Renormalization and Entropy as Principles for Representation Learning

Presenter: Francesco Caso

23rd October 2025

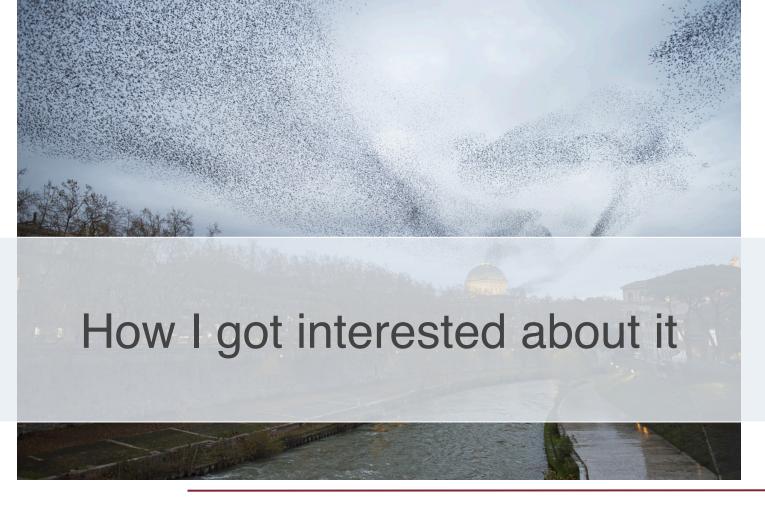
About me

Supervised by

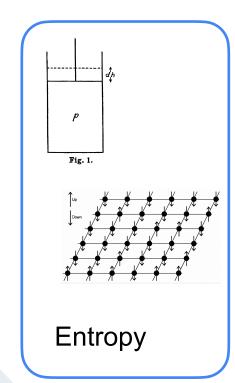
Francesco Caso
PhD student, Sapienza
Member, RSTLess
Ex-Applied Scientist Intern, Amazon
Visiting PhD student, Cambridge

Fabrizio Silvestri
Full Professor, Sapienza
Head, RSTLess
Ex-Research Scientist, Facebook AI
Ex-Research Scientist, Yahoo! Labs

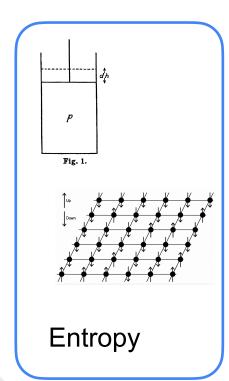
Pietro Liò Full Professor, Cambridge Member, ELLIS Member, AI Group Member, CCAIM

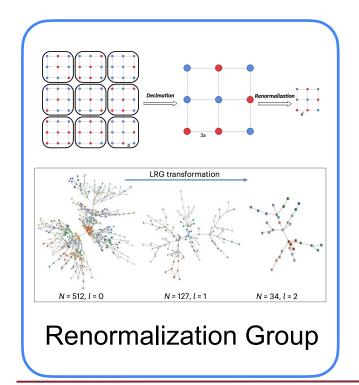


Two words on Statistical Mechanics

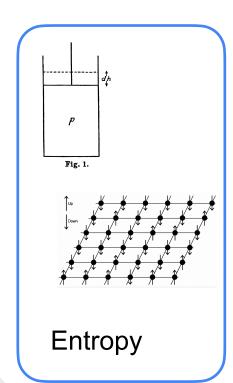


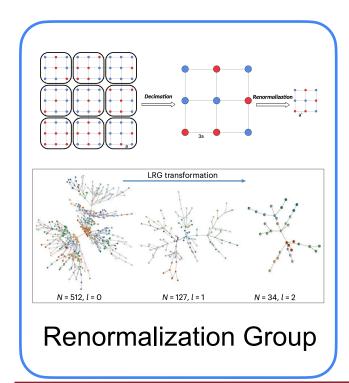
Two words on Statistical Mechanics

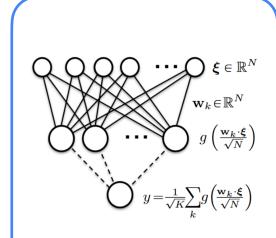




Two words on Statistical Mechanics





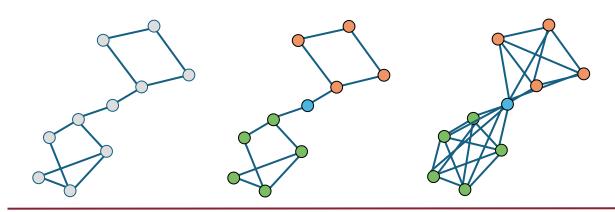


Representation learning

Imposing the RG

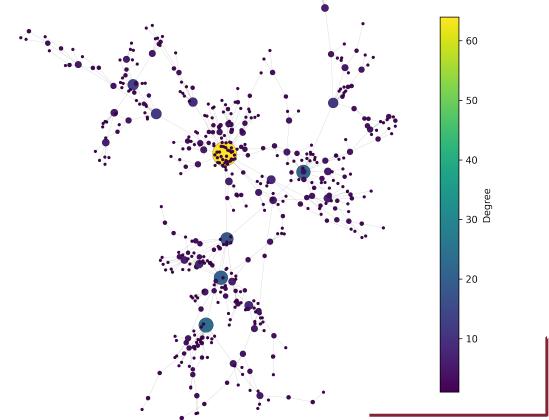
Renormalised Graph Representations for Node Classification

F. Caso, A. Bacciu, G. Trappolini, P. Liò, F. Silvestri IJCNN 2025



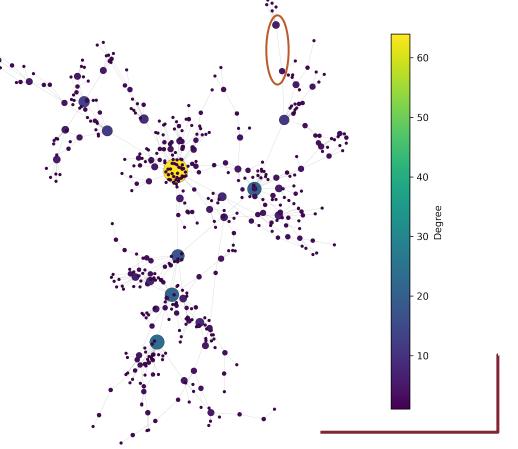
Motivation: Graphs encode structure at multiple levels

 Barabasi-Albert Graph with N=512 m=1



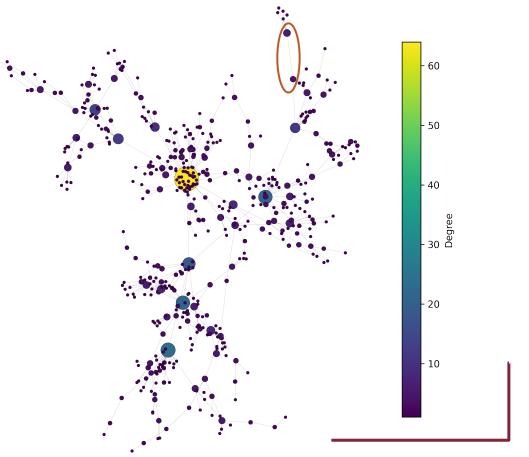
Motivation: Graphs encode structure at multiple levels

