446  76.1+£1.2T  96.3+0.2  91.940.3~

: second best
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

* Red: best

: second best

Model Citeseer Cora Europe Pubmed Photo Computers
Base

Single

GATsg 65.6+2.0 72.6+1.7 34.245.7 71.1£1.5 95.940.2 88.0+1.5
GCNgg 65.8+1.6 72.0+0.7 35.14+5.3 73.9+1.5 96.0+0.2 92.0+0.3
Multi

GATMB 66.3+2.4 73.6+1.4 30.8+4.6 71.9+1.2 96.1+0.3 91.54+0.4
GCNwmB 65.7+2.7 72.44+1.1 35.8+5.1 73.9+1.0 96.240.2 92.640.2
Renormalized

Single

GATsg  67.5+1.7t  74.240.97 30.1+£7.7— 72.241.1T 92.14+0.7— 73.0+4.8~
GCNgg  69.441.5F 72.0£1.0 24.4+7.0 73.5+£1.5 90.3+0.6—  74.7+£3.2™
Mult

GATMRr 75.5+1.2t 29.9+4.5 73.6+0.81 96.24+0.4 89.74+1.0
GCNpRr 75.24+1.3%  38.6+4.6  76.1+1.2t  96.3+0.2  91.940.3~
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

* Red: best

: second best

—Model Citeseer Cora Europe Pubmed Photo Computers
Base

Single

GATgp 65.6+2.0 72.6+1.7 34.245.7 71.1£1.5 95.9+0.2 88.0+1.5
GCNgp 65.8+1.6 72.0+0.7 35.1+5.3 0+1.! 96.0+0.2

Multi

GATMB 66.31+2.4 73.6+1.4 30.8+4.6 71.94+1.2 96.1+0.3 91.5+0.4
GCN 65.7+2.7 72.4+1.1 3! } O+ ] 96.2 ‘ 92.6+0.2
Renormalized |

Single l

GATsg  67.84+1.7t  74.240.97 30.1+£7.7— 72.241.1T 92.14+0.7— 73.0+4.8~
GCNgg  69.4+1.5%F 72.0+1.0 24.4+7.0~ 73.5£1.5 90.3+0.6—  74.7+3.27
Multi

GATMR +1.7t  75.5+1.2F 29.9+4.5 73.6+£0.81 96.2+0.4 89.7+1.0~
GCNMmRr 5t ‘ 3t 38.6+4.6  76.1+1.2F7  96.3+0.2  91.940.3~
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

grap h ) 1i\’[odel Citeseer Cora Europe Pubmed Photo Computers
ase
o — i i Single
MR = MUltI Renormallsed GATsg 65.61+2.0 72.6+1.7 34.245.7 71.1£1.5 95.9+0.2 88.0%+1.5
(encoders on graph at GCNgg  65.8+1.6  72.040.7 351453  73.9+15  96.040.2  92.0+0.3
ifferent resolutions Mulii
d ere ) GATMB 66.31+2.4 73.6+1.4 30.8+4.6 71.94+1.2 96.11+0.3 91.5+0.4
- + = statistically GCNmp  65.7£2.7 72.4+1.1 35.8+5.1 73.9+1.0 96.2+0.2 92.640.2
. e . Renormalized
significant improvement STgle
(Wilcoxon test) GATsg  67.5+1.7F  74.240.91t  30.1+7.7~ 72241117  92.140.7~  73.0+4.8
69.4+1.51 72.0+1.0 24.4+7.0~ 73.5+£1.5 90.3+0.6~  74.743.2~
75.54+1.2F 29.9+4.5 73.64+0.81 96.24+0.4 89.7+1.0~
* Red: best 75.24+1.3F 386446  76.1+£1.2T  96.3+0.2  91.940.3~

: second best
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

* Red: best

: second best

Model Citeseer Cora Europe Pubmed Photo Computers
Base

Single

GATsg 65.6+2.0 72.6+1.7 34.245.7 71.1£1.5 95.940.2 88.0+1.5
GCNgg 65.8+1.6 72.0+0.7 35.14+5.3 73.9+1.5 96.0+0.2 92.0+0.3
Multi

GATMB 66.3+2.4 73.6+1.4 30.8+4.6 71.9+1.2 96.1+0.3 91.54+0.4
GCNwmB 65.7+2.7 72.44+1.1 35.8+5.1 73.9+1.0 96.240.2 92.640.2
Renormalized

Single

GATsg  67.5+1.7t  74.240.97 30.1+£7.7— 72.241.1T 92.14+0.7— 73.0+4.8~
GCNgg  69.441.5F 72.0£1.0 24.4+7.0 73.5+£1.5 90.3+0.6—  74.7+£3.2™
Mult

GATMRr 75.5+1.2t 29.9+4.5 73.6+0.81 96.24+0.4 89.74+1.0
GCNpRr 75.24+1.3%  38.6+4.6  76.1+1.2t  96.3+0.2  91.940.3~
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Results: Multiscale Models Achieve Higher Accuracy

* SB = Single Base
- MB = Multi Base (more

encoders, only original

graph)

« MR = Multi Renormalised
(encoders on graph at
different resolutions)

- + = gtatistically

significant improvement

(Wilcoxon test)

Red: best

: second best

Model Citeseer Cora Europe Pubmed Photo Computers
Base

Single

GATsp 65.61+2.0 72.6+1.7 34.245.7 71.1+1.5 95.940.2 88.0%+1.5
GCNsp 65.8+1.6 72.0+0.7 35.1+5.3 1.! 96.01+0.2

Multi

GATMB 66.31+2.4 73.6+1.4 30.8+4.6 71.94+1.2 96.11+0.3 91.5+0.4
GCNwums 65.712.7 72.44+1.1 : i ) : 92.61+0.2
Renormalized

Single

GATsg  67.5+1.7F%  74.240.9%t 30.1+7.7— 72.2+1.1t 92.1+0.7~ [ 73.0+4.8~
GCNgg  69.44+1.5%F 72.0+1.0 24.44+7.0~ 73.5+1.5 90.3+0.6— | 74.7+£3.2™
Multi

GATMRr +  75.5+1.2%F 29.94+4.5 73.64+0.81 +0.4 89.74+1.0
GCNyRr 5t : 3t 38.6+4.6  76.1+1.2%  96.3+0.2 [91.940.3~
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Multiscale Advantage Is Consistent During Training

Accuracy vs Epochs for cora

0.76 -
0.74
>
v
o
>
v
o
<
v 0.72
kY
0.70
—8— baseline
0.68 —@— 0ours
10! 102 103

Epochs
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Can we systematically identify the
optimal scales using spectral
entropy?
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Our Scale Is Optimal: No Tuning Required

« Characteristic

Accuracy vs Epochs for cora

scale derived from —y

—&— best_random

spectral entropy.

* Outperforms all
randomly chosen
scales (30 tested

> 0.72

<
+ 0.70 |

across 3 ranges).
* No tuning, no
cross-validation:
selected before
training. 10 e
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Limitations and Future Directions

o Limitations
- LRG applies only to undirected, unweighted, single-component graphs.
* Does not consider edge features or node features during scale selection.

« On large dense graphs (e.g. Amazon Computers), performance may
degrade.

o Future Work

- Extend RG methods to directed or weighted graphs.

- Define feature-aware spectral entropies for task-specific scaling.
« Apply to graph classification or link prediction.
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Conclusions...of this project

* Can we build a bridge between rewiring and rescaling? Yes
* Is it beneficial to observe multiple scales of a graph for performing a node classification task? Yes
« Can we systematically identify the optimal scales using spectral entropy? Yes

* We need to include features in the definition of graph entropy.
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Learning the RG

Symmetry and Generalisation in Neural Approximations of

Renormalisation Transformations
C. Ashworth, P. Lio, F. Caso
Preprint on arXiv
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Fischer et al. ' Antal et al.
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https://arxiv.org/abs/2202.04925
https://arxiv.org/pdf/cond-mat/0308442

Motivation: Are Neural Networks RG flows?
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Motivation: Are Neural Networks RG flows?

Cat
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Motivation: Learning RG flows?

. In the pedagogical case of a gb4 theory, RG flows reduces to few equations
evolving few variables.
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Motivation: Learning RG flows?

- In the pedagogical case of a qb4 theory, RG flows reduces to few equations
evolving few variables.

. In real cases (e.g. fermionic systems) RG is computationally difficult (O(10°)
equations) but has proven useful.

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025




Motivation: Learning RG flows?

- In the pedagogical case of a gb4 theory, RG flows reduces to few equations
evolving few variables.

. In real cases (e.g. fermionic systems) RG is computationally difficult (O(10°)
equations) but has proven useful.

 E.g. the Hubbard model represents cuprates and organic superconductors

H=-1 Z CiTSCJ',S — 1 Z CiTSCj’S + UZ i
l

(6:])S ((i.)))s
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Motivation: Learning RG flows?

E.g. the Hubbard model represents cuprates and organic superconductors

H=—1 Z G = 1 Z 1\ ¥ UZ Miid
i

(6.)S ((i.]))s

Di Sante et al.
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https://arxiv.org/abs/2202.13268

Motivation: Learning RG flows?

E.g. the Hubbard model represents cuprates and organic superconductors

H=-1 Z CisSis — r Z Cijrscf’s_l_ Uzni’Tni’l
]

(6.)S ((i.]))s

a) b)

e 36 ¢
- o

Di Sante et aI.I
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https://arxiv.org/abs/2202.13268

Motivation: Learning RG flows?

E.g. the Hubbard model represents cuprates and organic superconductors

H=-1 Z CisSis — r Z Cijrscf’s_l_ Uzni’Tni’l
]

(6.)S ((i.]))s
a) b) n = b) —t'/t = 0.075 Ground Truth 1 —t'/t = 0.250 Ground Truth s —t'/t = 0.450 Ground Truth ®
o &
e 380
% 4 15 12 15
d ka2 Ka k2 ka 42 30 3 12 6 12
J— o 48 kN
w8 = Mk o 9 ° 9
e 2
k k k
1 3 1 k3 ..(.s 18, 6 -6 6
. % o 1
° 7 3 -12 3
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- . 0 0 ~18 0
—T 0 T
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Motivation: Learning RG flows?

E.g. the Hubbard model represents cuprates and organic superconductors
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Background: NNs as mapping Cumulants

(a) (b)

d pu—

=
w
b
- ND—‘
M] [
= N»—-
sansness eleq

Hy y
Py = N(Mya Ey)
y(d)
B ——
Network output y Network output y
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Background: NNs as mapping Cumulants

(a) (b)

2@ Z

Moments: < x >, < x%> ) enn

Cumulants: <x>,<x>>—(<x> ) ...

Data samples
sansnels eyeq

(d)
y B
Network output y Network output y
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Background: NNs as mapping Cumulants

(a) (b)

2@ Z

Moments: < x >, < x% > Y e
Cumulants: < x>, <x>>—(<x>)% ...
We can define the cumulant generating function:
W y16(7) = In{exp(j ')y
= In{exp(j'g(x; 0))),

Data samples
sansnels eyeq

(d)
y B
Network output y Network output y
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Background: NNs as mapping Cumulants

Moments: < x >, <x>>,... (@) . (b) .

Cumulants: < x>, <x*>—(<x>)% ... o o

We can define the cumulant generating function: T P
Pot o X

W y10(J) = In{exp(j ' ¥)) 10
= In(exp(j ' g(x; 9))) .

sonsiiels eyeq

,uy1 Eyl
Which...generates cumulants: :

Dy = N(Mya Zy)

™ = anyIH(j)
y|0 d]n ’ @

=0 -
J= Network output y Network output y
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Background: NNs as mapping Cumulants

An MLP is composed by an affine transform:
Nl—l

[ _ [ ,l—1 [
§=2 Wiy +b
j=1
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Background: NNs as mapping Cumulants

An MLP is composed by an affine transform:
Nl—l

[ _ [ ,l—1 [
§=2 Wiy +b
j=1

And an activation function:

Nl—l

yil — ¢<ZZZ> — ¢ 2 VVZ] yjl_l -+ bll
j=1
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Background: NNs as mapping Cumulants

Ni_
An MLP is composed by an affine transform: zl.l = Z Wé yjl_1 + bl.l;
J=1
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Background: NNs as mapping Cumulants

Ni_

An MLP is composed by an affine transform: zl.l — Z Wé yjl_1 + bl.l;
j=1
W (j) = In{exp(j ')

= In{exp(j ' Wiy~! +ijl)>y1—1

=W (WH' ) +j D"
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Background: NNs as mapping Cumulants

Nl 1
An MLP is composed by an affine transform: Z = Z 1y bl.l;
j=1
W () = In{exp(j'z))
= In{exp(j Wy~ +T60) 5 K9 2 e

1131 no yl=ls,...s,
= Wy (W) +5TD

,,,,,
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Background: NNs as mapping Cumulants

Nl—l

An MLP is composed by an affine transform: zl.l = Z Wé yjl_1 + bl.l;

J=1

W (j) = In¢exp(jTzh).
= In{exp(jTW/y=! +Tbh)
= W (WY )+ 7D

Cumulant don’t mix because of linearity
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Background: NNs as mapping Cumulants

Nl—l
[...] And an activation function: yl.l = qb(zl-l) = ¢ Z Wé yjl_1 + bl-l
j=1
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Background: NNs as mapping Cumulants

Nl—l
[...] And an activation function: yl.l = qb(zl-l) = ¢ Z Wé yjl_1 + bl-l :

W ,(j) = In{exp(jTy")),
= In{exp(j ' (")) ..
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Background: NNs as mapping Cumulants

Nl—l
[...] And an activation function: yl.l = qb(zl-l) = ¢ Z Wé yjl_1 + bl-l :

W ,(j) = In(exp(j yl)>

= In{exp(j ' (")) .. Cumulant do mix and

we need to approximate it
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Background: NNs as mapping Cumulants

Nl—l
[...] And an activation function: yl.l = qb(zl-l) = ¢ Z Wé yjl_1 + bl-l :

= 3¢

2
ot g +a(py ;)
+a2zl,ii7

W ,(j) = In{exp(jTy")),
= In{exp(j ' (")) ..
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Backgorund: RG as mapping Probability distributions

CLT: Let¢, ..., fn, ... i.i.d. random variables from a distribution with variance 6>
2 (& —E&))
Then, —— 2R NO,1).

o/n

Jona-Lasinio
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Backgorund: RG as mapping Probability distributions

CLT: Let¢,,...,¢,, ... i.i.d. random variables from a distribution with variance o2
2. (& —E&)
Then, —— 2R NO,1).

oy/n - (B

Jona-Lasinio

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025


https://arxiv.org/pdf/cond-mat/0009219

Backgorund: RG as mapping Probability distributions

CLT: Let¢, ..., fn, ... i.i.d. random variables from a distribution with variance 6>
2 (& —E&))
Then, —— 2R NO,1).