- Barabasi-Albert Graph with N=512 m=1
- · Local Topology:
 - Neighbourhoods edges

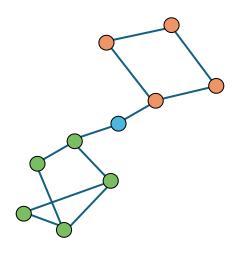


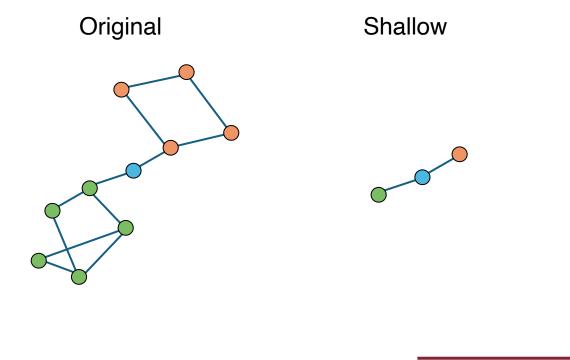
Motivation: Graphs encode structure at multiple levels

- Barabasi-Albert Graph with N=512 m=1
- Local Topology:
 - Neighbourhoods edges
- Bigger Scale Topology:
 - Intersection of neighbourhoods - paths

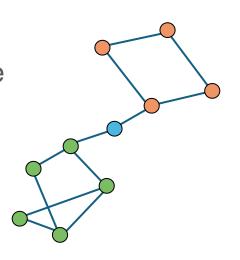


Original

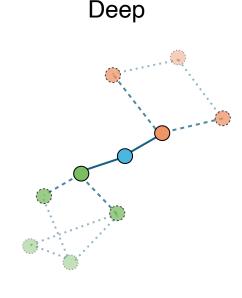




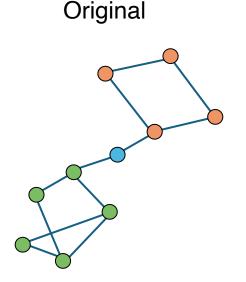
 Mesoscopic patterns are not reconstructed by just adding layers

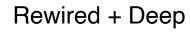


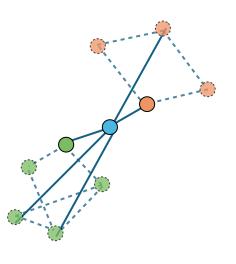
Original



 Rewiring surface hidden topological signals by altering/erasing some patterns.





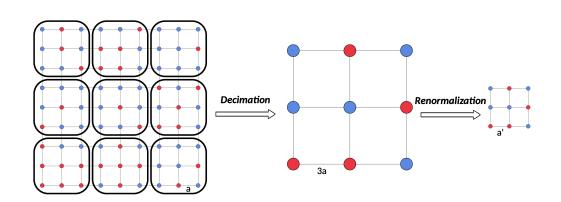


Can we define an approach that rewires the graph based on scale?

Selectively discarding fine-grained details, preserving coarser structure

Renormalization Group (RG): Looking at Graphs from Different Scales

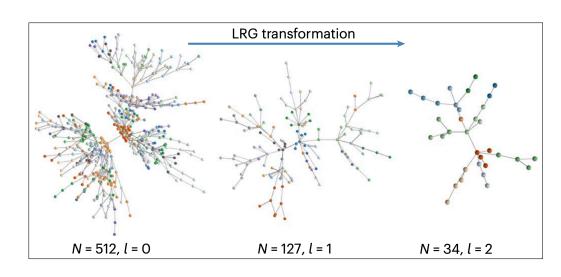
- RG: how a model should change when we change the scale.
- In Euclidean space, scale is intuitive.



Villegas et al. 2023

Laplacian Renormalization Group (LRG): Looking at Graphs from Different Scales

- In graphs, scale is not as intuitive.
- Instead of redefining scale, we modify the spatial operators.
- The Laplacian, that defines diffusion.



Villegas et al. 2023

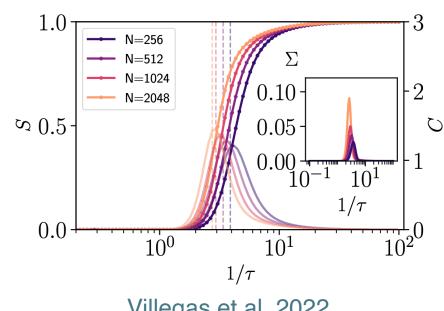
Diffusion and Entropy on Graphs

$$L_{ij} = \left[(\delta_{ij} \sum_{k} A_{ik}) - A_{ij} \right]$$

$$\rho(\tau) = \frac{e^{-\tau L}}{Tr(e^{-\tau L})}$$

•
$$v(\tau) = \rho(\tau)v(0)$$

$$S[\rho(\tau)] = -\frac{1}{\log(N)} \sum_{i=1}^{N} \mu_i(\tau) \log \mu_i(\tau)$$

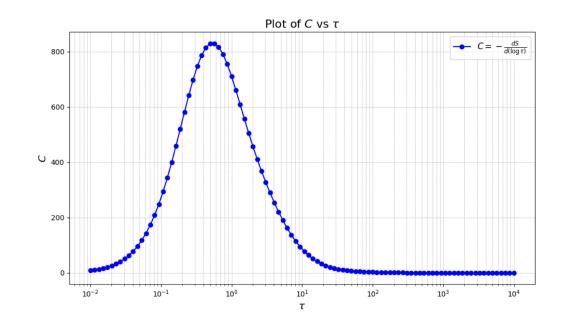


Villegas et al. 2022

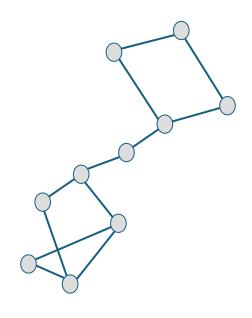
Characteristic Scale: A Theoretically-Grounded Choice

$$C = -\frac{dS}{d(\log \tau)}$$

 The peak in the entropy's derivative (heat capacity) reveals the characteristic scale, representing strong intra-cluster coupling.



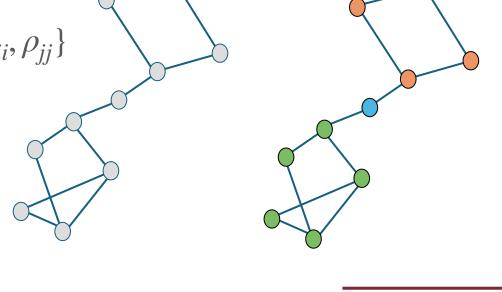
Original



Original Grouped

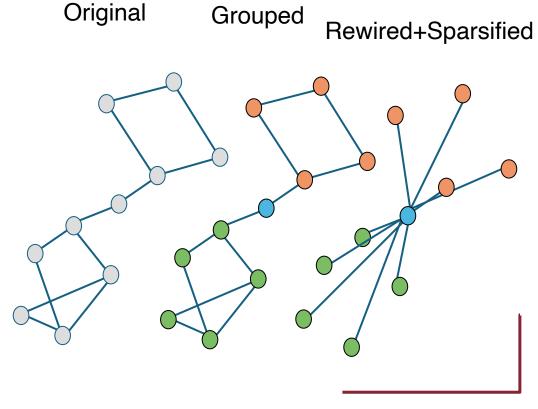
• Condition:
$$\rho_{i,j}(\tau) > \max\{\rho_{ii}, \rho_{jj}\}$$

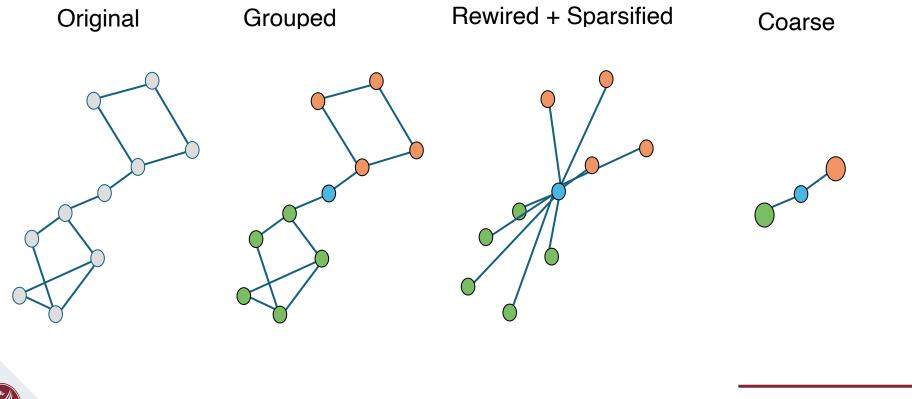
• Then: $\mathcal{N}_{i'} = \mathcal{N}_i \cup \mathcal{N}_i$



Original Grouped Rewired • Condition: $\rho_{i,j}(\tau) > \max\{\rho_{ii}, \rho_{ij}\}$ • Then: $\mathcal{N}_{i'} = \mathcal{N}_i \cup \mathcal{N}_i$

 Intra-macro-node sparsification

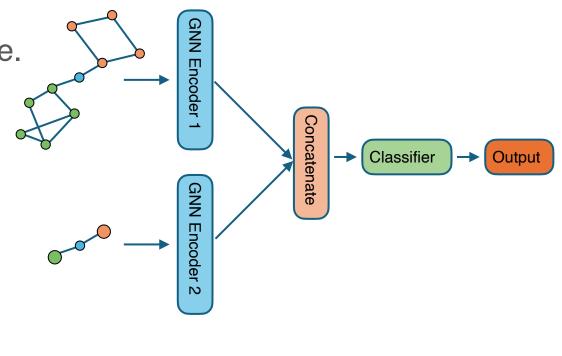




Our Framework: Processing Multiple Graph Scales in Parallel

 Encoders can be GCN, GAT, or any architecture.

 The model learns to combine local and mesoscopic information.



Is it beneficial to observe multiple scales of a graph for performing a node classification task?

Experimental Setup: Datasets and Training Configuration

- Datasets (from citation, air traffic, and product networks)
- We propagate only on the train subgraph during training!

Dataset	Nodes	Edges	Features	Classes
Citeseer	3,327	4,732	3,703	6
Cora	2,708	5,429	1,433	7
Europe	399	5,995	399	4
PubMed	19,717	44,338	500	3
Photo	238162	7650	745	8
Computers	491722	13752	767	10

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6{\pm}2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	$35.1 {\pm} 5.3$	$73.9 {\pm} 1.5$	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4{\pm}1.1$	35.8 ± 5.1	73.9 ± 1.0	$96.2 {\pm} 0.2$	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^-$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0 {\pm} 1.0$	$24.4 {\pm} 7.0^-$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7{\pm}3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2 +$	$29.9 {\pm} 4.5$	$73.6 {\pm} 0.8 {+}$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 ^{+}$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2 ^{+}$	$96.3 {\pm} 0.2$	$91.9 {\pm} 0.3^-$

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	$35.1 {\pm} 5.3$	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	$35.8 {\pm} 5.1$	73.9 ± 1.0	96.2 ± 0.2	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^{-}$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0 {\pm} 1.0$	$24.4 {\pm} 7.0^-$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7{\pm}3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2^{+}$	$29.9 {\pm} 4.5$	$73.6 \pm 0.8^+$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 +$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	$96.3 {\pm} 0.2$	$91.9 \pm 0.3^-$
·						

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	35.1 ± 5.3	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	35.8 ± 5.1	73.9 ± 1.0	96.2 ± 0.2	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^+$	$92.1 {\pm} 0.7^-$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0{\pm}1.0$	$24.4{\pm}7.0^{-}$	$73.5{\pm}1.5$	$90.3 {\pm} 0.6^-$	$74.7{\pm}3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2^{+}$	$29.9 {\pm} 4.5$	$73.6 {\pm} 0.8 {+}$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 ^+$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	$96.3 {\pm} 0.2$	$91.9 \pm 0.3^-$

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	35.1 ± 5.3	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	$35.8 {\pm} 5.1$	73.9 ± 1.0	$96.2 {\pm} 0.2$	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^-$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0 {\pm} 1.0$	$24.4 {\pm} 7.0^-$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7 \pm 3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2 +$	$29.9 {\pm} 4.5$	$73.6 \pm 0.8^+$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 ^{+}$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	96.3 ± 0.2	$91.9 \pm 0.3^{-}$
	<u> </u>	<u> </u>		<u> </u>	<u> </u>	·

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

• Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	$35.1 {\pm} 5.3$	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	66.3 ± 2.4	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	65.7 ± 2.7	$72.4 {\pm} 1.1$	35.8 ± 5.1	73.9 ± 1.0	96.2 ± 0.2	$92.6 {\pm} 0.2$
Renorm	alized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^{-}$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5 ^{+}$	$72.0 {\pm} 1.0$	$24.4{\pm}7.0^{-}$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7 {\pm} 3.2^-$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2 +$	$29.9 {\pm} 4.5$	$73.6 {\pm} 0.8 {+}$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	69.0 $\pm 2.5^+$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	$96.3 {\pm} 0.2$	$91.9 {\pm} 0.3^-$
					·	

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	35.1 ± 5.3	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	35.8 ± 5.1	73.9 ± 1.0	96.2 ± 0.2	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^{-}$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0{\pm}1.0$	$24.4{\pm}7.0^{-}$	$73.5{\pm}1.5$	$90.3 {\pm} 0.6^-$	$74.7{\pm}3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2^{+}$	$29.9 {\pm} 4.5$	$73.6 {\pm} 0.8 {+}$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 ^+$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	$96.3 {\pm} 0.2$	$91.9 \pm 0.3^-$