" ®
As an RG:
Do) =1/2 [dy 2.V 2x =) p,(3) = (Rp,)(x) .

Jona-Lasinio
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Results: RG as mapping cumulants

Pr(X) =4/2 de PV 2x = ) p,(») = (%p,)(x).
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Results: RG as mapping cumulants

Pr(X) =4/2 de PV 2x = ) p,(») = (%p,)(x).

0
Cumulant generating function: W, \(s) = ln[ er poy(X)dx.
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Results: RG as mapping cumulants

Pr(X) =4/2 de PV 2x = ) p,(») = (%p,)(x).

Cumulant generating function: W, . (s)=1 er poy(X)dx.
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Results: RG as mapping cumulants

Pr(X) =4/2 de PV 2x = ) p,(») = (%p,)(x).

0
Cumulant generating function: W, (s) = @[ er poy(X)dx.

oo
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Results: RG as mapping cumulants

Pr(X) =4/2 de PV 2x = ) p,(») = (%p,)(x).

0
Cumulant generating function: W, \(s) = ln[ er poy(X)dx.

Obtaining Kr(”“) = 21_r/21<,f”) forr > 1.
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Results: Symmetry and linearity

_@' Puri®) = /2 de PV 2X = Y) p(») = (Rp,)() .
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Results: Symmetry and linearity

Symmetry and linearity

P(x) = x

Solution:

_@_ Prai ()= \/Ede PV 2% =) P,(3) = (Rp,) ).

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Results: Symmetry and linearity

Symmetry and linearity Symmetry and (minimal) non-linearity
p(x) = x d(x) = x + ax?
Solution: Solution:
1 2W2(WO + Wl) - \/5
Wwyv/2 2wya(wy +wy)” =0
b, = —2w,b, . 2w2a(wg + wlz) = 0.

_@_ P = V2 J dy p,(V/2x =) p,(v) = (%p,)®).
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Results: Symmetry and linearity

Symmetry and linearity Symmetry and (minimal) non-linearity
P(x) = x d(x) = x + ax®
Solution: Solutiony; _
( Inconsistent )
1 2w,
Wwyv/2 2wya(wy +wy)” =0
b, = —2w,b, . 2w2a(wg + wlz) = 0.

_@_ Prai ()= \/Ede PV 2% =) P,(3) = (Rp,) ).
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Results: Only Symmetry

(a) (b)
1.751 i . .
—f— Linear —}— Linear /,xi
1.501 --#-- ReLU N 0.41 --#--  Quadratic e
| | -
1.25 —+- Quadratic | R e L S 0.3 A
3 1.00 1 7 » /'/
QN 0.751 302 o
O'SOJIII—I————I————-I-———-I/ 3 Q .//
0.1 St
0.251 -
_—
0.00 jrwr—sx = = S——t 0,0ll j ! ' . : i ] !
o 1 2 3 4 5 6 71 8 o 1 2 3 4 5 6 7 8
. . 2
(©) . Variance o2 ) Variance o
7
N - ----E-—— - ——— - -l ————— - - N | .
= 601 = 25 —— Linear '
2 501 2 2041 F-- --¥-- Quadratic
8 . - R ik SN
2 401 + Linear 2 L5 . N
2] ~§-- ReLU A i SN
< —+%--  Quadratic < 1.0 Tl
22 :
E 10 E 0.51
Q (&}
I~ Oﬁ;::; ..... §—— §—-— §—— S S 4 &, 0.0 ERE—F—=% % % E X
o 1 2 3 4 5 6 71 8 0o 1 2 3 4 5 6 71 8
Variance o> Variance o>
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Results: No constraints

(@) 0.40f

0.35
= 0.301
= 0.25-
X 0.201
| 20.15-

0.10-

005 ] — -

0.00

—<— Linear
--m-- ReLU
—%- Quadratic

o 1 2 3 4 5 6 7 8
Variance o2
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Limitations and Future Directions
o Limitations
- CLT is a solvable toy RG flow.
- We didn’t use encoders/decoders.

o Future Work
- We are testing on more complex architectures.
- We are analysing the Hubbard model.
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Conclusions

» Are NNs representing and RG flow? Yes (in Jona-Lasinio formalism)

« What can we learn from the RG flow framework? To not focus only
on symmetry but also on the order of mixing required

&
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Submodules via Entropy

Composable Sparse Subnetworks via Maximum-Entropy Principle

F. Caso, S. Fonio, N. Saccomanno, S. Monaco, F. Silvestri
NeurlPS 2025 Workshop on Mechanistic Interpretability
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Motivation: Circuits
.

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite
the car detector at the
bottom and inhibit at
the top.

@ positive (excitation)
@ negative (inhibition)

\ AT
A car detector (4c:447)
is assembled from
earlier units.

Olah et al.
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Motivation: Circuits

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Wheels (4b:373) excite
the car detector at the
bottom and inhibit at
the top.

@ positive (excitation)
@ negative (inhibition)

il o
¢ - .

A car detector (4c:447)
is assembled from
earlier units.
Olah et al.
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Can we train class-specialised
subnetworks that remain ignorant
outside their domain and compose
into generalist model?
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The lottery ticket hypothesis

Frankle and Carbin proposed that

A randomly-initialized, dense neural network contains a subnetwork that is
initialized such that—when trained in isolation—it can match the test accuracy
of the original network after training for at most the same number of iterations.

— _J
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The lottery ticket hypothesis

(Initialisation )

—
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The lottery ticket hypothesis

MNnitialisation ) [ Training
* Loss
 Data
* Optimiser

\ RN )

—
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The lottery ticket hypothesis

(nitialisation ) ( Training | (* Pruning
e Loss
_,|" Data L,
* Optimiser
\. RN J Y,
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The lottery ticket hypothesis

nitialisation ) [ Training ) ( Pruning ) ( ~
* Loss Reset
* weight to
— gatﬁ‘ serl —*ltheir
PHITISE Initialisation
\ /L ) U ) \values

—
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The lottery ticket hypothesis

nitialisation ) [ Training ) ( Pruning ) ( ~
* Loss Reset
* weight to
Tk gatt? iser| —>ltheir
PHITISE Initialisation
\ VA RN ) U ) \values

—
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Maximum Entropy Principle

Information Theory and Statistical Mechanics

E. T. JAYNES
Department of Physics, Stanford University, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)
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Maximum Entropy Principle

a )
Between the distributions that satisfy given constraints the most agnostic one is
the one that maximazies entropy.

\_ _J
Information Theory and Statistical Mechanics

E. T. JAYNES
Department of Physics, Stanford University, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)
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Our framework: The MaxEnt Loss

Let C be the full set of classes and R C C the set of rewarded classes

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Our framework: The MaxEnt Loss

Let C be the full set of classes and R C C the set of rewarded classes

For a training sample (x, y), where y € C,
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Our framework: The MaxEnt Loss

Let C be the full set of classes and R C C the set of rewarded classes
For a training sample (x, y), where y € C, we define the
target distribution y € R!l as

i 0=y, Ify E€R
Yi= 4y 1 .