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

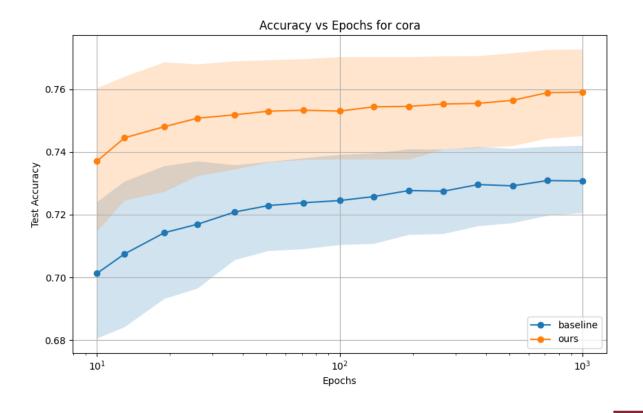
Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	$35.1 {\pm} 5.3$	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	$35.8 {\pm} 5.1$	73.9 ± 1.0	$96.2 {\pm} 0.2$	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 \pm 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^{-}$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0 {\pm} 1.0$	$24.4 {\pm} 7.0^-$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7 \pm 3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2 +$	$29.9 {\pm} 4.5$	$73.6 \pm 0.8^+$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN_{MR}	$69.0 \pm 2.5 ^{+}$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	96.3 ± 0.2	$91.9 \pm 0.3^{-}$
	<u> </u>	<u> </u>		<u> </u>	<u> </u>	·

- **SB** = Single Base
- MB = Multi Base (more encoders, only original graph)
- MR = Multi Renormalised (encoders on graph at different resolutions)
- + = statistically significant improvement (Wilcoxon test)

Red: best

Model	Citeseer	Cora	Europe	Pubmed	Photo	Computers
Base						
Single						
GAT_{SB}	$65.6 {\pm} 2.0$	$72.6 {\pm} 1.7$	$34.2 {\pm} 5.7$	$71.1 {\pm} 1.5$	$95.9 {\pm} 0.2$	$88.0 {\pm} 1.5$
GCN_{SB}	$65.8 {\pm} 1.6$	$72.0 {\pm} 0.7$	$35.1 {\pm} 5.3$	73.9 ± 1.5	$96.0 {\pm} 0.2$	92.0 ± 0.3
Multi						
GAT_{MB}	$66.3 {\pm} 2.4$	$73.6 {\pm} 1.4$	$30.8 {\pm} 4.6$	$71.9 {\pm} 1.2$	$96.1 {\pm} 0.3$	$91.5 {\pm} 0.4$
GCN_{MB}	$65.7 {\pm} 2.7$	$72.4 {\pm} 1.1$	$35.8 {\pm} 5.1$	73.9 ± 1.0	96.2 ± 0.2	$92.6 {\pm} 0.2$
Renorma	lized					
Single						
GAT_{SR}	$67.5 {\pm} 1.7^{+}$	$74.2 \pm 0.9^{+}$	$30.1{\pm}7.7^{-}$	$72.2 \pm 1.1^{+}$	$92.1 {\pm} 0.7^-$	$73.0{\pm}4.8^{-}$
GCN_{SR}	$69.4 \pm 1.5^{+}$	$72.0{\pm}1.0$	$24.4 {\pm} 7.0^-$	$73.5 {\pm} 1.5$	$90.3 {\pm} 0.6^-$	$74.7 \pm 3.2^{-}$
Multi						
GAT_{MR}	$69.0 \pm 1.7^{+}$	$75.5 \pm 1.2 +$	$29.9 {\pm} 4.5$	$73.6 {\pm} 0.8 {+}$	96.2 ± 0.4	$89.7{\pm}1.0^{-}$
GCN _{MR}	$69.0 \pm 2.5 +$	$75.2 \pm 1.3 +$	$38.6 {\pm} 4.6$	$76.1 \pm 1.2^{+}$	$96.3 {\pm} 0.2$	$91.9 \pm 0.3^-$

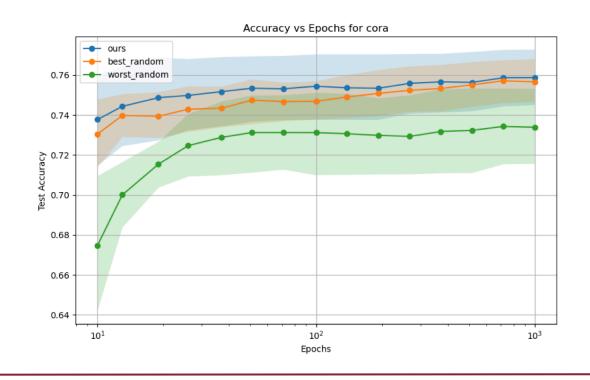
Multiscale Advantage Is Consistent During Training



Can we systematically identify the optimal scales using spectral entropy?

Our Scale Is Optimal: No Tuning Required

- Characteristic scale derived from spectral entropy.
- Outperforms all randomly chosen scales (30 tested across 3 ranges).
- No tuning, no cross-validation: selected before training.



Limitations and Future Directions

- Limitations
- LRG applies only to undirected, unweighted, single-component graphs.
- Does not consider edge features or node features during scale selection.
- On large dense graphs (e.g. Amazon Computers), performance may degrade.

- Future Work
- Extend RG methods to directed or weighted graphs.
- Define feature-aware spectral entropies for task-specific scaling.
- Apply to graph classification or link prediction.

Conclusions...of this project

- Can we build a bridge between rewiring and rescaling? Yes
- Is it beneficial to observe multiple scales of a graph for performing a node classification task? Yes
- Can we systematically identify the optimal scales using spectral entropy? Yes
- We need to include **features** in the definition of **graph entropy**.

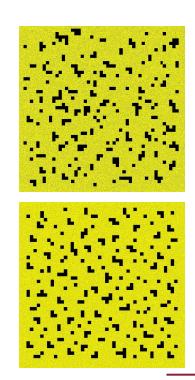
Learning the RG

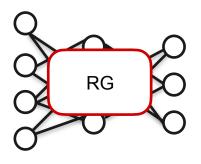
Symmetry and Generalisation in Neural Approximations of Renormalisation Transformations

C. Ashworth, P. Liò, **F. Caso** Preprint on arXiv

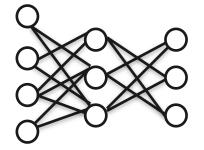
Antal et al.

Motivation: Are Neural Networks RG flows?





Motivation: Are Neural Networks RG flows?



- In the pedagogical case of a ϕ^4 theory, RG flows reduces to few equations evolving few variables.

- In the pedagogical case of a ϕ^4 theory, RG flows reduces to few equations evolving few variables.
- In real cases (e.g. fermionic systems) RG is computationally difficult ($O(10^5)$ equations) but has proven useful.

- In the pedagogical case of a ϕ^4 theory, RG flows reduces to few equations evolving few variables.
- In real cases (e.g. fermionic systems) RG is computationally difficult ($O(10^5)$ equations) but has proven useful.
- E.g. the Hubbard model represents cuprates and organic superconductors

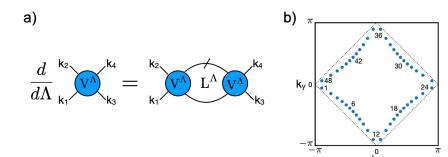
$$H = -t \sum_{\langle i,j \rangle,s} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\langle \langle i,j \rangle \rangle,s} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

E.g. the Hubbard model represents cuprates and organic superconductors

$$H = -t \sum_{\langle i,j \rangle,s} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\langle \langle i,j \rangle \rangle,s} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

E.g. the Hubbard model represents cuprates and organic superconductors

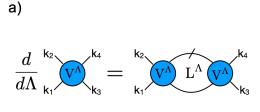
$$H = -t \sum_{\langle i,j \rangle,s} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\langle \langle i,j \rangle \rangle,s} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

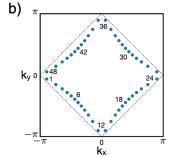


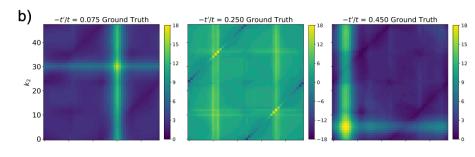
Di Sante et al.

E.g. the Hubbard model represents cuprates and organic superconductors

$$H = -t \sum_{\langle i,j \rangle,s} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\langle \langle i,j \rangle \rangle,s} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$





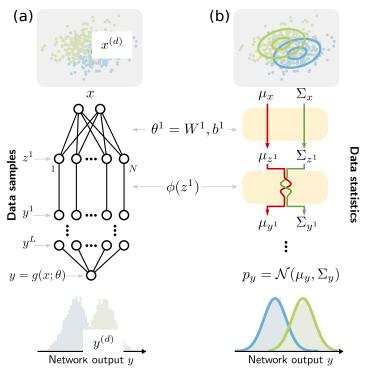


Di Sante et al.

E.g. the Hubbard model represents cuprates and organic superconductors

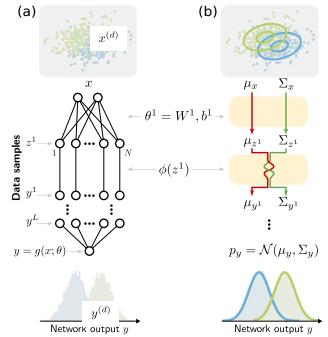
$$H = -t \sum_{\langle i,j \rangle,S} c_{i,S}^{\dagger} c_{j,S} - t' \sum_{\langle \langle i,j \rangle \rangle,S} c_{i,S}^{\dagger} c_{j,S} + U \sum_{n_{i,\uparrow}} n_{i,\downarrow}$$

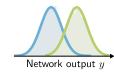
$$\frac{d}{d\Lambda} \sum_{k_1}^{k_2} \sum_{k_3}^{k_4} \sum_{k_4}^{k_4} \sum_{k_5}^{k_5} \sum_{n_{i,\uparrow}}^{k_4} \sum_{n_{i,\uparrow}}^{k_5} \sum_{n_{i,\uparrow}}^{k_$$



Moments: $< x > , < x^2 > , ...$

Cumulants: $< x > , < x^2 > - (< x >)^2, ...$



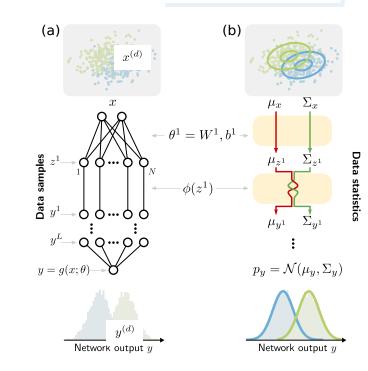


Moments: $< x > , < x^2 > , ...$

Cumulants: $< x > , < x^2 > - (< x >)^2, ...$

We can define the cumulant generating function:

$$\mathcal{W}_{y|\theta}(j) = \ln \langle \exp(j^{\mathsf{T}} y) \rangle_{y|\theta}$$
$$= \ln \langle \exp(j^{\mathsf{T}} g(x;\theta)) \rangle_{x},$$



Moments: $< x > , < x^2 > , ...$

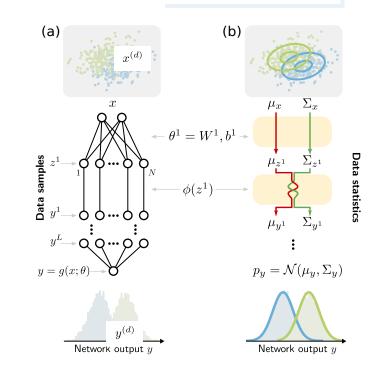
Cumulants: $< x > , < x^2 > - (< x >)^2, ...$

We can define the cumulant generating function:

$$\mathcal{W}_{y|\theta}(j) = \ln \langle \exp(j^{\mathsf{T}} y) \rangle_{y|\theta}$$
$$= \ln \langle \exp(j^{\mathsf{T}} g(x;\theta)) \rangle_{x},$$

Which...generates cumulants:

$$k_{y|\theta}^{(n)} = \frac{d^n \mathcal{W}_{y|\theta}(j)}{dj^n} \bigg|_{i=0}.$$



An MLP is composed by an affine transform:

$$z_i^l = \sum_{i=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l$$

An MLP is composed by an affine transform:

$$z_i^l = \sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l$$

And an activation function:

$$y_i^l = \phi(z_i^l) = \phi\left(\sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l\right).$$

An MLP is composed by an affine transform: $z_i^l = \sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l;$

An MLP is composed by an affine transform: $z_i^l = \sum_{i=1}^{\infty} W_{ij}^l y_j^{l-1} + b_i^l;$

$$\begin{split} \mathcal{W}_{z^{l}}(j) &= \ln \langle \exp(j^{\mathsf{T}}z^{l}) \rangle_{z^{l}} \\ &= \ln \langle \exp(j^{\mathsf{T}}W^{l}y^{l-1} + j^{\mathsf{T}}b^{l}) \rangle_{y^{l-1}} ; \\ &= \mathcal{W}_{y^{l-1}}((W^{l})^{\mathsf{T}}j) + j^{\mathsf{T}}b^{l}; \end{split}$$

An MLP is composed by an affine transform: $z_i^l = \sum_{i=1}^r W_{ij}^l y_j^{l-1} + b_i^l;$

$$\begin{split} \mathcal{W}_{z^{l}}(j) &= \ln \langle \exp(j^{\top}z^{l}) \rangle_{z^{l}} \\ &= \ln \langle \exp(j^{\top}W^{l}y^{l-1} + j^{\top}b^{l}) \rangle_{y^{l-1}} \; \; ; \; k_{z^{l},i_{1},...,i_{n}}^{(n)} = \sum_{s_{1},...,s_{n}} W_{i_{1}s_{1}}^{l} \cdots W_{i_{n}s_{n}}^{l} k_{y^{l-1},s_{1},...,s_{n}}^{(n)} \\ &= \mathcal{W}_{y^{l-1}}((W^{l})^{\top}j) + j^{\top}b^{l}; \end{split}$$