—— otherwise
g | C|
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Our framework: The MaxEnt Loss

(5, ify€ER

yi=19 1 .
: W otherwise

k

If C ={0,1,2} and R = {0}
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Our framework: The MaxEnt Loss

(5, ify€ER

yi=19 1 .
: m otherwise

k

fC =1{0,1,2} and R = {0}
y = (1,0,0) for class 0 and
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Our framework: The MaxEnt Loss

(5, ify€ER

1 .
—— otherwise
|C|

k

if C ={0,1,2} and R = {0}
y = (1,0,0) for class 0 and
y = (0.33,0.33,0.33) for classes 1 and 2
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Our framework: The MaxEnt Loss

(5, ify€ER
yi=19 1 .
G otherwise
] 5
IME.Y) =KLF || ) = ) F;log [ =
i=1 i

With § = softmax(fy(x))
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Original IMP

nitialisation ) [ Training ) ( Pruning ) ( ~
* Loss Reset
* weight to
Tk gatt? iser| —>ltheir
PHITISE Initialisation
\ VA RN ) U ) \values

—
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Our framework: The MaxEnt Loss

(nitialisation ) [ Training | ( Pruning ) [ ~
* MaxEnt Reset
| Loss L, _’n/\eeli?ht to
i initialisation
\ J ‘\Optlmlseﬂ \_ ) &alues y

—
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Sanity check: do the modules
specialise?

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Results: specialization

[0] [1] [2]
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Results: specialization

Table 1: Single submodule behaviour when using MaxEnt Loss with and without IMP.

MNIST Fashion MNIST HAR Yeast

Model  IMP Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc
Shallow No 2.296 ©0.003) 0.998 ©0.002) 2.296 ©0003) 0.998 ©0002) 1.762 ©.0179 0.997 00070 1.298 0.062) 0.995 (0.009)
MLP Yes 2.293 ©.004) 0.999 ©.001) 2.293 0004y 0.999 ©.001) 1.757 ©.023) 0.996 ©.008) 1.297 0059  0.998 (0.006)
Deep No 2.298 0.002) 0.997 ©.003) 2.285 0013 0.995 004y 1.772 ©0.014 0.992 ©.013) 1.302 00649 0.996 (0.009)
MLP Yes 2300 o001y 0.998 (0.002) 2.291 0008y 0.991 0007y 1.762 0.023) 0.999 ©.005) 1.302 0056)  1.000 (0.000)
CNN No 2.302 ©0.0000 0.998 ©0.004) 2.302 00000 0.996 (0.004) - - - -

Yes 2.302 00000 0.994 ©0.005) 2.302 00000 0.992 (0.005) - - - -

—
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Can submodules be composed?
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Mode connectivity

Following Frankle et al. and Lubana et al., we say that 8, and 6, are mode
connected along a path y(7) if:
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Mode connectivity

Following Frankle et al. and Lubana et al., we say that 8, and 6, are mode
connected along a path y(7) if:

Vi€ [0,1], L[ ( D) < (= DLy (D) + 1L (fy( D)) + ¢
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Mode connectivity

Following Frankle et al. and Lubana et al., we say that 8, and 6, are mode
connected along a path y(7) if:

Vi€ [0,1], L(f(D) < (1 = DLy (D)) + 1L (f,(D)) + ¢

0,+2t-6, ifr <0.5
}/61—>02(t) — i
20 =0-0,+0, ift>0.5
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Our framework: Model merging
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Our framework: Model merging

00% _—
EMP S \ P, IMPE Algo. 1
1 ME/ s ME *ME 1 | applied
: <, 'w ! | for each
,1 (ﬁ ;q) 9&?} class
ME ME ME
91 (5 92 (5 90 (5
Class-specific 0 6 gxamgl)l(:, of
functional (1,2] . : Momp ete
modules erge
- : by sum
Merged = 6
models 9[1,2—0] ]
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Our framework: Model merging

[0]+([6] [0, 11+[8, 9] [0, 1,2, 3,4]+[5,6,7,8,9]

o 0.00 0.00 0.00 0.20 0.00 520 0.00 0.00 0.00 o £y 0.60 0.00 0.00 0.00 0.20 0.00 0.00 3.80 1.40 o £y 1.00 1.00 0.40 2.00 220 3.40 520 4.40 0.20

— -145.40 92.00 25.40 11.60 73.20 147.40353.20 24.40 85.60 176.80 ~ - 0.00 BE¥ELl 020 020 0.20 0.00 0.00 0.00 6.00 0.60 ~ - 0.00 BEWELl 280 240 140 180 280 1.00 4.60 0.40
~ -401.60 41.00 22.20 23.20 91.80 46.40 266.20 18.80 62.20 58.60 ~ -188.20262.00 7.60 5.40 14.20 8.20 20.40 21.80 325.00179.20 o~ - 7.80 5.20 gledy) 9.40 6.00 0.80 3.60 11.00 16.40 2.60
m -292.20 73.60 31.20 34.80 122.80 69.00 171.80 39.20 82.60 92.80 m - 98.00 226.00 13.00 8.40 20.00 9.80 17.00 10.40 244.40363.00 m - 0.80 1.00 13.60 EZIElY 0.80 15.40 1.20 15.40 12.20 8.80
< -233.20 48.20 58.40 33.20 78.40 62.40 268.00 29.40 104.80 66.00 < - 66.00 165.60 15.80 6.00 17.40 9.40 5.00 10.40 146.40540.00 < - 140 540 3.00 0.40 140 9.80 1.60 8.60 29.20
n -291.40 22.60 27.00 13.40 47.80 53.40 326.00 18.60 58.60 33.20 in -162.00107.40 4.40 9.00 20.00 5.00 6.20 11.80 320.20246.00 n- 560 040 1.00 840 0.20 Ey&l] 1540 7.80 9.60 5.80
© - 840 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 © -236.20191.20 11.60 13.20 15.60 4.40 12.60 22.40 260.60190.20 ©- 660 4.00 0.80 0.40 10.20 16.00 EMEEY 1.60 4.60 0.20
~ -372.20 55.60 21.00 39.00 99.20 40.40 193.40 10.60 119.40 77.20 ~ -101.40276.60 18.60 5.20 11.00 19.20 8.60 55.40 102.20429.80 ~- 100 10.60 29.60 9.40 2.00 2.80 0.20 EEZERJY 2.60 20.20
o -362.80 29.20 39.40 14.60 94.40 38.80 276.20 23.20 54.20 41.20 ©- 860 3.60 0.00 0.00 0.00 0.00 0.00 0.00 EEER:Y ©- 540 320 7.00 6.80 8.60 10.80 7.20 4.40 13.80
o -227.40 34.20 56.60 37.80 126.00 76.60 209.20 19.00 151.40 70.80 o - 6.00 580 000 0.00 000 0.00 020 0.20 13.40 EEENIY o - 7.00 440 020 560 13.00 11.60 1.80 11.20 15.00 el
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What’s the effect of the IMP
procedure?
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Results: IMP procedure

1.4
Model IMP
I Shallow MLP 1 IMP No
1279w Deep MLP rZ2 IMP Yes
B CNN
1.01
>
(@]
©
>
S 0.8
<
©
(0]
T 0.6
©
2
[J]
o
0.41
0.2
0.0

2
Cardinality
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Can we quantify the effect of the
MaxEnt loss?
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Our framework: baselines

CrossEntropy:

In this case the model is exposed only to R and not to the whole C.
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Our framework: baselines

CrossEntropy:

In this case the model is exposed only to R and not to the whole C.