An MLP is composed by an affine transform: $z_i^l = \sum_{i=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l$;

$$\begin{split} \mathcal{W}_{z^{l}}(j) &= \ln \langle \exp(j^{\top}z^{l}) \rangle_{z^{l}} \\ &= \ln \langle \exp(j^{\top}W^{l}y^{l-1} + j^{\top}b^{l}) \rangle_{z^{l-1}} ; \ k_{z^{l},i_{1},...,i_{n}}^{(n)} = \sum_{s_{1},...,s_{n}} W_{i_{1}s_{1}}^{l} \cdots W_{i_{n}s_{n}}^{l} k_{y^{l-1},s_{1},...,s_{n}}^{(n)} \\ &= \mathcal{W}_{y^{l-1}}((W^{l})^{\top}j) + j^{\top}b^{l}; \end{split}$$

Cumulant don't mix because of linearity

[...] And an activation function:

$$y_i^l = \phi(z_i^l) = \phi\left(\sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l\right).$$

[...] And an activation function:

$$y_i^l = \phi(z_i^l) = \phi\left(\sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l\right).$$

$$\mathcal{W}_{y^l}(j) = \ln \langle \exp(j^{\mathsf{T}} y^l) \rangle_{y^l}$$
$$= \ln \langle \exp(j^{\mathsf{T}} \phi(z^l)) \rangle_{z^l}.$$

[...] And an activation function:

$$y_i^l = \phi(z_i^l) = \phi\left(\sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l\right).$$

$$\begin{aligned} \mathcal{W}_{y^l}(j) &= \ln \langle \exp(j^{\mathsf{T}} y^l) \rangle_{y^l} \\ &= \ln \langle \exp(j^{\mathsf{T}} \phi(z^l)) \rangle_{z^l}. \end{aligned}$$

Cumulant do mix and we need to approximate it

[...] And an activation function:

$$y_i^l = \phi(z_i^l) = \phi\left(\sum_{j=1}^{N_{l-1}} W_{ij}^l y_j^{l-1} + b_i^l\right).$$

$$\mathcal{W}_{y^l}(j) = \ln \langle \exp(j^{\mathsf{T}} y^l) \rangle_{y^l}$$
$$= \ln \langle \exp(j^{\mathsf{T}} \phi(z^l)) \rangle_{z^l}.$$

Backgorund: RG as mapping Probability distributions

CLT: Let $\xi_1, \ldots, \xi_n, \ldots$ i.i.d. random variables from a distribution with variance σ^2

Then,
$$\frac{\sum_i (\xi_i - \mathbb{E}(\xi_i))}{\sigma \sqrt{n}} \xrightarrow{n \to \infty} N(0,1).$$

Backgorund: RG as mapping Probability distributions

CLT: Let $\xi_1, \ldots, \xi_n, \ldots$ i.i.d. random variables from a distribution with variance σ^2

Then,
$$\frac{\sum_i (\xi_i - \mathbb{E}(\xi_i))}{\sigma \sqrt{n}} \xrightarrow{n \to \infty} N(0,1).$$

Backgorund: RG as mapping Probability distributions

CLT: Let $\xi_1, \ldots, \xi_n, \ldots$ i.i.d. random variables from a distribution with variance σ^2

Then,
$$\frac{\sum_{i} (\xi_{i} - \mathbb{E}(\xi_{i}))}{\sigma \sqrt{n}} \xrightarrow{n \to \infty} N(0,1).$$

As an RG:

$$(\xi_1)$$
 (ξ_2) (ξ_1) (ξ_2) (ξ_1) (ξ_2) (ξ_1) (ξ_2)

$$p_{n+1}(x) = \sqrt{2} \left[dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, . \right]$$

$$p_{n+1}(x) = \sqrt{2} \int dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, .$$

$$p_{n+1}(x) = \sqrt{2} \left[dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, . \right]$$

Cumulant generating function:

$$\mathcal{W}_{n+1}(s) = \ln \left[e^{sx} p_{n+1}(x) dx \right].$$

$$p_{n+1}(x) = \sqrt{2} \left[dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, . \right]$$

Cumulant generating function:

$$\mathcal{W}_{n+1}(s) = \ln \left[\int_{-\infty}^{\infty} e^{sx} p_{n+1}(x) dx \right].$$

$$p_{n+1}(x) = \sqrt{2} \left[dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, . \right]$$

Cumulant generating function:

$$\mathcal{W}_{n+1}(s) = \boxed{\ln} \quad e^{sx} p_{n+1}(x) dx.$$

$$p_{n+1}(x) = \sqrt{2} \left[dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \, . \right]$$

Cumulant generating function:

$$\mathcal{W}_{n+1}(s) = \ln \left[e^{sx} p_{n+1}(x) dx \right].$$

Obtaining $\kappa_r^{(n+1)} = 2^{1-r/2} \kappa_r^{(n)}$ for $r \ge 1$.

$$\xi_1$$
 ξ_2 \cdots -

$$-(\xi_n)-\cdots$$

...
$$p_{n+1}(x) = \sqrt{2} \int dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\Re p_n)(x)$$
.

Symmetry and linearity

$$\phi(x) = x$$

Solution:

$$w_0 = \frac{1}{w_2 \sqrt{2}} - w_1$$

$$b_2 = -2w_2b_1$$
.

$$(\xi_1)$$
 (ξ_2) \cdots (ξ_n) (ξ_n)

$$p_{n+1}(x) = \sqrt{2} \int dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \,.$$

Symmetry and linearity

$$\phi(x) = x$$

Solution:

$$w_0 = \frac{1}{w_2 \sqrt{2}} - w_1$$

$$b_2 = -2w_2b_1.$$

Symmetry and (minimal) non-linearity

$$\phi(x) = x + \alpha x^2$$

Solution:

$$2w_2(w_0 + w_1) = \sqrt{2}$$

$$2w_2\alpha(w_0 + w_1)^2 = 0$$

$$2w_2\alpha(w_0^2 + w_1^2) = 0.$$

$$p_{n+1}(x) = \sqrt{2} \int dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \,.$$

Symmetry and linearity

$$\phi(x) = x$$

Solution:

$$w_0 = \frac{1}{w_2 \sqrt{2}} - w_1$$

$$b_2 = -2w_2b_1.$$

Symmetry and (minimal) non-linearity

$$\phi(x) = x + \alpha x^2$$

Solution:

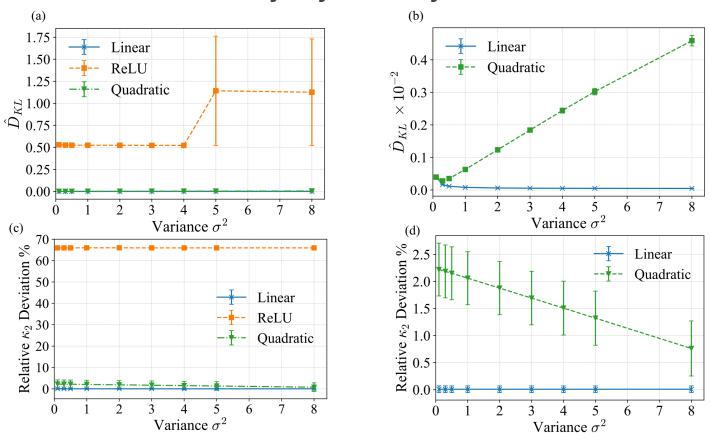
Inconsistent

$$2w_2\alpha(w_0 + w_1)^2 = 0$$

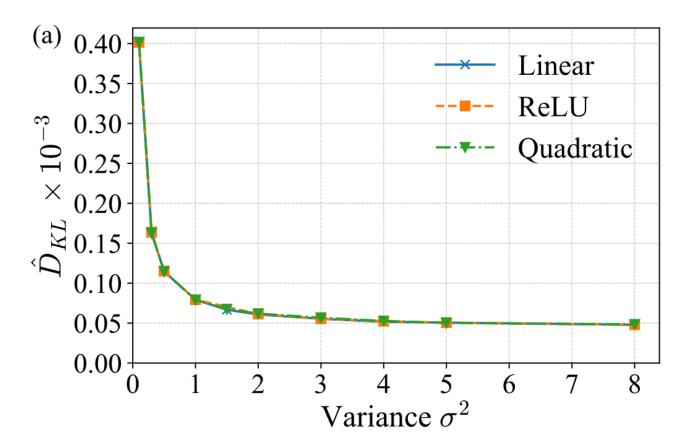
$$2w_2\alpha(w_0^2 + w_1^2) = 0.$$

$$p_{n+1}(x) = \sqrt{2} \int dy \, p_n(\sqrt{2}x - y) \, p_n(y) = (\mathcal{R}p_n)(x) \,.$$

Results: Only Symmetry



Results: No constraints



Limitations and Future Directions

- Limitations
- CLT is a solvable toy RG flow.
- We didn't use encoders/decoders.

- Future Work
- We are testing on more complex architectures.
- We are analysing the Hubbard model.

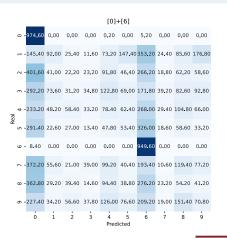
Conclusions

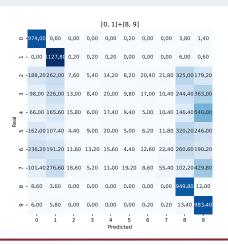
- Are NNs representing and RG flow? Yes (in Jona-Lasinio formalism)
- What can we learn from the RG flow framework? To not focus only on symmetry but also on the order of mixing required

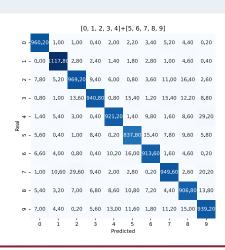
Submodules via Entropy

Composable Sparse Subnetworks via Maximum-Entropy Principle

F. Caso, S. Fonio, N. Saccomanno, S. Monaco, F. Silvestri NeurIPS 2025 Workshop on Mechanistic Interpretability

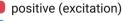






Motivation: Circuits

Windows (4b:237) excite the car detector at the top and inhibit at the bottom.

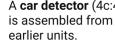


negative (inhibition)

Car Body (4b:491) excites the car detector, especially at the bottom.

A car detector (4c:447) is assembled from

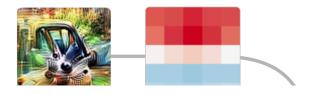
Wheels (4b:373) excite the car detector at the bottom and inhibit at the top.



Olah et al.

Motivation: Circuits

Windows (4b:237) excite the car detector at the top and inhibit at the bottom.

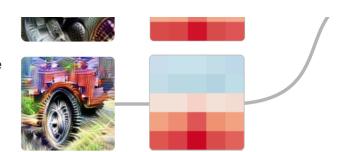


positive (excitation)

negative (inhibition)

Spurious circuits entangled to other classes

Wheels (4b:373) excite the car detector at the bottom and inhibit at the top.



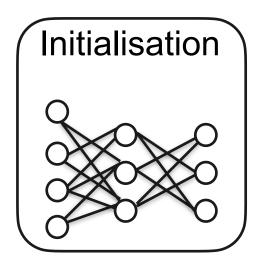
A car detector (4c:447) is assembled from earlier units.

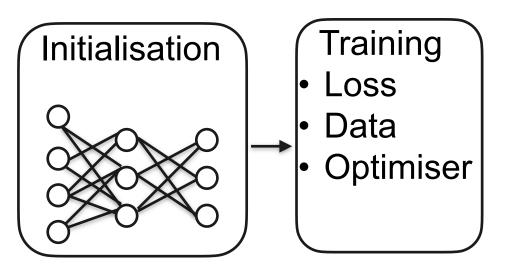
Olah et al.

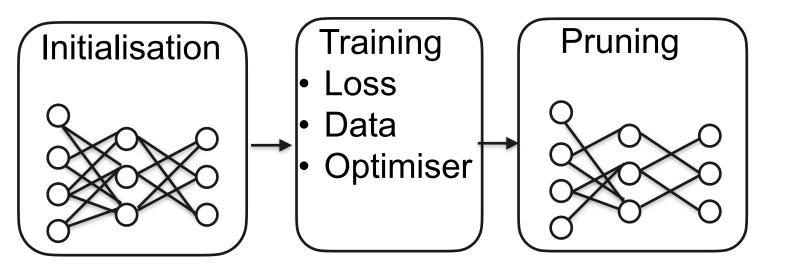
Can we train class-specialised subnetworks that remain ignorant outside their domain and compose into generalist model?

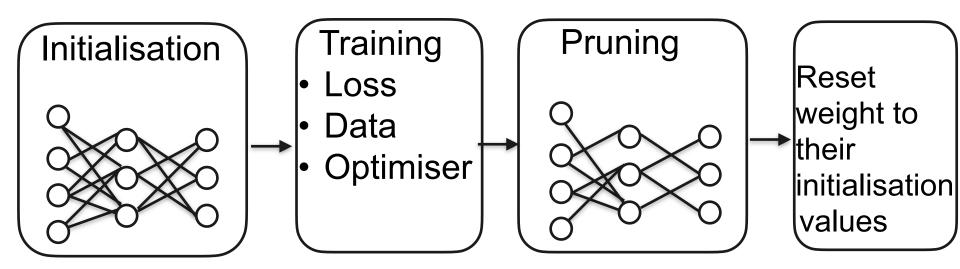
Frankle and Carbin proposed that

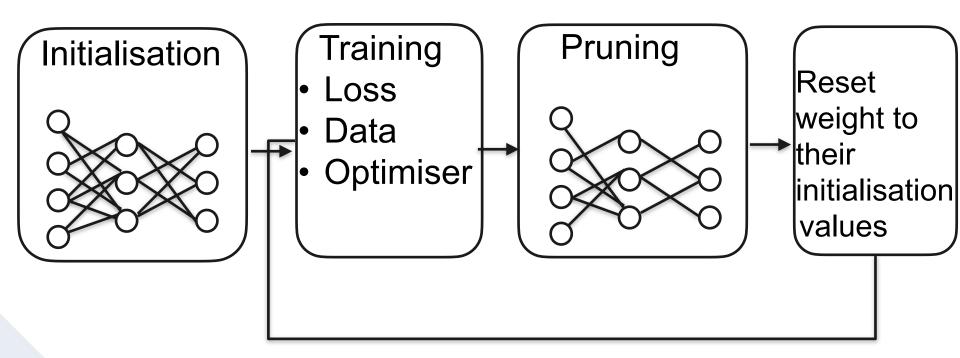
A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.