Quasi-MaxEnt:

Yi = 3

-

\

S.

l

0.

l

. ify € %

1 )
.. ,———— otherwise
FHIER | G\ |
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Results: MaxEnt Loss

FMNIST MNIST HAR Yeast
Model |R| Loss Entropy R-Acc Entropy R-Acc Entropy R-Acc Entropy R-Acc
XE 0.183 (0.151) 0.877 (0.186) 0.507 (0.150) 0.708 (0.179) 1.255 (0.191) 0.855 (0.197) 1.378 (0.004) 0.631 (0.101)
1 QME 2.031 (0.132) 0.908 (0.105) 2.082 (0.005) 0.973 (0.014) 1.196 (0.073) 0.946 (0.046) 1.056 (0.082) 0.799 (0.106)
ME 2.287 (0.005) 0.977 0.005) 2.287 (0.005) 0.991 (0.005) 1.716 (0.033) 0.985 (0.016) 1.146 (0.077) 0.853 (0.127)
MLP XE 0.277 (0.108) 0.786 (0.141) 0.332 (0.080) 0.838 (0.074) 1.167 (0.217) 0.871 (0.055) — 0.381 (0.036)
2 QME 1.824 (0.207) 0.917 0.049) 1.683 (0.216) 0.959 (0.016) 1.013 (0.223) 0.891 (0.024) — 0.559 (0.011)
ME 2.267 (0.007) 0.977 0.005) 2.268 (0.007) 0.980 (0.006) 1.670 (0.045) 0.935 (0.027) — 0.616 (0.010)
XE — 0.480 (0.075) — 0.842 (0.027) - - - -
5 QME — 0.741 (0.026) — 0.905 (0.023) - - - -
ME — 0.946 (0.004) — 0.946 (0.004) - - - -
XE 0.215 (0.150) 0.802 (0.205) 0.422 (0.190) 0.689 (0.194) 1.059 (0.313) 0.840 (0.210) 1.386 (0.0003) 0.553 (0.144)
1 QME 1.842 (0.329) 0.868 (0.176) 2.061 (0.046) 0.954 (0.045) 1.098 (0.128) 0.819 (0.155) 0.883 (0.118) 0.783 (0.114)
ME 2.245 (0.072) 0.975 0.039) 2.291 0.031) 0.990 (0.005) 1.697 (0.050) 0.988 (0.016) 1.063 (0.109) 0.859 (0.120)
Deep MLP XE 0.166 (0.083) 0.678 (0.081) 0.208 (0.054) 0.743 (0.111) 1.065 (0.344) 0.824 (0.068) — 0.382 (0.046)
cep 2 QME 1.347 (0.484) 0.863 (0.088) 1.224 (0.352) 0.912 (0.038) 0.665 (0.251) 0.787 (0.093) — 0.562 (0.023)
ME  2.197 0.095) 0.898 (0.045 2.275 (0.026) 0.976 (0.011) 1.607 (0.134) 0.930 (0.028) — 0.589 (0.018)
XE 0.016 (0.026) 0.557 (0.150) 0.041 (0.128) 0.529 (0.080) - - - -
1 QME 00981 (0.322) 0.880 (0.136) 1.001 (0.377) 0.961 (0.078) - - - -
ME 2.297 (0.039) 0.960 0.097) 2.286 (0.057) 0.989 (0.012) - - - -
CNN XE 0.052 (0.038) 0.604 (0.169) 0.070 (0.042) 0.624 (0.138) - - - -
2 QME 0.705 (0.397) 0.888 (0.071) 0.312 (0.307) 0.928 (0.074) - - - -
ME 1.984 (0.304) 0.930 (0.044) 1.950 (0.456) 0.965 (0.046) - - - -
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Results: MaxEnt Loss

FMNIST MNIST HAR Yeast
Model |R| Loss Entropy R-Acc Entropy R-Acc Entropy R-Acc Entropy R-Acc
XE 0.183 (0.151) 0.877 (0.186) 0.507 (0.150) 0.708 (0.179) 1.255 (0.191) 0.855 (0.197) 1.378 (0.004) 0.631 (0.101)
1 QME 2.031 (0.132) 0.908 (0.105) 2.082 (0.005) 0.973 (0.014) 1.196 (0.073) 0.946 (0.046) 1.056 (0.082) 0.799 (0.106)
ME 2.287 (0.005) 0.977 0.005) 2.287 (0.005) 0.991 (0.005) 1.716 (0.033) 0.985 (0.016) 1.146 (0.077) 0.853 (0.127)
MLP XE 0.277 (0.108) 0.786 (0.141) 0.332 (0.080) 0.838 (0.074) 1.167 (0.217) 0.871 (0.055) — 0.381 (0.036)
2 QME 1.824 (0.207) 0.917 0.049) 1.683 (0.216) 0.959 (0.016) 1.013 (0.223) 0.891 (0.024) — 0.559 (0.011)
ME 2.267 (0.007) 0.977 0.005) 2.268 (0.007) 0.980 (0.006) 1.670 (0.045) 0.935 (0.027) — 0.616 (0.010)
XE - 0 (0.075) — 0.842 (0.027) - - - -
5 QME 0.741X0.026) — 0.905 (0.023) - - - -
ME 0.946 £0.004) — 0.946 (0.004) - - - -
XE 0.215 (0.150) 2 (0.205) 0.422 (0.190) 0.689 (0.194) 1.059 (0.313) 0,840 (0.210) 1.386 (0.0003) 0.553 (0.144)
1 QME 1.842 (0329 0.868X0.176)  2.061 (0.046) 0.954 (0.045) 1.098 (0.128/0.819 X0.155) 0.883 (0.118) 0.783 (0.114)
ME 2.245 0.078_0.975 £0.039) 2.291 (0.031) 0.990 (0.005) 1.697 (0.050% 0.988 f0.016) 1.063 (0.109) 0.859 (0.120)
Deep MLP XE 0.166 (0.083) O.Ei; 0.081) 0.208 (0.054) 0.743 (0.111) 1.065 (0.344) l (0.068) — 0.382 (0.046)
cep 2 QME 1.347 (0.484) 0.863 (0.088) 1.224 (0.352) 0.912 (0.038) 0.665 (0.251f 0.787 ¥0.093) — 0.562 (0.023)
ME  2.197 0.095) 0.898 (0.045) 2.275 (0.026) 0.976 (0.011) 1.607 (0.134\0.930,/0.028) — 0.589 (0.018)
XE 0.016 (0.026) 0.557 (0.150) 0.041 (0.128) 0.529 (0.080) - - - -
1 QME 00981 (0.322) 0.880 (0.136) 1.001 (0.377) 0.961 (0.078) - - - -
ME 2.297 (0.039) 0.960 0.097) 2.286 (0.057) 0.989 (0.012) - - - -
CNN XE 0.052 (0.038) 0.604 (0.169) 0.070 (0.042) 0.624 (0.138) - - - -
2 QME 0.705 (0.397) 0.888 (0.071) 0.312 (0.307) 0.928 (0.074) - - - -
ME 1.984 (0.304) 0.930 (0.044) 1.950 (0.456) 0.965 (0.046) - - - -
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How far can we go with the naive
merge”
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Results: Full merge on shallow MLP
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Results: Full merge on deep MLP

RN xﬁ-g\.\
\\Z‘\ \; ™~
Y 0.8 o ~, \.\ Dataset
b \ N —— MNIST
R D ()
? 06 x\\@ .. —— FMNIST
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Results: Full merge on CNN

\_
N ‘\9\\.\ Dataset

L 0.8
b X '\.\é\ —— MNIST
306 - e —— FMNIST
= T TEeSg===. — HAR
q% 0.4 —— Yeast
o N IMP

0.2 S T — —o— Yes

T -%- No
2 4 6 8 10

Incremental Step

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Results: Full merge

Loss %

Loss %

t

61 = [0] 01 = [0]+[1]+[2] 01 = [0]+...+[4] 01 = [0]+...+[6] 01 = [0]+...+[8]
02 =[1] 02 = [3] 02 = [5] 02 =[7] 02 =[9]
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Limitations and Future Directions

o Limitations

- Simple datasets.

- Simple architectures.

- Simple merging procedure.

* How are submodules and circuits connected?

o Future Work

« We are testing more complex datasets.

« We are testing more complex architectures.
« We are testing SOTA merging procedures.
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Conclusions

« Can we train class-specialised subnetwork? Yes, through the
MaxEnt principle

« Can we compose them via naive sum? Yes for couple merging,
more merges probably require more complex procedures

PAPER AND CODE
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Entropy-Lens

The Information Signature of Transformer Computations
F. Caso*, R. Ali*, C. Irwin*, P. Li0
Under Review, Preprint on arXiv, * equal contribution

—o— Gemma-2-2b-it

—o— Gemma-2-9b-it

—e— Qwen3-1.7b
—o— Qwen3-4b
—eo— Qwen3-8b

Entropy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Layer depth (normalized)

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Motivation: Transformers from afar

[t1, - tn]
 Look from afar ¢
transformers are easy. E
f! i
r* oL
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Motivation: Transformers from afar

t1,---,t
 Look from afar " ¢ .
transformers are easy. E O R
1V
- Each block is composed -
Y
by other elements but . r
i N
we don’t need to go that : Y
much into the details. - o
¥':/
rt oL
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Motivation: Transformers from afar

1, -, tN]
* Look from afar b

transformers are easy. E

- W= softmaxe. D
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Motivation: Early-exit

- It can be helpful, bl
depending on the task, E
to exit earlier
f I un
w
fr D—_—yx
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Motivation: Early-exit

[t1, -+, tn]
* It can be helpful,

depending on the task, E

to exit earlier
- So we can imagine to f"1 .
" " " g T N
have a distribution for :
each token and layer ' o
f* S—L vy
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Motivation: Early-exit

. . . [t 7"'7t ]
. These distributions are: U
E
f! I N
174
fr o _’?JJLV
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Motivation: Early-exit

. . . t ,...7t
- These distributions are: ot
E
+ High dimensional
f! I N
w
r* b— vy

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025



Motivation: Early-exit

 These distributions are:

- High dimensional — Dimensionality reduction

L _
f oL _—Un
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Motivation: Early-exit

- These distributions are: |
E
- High dimensional — Dimensionality reduction
f! I N
Moments, cumulants
w
r* b— vy
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Motivation: Early-exit

 These distributions are:

- High dimensional — Dimensionality reduction

| |

Moments Xumulants

L _
f oL _—Un
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Why moments and cumulants don’t work anymore
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Why moments and cumulants don’t work anymore

 High variance
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Why moments and cumulants don’t work anymore

 High variance
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Why moments and cumulants don’t work anymore

 High variance

 Low variance
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Motivation: Early-exit

 These distributions are:

- High dimensional — Dimensionality reduction

| |

Moments Xumulants

L _
f oL _—Un
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Motivation: Early-exit

- These distributions are: |
- High dimensional — Dimensionality reduction -
- Unordered support — (Rényi) Entropy !
f! I N
w
fr — b~y
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Motivation: Early-exit

- These distributions are: |
- High dimensional — Dimensionality reduction -
- Unordered support — (Rényi) Entropy
I —yN
w
- DISCLAIMER: we'll show experimentally that we  [Jz] gy .| | 4%

can use Shannon entropy instead of Rényi one.
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Our framework: Entropy profiles

- We look at the evolution of the TR
probability distribution through E
entropy
i —yn—] Ry
w H
i O —'yfv—> —h%
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Our framework: Entropy profiles

+ We look at the evolution of the b ot
probability distribution through E
entropy
fl —>y}v—>
w H
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Our framework: Entropy profiles

+ We look at the evolution of the b ot
probability distribution through E
entropy
fl > —>y}v—>
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Our framework: Entropy profiles

 We look at the evolution of the 5- —e— (Gemma-2-2b-it

—o— (Gemma-2-9b-it

probability distribution through
entropy 4-

0.0 0.2 0.4 0.6 0.8 1.0
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Our framework: Entropy profiles

tl,"',t h}v+1 h}wT
- We look at the evolution of the | 1 = Q : :
probability distribution through E ’”1 "¢
en t ro Profile extraction
Y ) ) )
1 hy hnt1 hnir
- We aggregate the entropy . I [
profiles from different tokens : AR agfregatm
: : by
w H i
i) classifier
v
rt U —L_—Yn—"
1HHHF
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Our framework: Entropy profiles

tl,"',t h}v+1 h}wT
« We look at the evolution of the | 1 # Q : :
probability distribution through E ’”1 "¢
e n t rO Profile extraction
Y v v v
1 hy hyiyi hwir
- We aggregate the entropy . g | L
profiles from different tokens _ Profile agf‘egat”“
: : hn:
- We study which kind of wio|H s
information they retain ! lf
fL oL _—Yn— H
aillAnll
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Can entropy profiles identify models?
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Motivation: Graphs encode structure at multiple levels

« 12 models, 4 families (GPT, LLaMA,
Gemma, Qwen).
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Motivation: Graphs encode structure at multiple levels

« 12 models, 4 families (GPT, LLaMA,
Gemma, Qwen).

* t-SNE clusters by family,
independent of model size.
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Motivation: Graphs encode structure at multiple levels

« 12 models, 4 families (GPT, LLaMA, .
Gemma, Qwen).

* t-SNE clusters by family,
independent of model size.

TSNE 2

TSNE 1

- Gpt2-Small o Gemma-2-2B-It @ Llama-3-8B-It
o Gpt2-Medium © Gemma-2-9B-It o Qwen3-1.7B

o Gpt2-Large o Llama-3.2-1B-It e Qwen3-4B
O Gpt2-X1 o Llama-3.2-3B-It @ Qwen3-8B
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Motivation: Graphs encode structure at multiple levels

« 12 models, 4 families (GPT, LLaMA,

- —o— Gpt2-small i
Gemma, Qwen). el
7- —eo— Gpt2-large

—o— Gpt2-xl

* t-SNE clusters by family,
independent of model size. .

9- —e— Llama-3.2-1b-it
—+— Llama-3.2-3b-it
—&— Llama-3-8b-it

- After depth normalisation, shapes?
are invariant. '

Entr
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Motivation: Graphs encode structure at multiple levels

—eo— Gpt2-small

10 -
—o— Gpt2-medium
7= —e— Gpt2-large
Gpt2-x1 8
6 -
6 -
5 -
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3- 9- —e— Llama-3.2-1b-it
—o— Llama-3.2-3b-it
>
Q, . —e— Llama-3-8b-it
@) 2 0-
—
4o
mg 5- —e— Gemma-2-2b-it —e— Qwen3-1.7b
—o— Gemma-2-9b-it —eo— Qwen3-4b
8 —o— Qwen3-8b
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6 -
3 -
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2 -
2 -
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Motivation: Graphs encode structure at multiple levels

« 12 models, 4 families (GPT, LLaMA,
Gemma, Qwen). a

—o— Gpt2-small
—+— Gpt2-medium
—eo— Gpt2-large
—o— Gpt2-xl

- -SNE clusters by family,
independent of model size.

9- —e— Llama-3.2-1b-it
—+— Llama-3.2-3b-it
—&— Llama-3-8b-it

. . =
- After depth normalisation, shapesz - R ad
are invariant. = Genmazons

Entr

—o— Qwen3-1.7b
—o— Qwen3-4b
—e— Qwen3-8b

Task Macro F1-score

model family 97.99+0.66 2
model size 96.31+0.87

0‘,0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Layer depth (normalized)
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Can entropy profiles identify the task?
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Results: Task differentiation

- Dataset: TinyStories — generative, syntactic, semantic tasks.
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Results: Task differentiation

- Dataset: TinyStories — generative, syntactic, semantic tasks.
- Three prompt templates: Base, Reversed, and Scrambled

- Total of 2400 prompts
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Results: Task differentiation

- Dataset: TinyStories — generative, syntactic, semantic tasks.
- Three prompt templates: Base, Reversed, and Scrambled

- Total of 2400 prompts
 10-fold cross validation ROC-AUC (1-vs-rest)
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Results: Task differentiation

Model Size k-NN AUC

Gemma-2-it 2.1B 97.66 £ 0.47
Gemma-2-it 8.9B 98.38 + 0.50
Llama-3.2-it 1B 94.94 + 0.79
Llama-3.2-it 3B 94.77 £+ 0.93
Llama-3-it 8B 96.10 £ 0.67
Phi-3 3.6B 97.07 £+ 0.87

—
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Results: Task differentiation

Llama-3.2-it Gemma-2-it
6- —— Generative 19- —— Generative
——— Syntactic ——— Syntactic
Semantic Semantic
10-
4- 8-
2 2
§ 3- é o
S =
£ 52|
4
9
5.
L
0-
0-
0 5 10 5 20 2 0 5 10 15 20 2%
Layer Layer
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Results: Task differentiation

Considered layers k-NN AUC

first-only 68.34+2.68
middle-only 78.831+3.07
last-only 76.78+2.36
first+middle+last 86.13+1.41
all 90.49+1.76
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Do entropy profiles correlate with
correct task execution?
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Results: Correct execution

« Dataset: MMLU —> correct, incorrect.
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Results: Correct execution

- Dataset: MMLU —> correct, incorrect.

- Three prompt templates: Base, Instruct, and Humble
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Results: Correct execution

 Dataset: MMLU —> correct, incorrect.
« Three prompt templates: Base, Instruct, and Humble

 10-fold cross validation ROC-AUC (1-vs-rest)
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Results: Correct execution

« Dataset: MMLU —> correct, incorrect.
« Three prompt templates: Base, Instruct, and Humble
- 10-fold cross validation ROC-AUC (1-vs-rest)

« Dummy model: sampled from distribution reflecting the proportion of correct and
incorrect answers.
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Results: Correct execution

Model Prompt LLM-Acc. k-NN AUC

Base 50.89 73.61 £ 1.52
Llama Humble 58.51 69.90 4 1.06
Instruct 60.62 67.23 £+ 1.62
Base 56.10 71.88 + 1.63
Gemma Humble 54.71 72.78 = 1.15
Instruct  56.38 68.36 + 1.23

—
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Is Shannon entropy a good choice?
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Shannon entropy

. For a discrete random variable X with output x; and probability mass function p
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Shannon entropy

. For a discrete random variable X with output x; and probability mass function p

_ Shannon Entropy H(X) = — Zp(xi)logp(xi)
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Rényi entropy

. For a discrete random variable X with output x; and probability mass function p.
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Rényi entropy

. For a discrete random variable X with output x; and probability mass function p.

_ Renyi Entropy H/(X) = " logZp(xl-)“ fora >0, a # 1.

—
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Rényi entropy

. For a discrete random variable X with output x; and probability mass function p.

_ Renyi Entropy H/(X) = " logZp(xl-)“ fora >0, a # 1.

—

- a is (very) roughly speaking like a temperature
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Rényi entropy

. For a discrete random variable X with output x; and probability mass function p.

_ Renyi Entropy H/(X) = " logZp(xl-)“ fora >0, a # 1.

—

. It reduce to Shannon entropy in the limit @ — 1.
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Rényi entropy

- For a discrete random variable X with output x; and probability mass function p.

Rényi Entropy H (X) =

lo x)%fora >0, a # 1.
— gzj:p( ) #

. It reduce to Shannon entropy in the limit @ — 1.

- And to other permutation invariant measures: collision entropy (@ = 2), min-entropy
(@ = o0), max-entropy (o — 0)...

* It correlates with indexes like the Gini-Simpson one.
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The three regimes of Rényi entropy

a=1 a=2

a=0.01 a=0.02 a = 0.05 a=0.1 a=0.2
o = 0.00000 o = 0.00000 o = 0.00003 o =0.00016 o = 0.00081 o =0.00997 o =0.01313
a=5 a =10 a =20 a =100 a =200 a = 500 a = 1000 a = 1500
o =0.01377 o = 0.01366 o = 0.00964 o = 0.00635 o = 0.00555 o =0.00476 o =0.00423 o = 0.00410
Iﬁ.El'l.i"p el l‘“;‘-
Fq..: = - PO
W o g e et
s : =]
| & B Cna | ]
1 g B i [
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The three regimes of Rényi entropy

o saturates, all tokens are considered

a=0.01 a=0.02 a = 0.05 a=0.1 a=0.2 a=0.5 a=1 a=2
o = 0.00000 o = 0.00000 o = 0.00003 o =0.00016 o = 0.00081 o = 0.00360 o =0.00997 o =0.01313

a=5 a =10 a =20 a =100 a =200 a = 500 a = 1000 a = 1500
o =0.01377 o = 0.01366 o = 0.00964 o = 0.00635 o = 0.00555 o =0.00476 o =0.00423 o = 0.00410
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The three regimes of Rényi entropy

a=0.01 a=0.02 a = 0.05 a=0.1 a=0.2 a=0.5 a=1 a=2
o = 0.00000 o = 0.00000 o = 0.00003 o =0.00016 o = 0.00081 o = 0.00360 o =0.00997 o =0.01313

a=5 a =10 a =20 a =100 a =200 a = 500 a = 1000 a = 1500
o =0.01377 o = 0.01366 o = 0.00964 o = 0.00635 o = 0.00555 o =0.00476 o =0.00423 o = 0.00410

i T

N
S | B

The profile collapse into considering only the most probable token
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The three regimes of Rényi entropy

Informative regime

a=0.01 a=0.02 a = 0.05 a=0.1 a=0.2 a=0.5 a=1 a=2
o = 0.00000 o = 0.00000 o = 0.00003 o =0.00016 o = 0.00081 o = 0.00360 o =0.00997 o =0.01313

a=5 a =10 a =20 a =100 a = 200 a = oU0 a = 1000 a = 500
o =0.01377 o = 0.01366 o = 0.00964 o = 0.00635 o = 0.00555 o =0.00476 o =0.00423 o = 0.00410

e B

N T
S | B

It contains Shannon entropy
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Can entropy profiles identify text
format?
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Results: Text format

- Dataset: custom — poem, scientific piece, and chat log. (Topic-format dataset)
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Results: Text format

- Dataset: custom — poem, scientific piece, and chat log. (Topic-format dataset)

- Across different a values in the informative range.
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Results: Text format

- Dataset: custom — poem, scientific piece, and chat log. (Topic-format dataset)

- Across different a values in the informative range.

Model a k-NN AUC

05 973+X1.6
Gemma-2-2B-it 1.0 98.7 & 1.1

50 984 1.7

05 978+ 1.6
Llama-3.2-1B-it 1.0 97.8 £ 2.4

50 96.6 2.6
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Results: Text format
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Can we give a theoretical
explanation?
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Memorization: From Shannon

. Training data distribution X, data generating processes distribution ® (the law),
(training algorithm L : X — ®,) trained models distribution ®.

Brown et al.
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Memorization: From Shannon

. Training data distribution X, data generating processes distribution ® (the law),
(training algorithm L : X — ©,) trained models distribution ©.

. mem(X, ©) = I(X,0) = HX) — HX|©)

Brown et al.
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Memorization: From Shannon

. Training data distribution X, data generating processes distribution ® (the law),
(training algorithm L : X — ©,) trained models distribution ©.

. mem(X, ©) = I(X, ©) =@— H(X|©)

/

How much info isin X

Brown et al.
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Memorization: From Shannon

. Training data distribution X, data generating processes distribution ® (the law),
(training algorithm L : X — ©,) trained models distribution ©.

. mem(X, ®) = I(X, ©) @ ( (X|®
\ How much info is in X
BUT NOTin ©

How much info isin X

Brown et al.
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Memorization: To Kolmogorov

. Training data instance x, data generating process 6 (the law), (training algorithm
L:x— (9) trained model 6.

Morris et al.
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Memorization: To Kolmogorov

. Training data instance x, data generating process 6 (the law), (training algorithm
L:x—0 ,) trained model 0.

. Kolmogorov complexity of an instance x given model parameters 6 is

H*(x|0) = min{ |s| : f(s,0) = x)

Morris et al.

Renormalization and Entropy as Principles in Representation Learning - 23/10/2025


https://arxiv.org/pdf/2505.24832

Memorization: To Kolmogorov

. Training data instance x, data generating process 6 (the law), (training algorithm
L:x—0 ,) trained model 0.

. Kolmogorov complexity of an instance x given model parameters 6 is

H*(x|0) = min{ |s]| : f(s,0) = x)

. H*x|0) ~ —log p(x|0)

Morris et al.
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Memorization: To Kolmogorov

« From Grunwald & Vitanyi (2004)
IX,Y) = HY(f) < By [T (6 0] S IX, Y) + 2HE(f)
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Memorization: To Kolmogorov

« From Grunwald & Vitanyi (2004)
IX,Y) = HY(f) < B eI (6 )] S IX,Y) + 2HE(f)

. Remember IX(x, x) = HX(x); then
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Memorization: To Kolmogorov

« From Grunwald & Vitanyi (2004)
IX,Y) = HY(f) < B eI (6 )] S IX,Y) + 2HE(f)

. Remember IX(x, x) = HX(x); then

. HY(X |0 = 0) — HX(f) < E 5. xj0-0[H (x|0)] < HX|© = 0) + 2H (1)
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Memorization: To Entropy profiles

. H*x|0) ~ —log p(x|6)
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Memorization: To Entropy profiles

. H'(x|0) ~ —log p(x|0)
. HX|0 = 0) — HX(f) < E 9,0 [H (x10)] < HX|© = 0) + 2HX(f)
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Memorization: To Entropy profiles

. H*x|0) ~ — log p(x|6)
. HX |0 = 0) — H*(f) < E 5, joep[H x10)] < HX|O = 0) + 2HX(f)

CHX|©=0)=HX)-I1X|0 =0)=HX) —mem(X,0 = )
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Memorization: To Entropy profiles

* Morris et al. analysed memorisation for the whole model
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Memorization: To Entropy profiles

- Morris et al. analysed memorisation for the whole model

- We showed memorisation for sub-models composed of the first n-layers

5- —e— Gemma-2-2b-it

—o— Gemma-2-9b-it

—e— Qwen3-1.7b
—eo— Qwen3-4b
—eo— Qwen3-8b

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Layer depth (normalized)
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Memorization: To Entropy profiles

- Morris et al. analysed memorisation for the whole model

« We showed memorisation for sub-models composed of the first n-layers

- Surprisingly the growth is nhon-monotonic

—e— Gemma-2-2b-it
—o— Gemma-2-9b-it

Entropy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Layer depth (normalized)
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Memorization: To Entropy profiles

Morris et al. analysed memorisation for the whole model

We showed memorisation for sub-models composed of the first n-layers

Surprisingly the growth is non-monotonic

—e— Gemma-2-2b-it

It depends on family (architecture), BEEN
task, and format.

Entropy

0.‘0 l|12 0‘4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Layer depth (normalized)
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Beyond language: Vision Transformers

7.0 -
6.5 -

6.0 -

4.5 -

10. —*— deit-base-patchl6-224

—e— deit-small-patch16-224 1- —e— Vvit-base-patchl16-224
N deit-tiny-patch16-224 —e— vit-large-patchl16-224
0.]2 0.'4 0.|6 0.‘8 1.‘0 0.|0 O.IZ 0.|4 0.16 0.|8 1.‘0
layer / n. layers layer / n. layers
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Limitations and Future Directions

o Limitations

- The idea of task is not well defined.

* The idea of format is not well defined.

- We don’t know why families show characteristic entropy profiles.

o Future Work

- Understand which parts of the architecture influence the entropy
profile.

* Further connect it to memorisation.
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Conclusions

» Can we study how the probability of tokens evolve through the layers of a Transformer? Yes,
through their entropy.

* What kind of information do entropy profiles contain? They contain information on which task is
being computed, which kind of format is being produced and, surprisingly, the family and
model processing the information.

» Can we get a grasp on what these profile represent? These profiles tell us that different models
memorise differently, also depending on task and format, and most importantly that their
memorisation doesn’t grow with the number of parameters.
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Summary of links

( NNs as RG flow RG for GNNs \

Renormalization
Group

Entropy for
MaxEnt for circuits Transformers

Entropy

\ PAPER AND CODE
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