Maximum Entropy Principle

Information Theory and Statistical Mechanics

E. T. JAYNES

Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Maximum Entropy Principle

Between the distributions that satisfy given constraints the most agnostic one is the one that maximazies entropy.

Information Theory and Statistical Mechanics

E. T. JAYNES

Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Let C be the full set of classes and $R \subseteq C$ the set of *rewarded classes*

Let C be the full set of classes and $R \subseteq C$ the set of rewarded classes

For a training sample (x, y), where $y \in C$,

Let C be the full set of classes and $R \subseteq C$ the set of rewarded classes

For a training sample (x, y), where $y \in C$, we define the

target distribution $\tilde{y} \in \mathbb{R}^{|c|}$ as

$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in R \\ \frac{1}{|C|} & \text{otherwise} \end{cases}$$

$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in R \\ \frac{1}{|C|} & \text{otherwise} \end{cases}$$

If
$$C = \{0,1,2\}$$
 and $R = \{0\}$

$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in R \\ \frac{1}{|C|} & \text{otherwise} \end{cases}$$

If
$$C = \{0,1,2\}$$
 and $R = \{0\}$

$$\tilde{y} = (1,0,0)$$
 for class 0 and

$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in R \\ \frac{1}{|C|} & \text{otherwise} \end{cases}$$

If
$$C = \{0,1,2\}$$
 and $R = \{0\}$

$$\tilde{y} = (1,0,0)$$
 for class 0 and

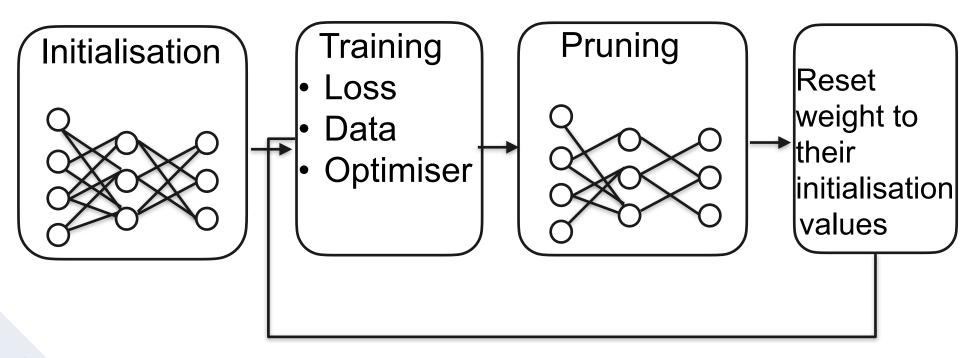
$$\tilde{y} = (0.33, 0.33, 0.33)$$
 for classes 1 and 2

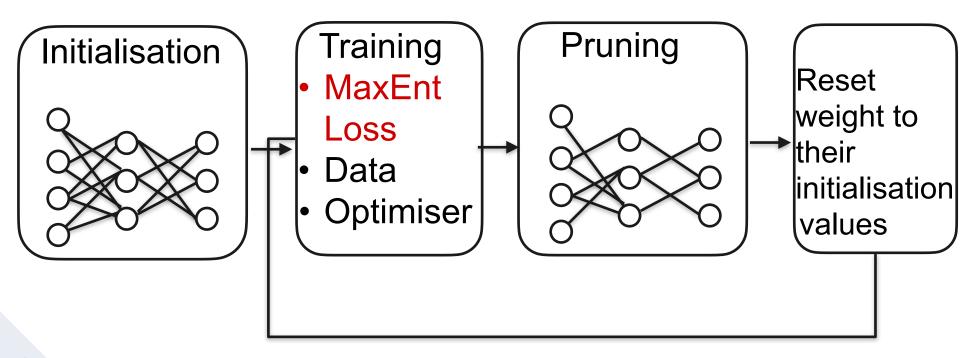
$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in R \\ \frac{1}{|C|} & \text{otherwise} \end{cases}$$

$$\mathscr{L}_{\mathsf{ME}}(x,y) = \mathsf{KL}(\tilde{y} \parallel \hat{y}) = \sum_{i=1}^{|\mathscr{C}|} \tilde{y}_i \log \left(\frac{\tilde{y}_i}{\hat{y}_i} \right)$$

With $\hat{y} = \operatorname{softmax}(f_{\theta}(x))$

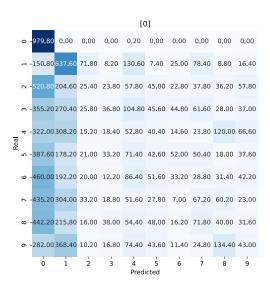
Original IMP

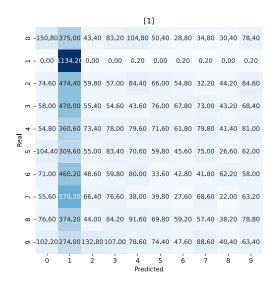


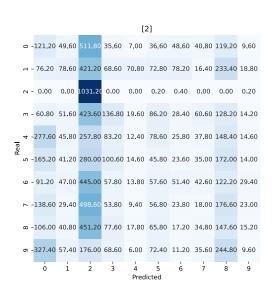


Sanity check: do the modules specialise?

Results: specialization







Results: specialization

Table 1: Single submodule behaviour when using MaxEnt Loss with and without IMP.

Model	IMP	MNIST		Fashion MNIST		HAR		Yeast	
		Entropy F	Rewarded Acc	Entropy	Rewarded Acc	Entropy 1	Rewarded Acc	Entropy I	Rewarded Acc
Shallow MLP	No Yes	2.296 (0.003) 2.293 (0.004)	0.998 (0.002) 0.999 (0.001)	2.296 (0.003) 2.293 (0.004)	0.998 (0.002) 0.999 (0.001)	1.762 (0.017) 1.757 (0.023)	0.997 (0.007) 0.996 (0.008)	1.298 (0.062) 1.297 (0.059)	0.995 (0.009) 0.998 (0.006)
Deep MLP	No Yes	2.298 (0.002) 2.300 (0.001)	0.997 (0.003) 0.998 (0.002)	2.285 (0.013) 2.291 (0.008)	0.995 (0.004) 0.991 (0.007)	1.772 (0.014) 1.762 (0.023)	0.992 (0.013) 0.999 (0.005)	1.302 (0.064) 1.302 (0.056)	0.996 (0.009) 1.000 (0.000)
CNN	No Yes	2.302 (0.000) 2.302 (0.000)	0.998 (0.004) 0.994 (0.005)	2.302 (0.000) 2.302 (0.000)	0.996 (0.004) 0.992 (0.005)	-	- -	-	-

Can submodules be composed?

Mode connectivity

Following Frankle et al. and Lubana et al., we say that θ_1 and θ_2 are mode connected along a path $\gamma(t)$ if:

Mode connectivity

Following Frankle et al. and Lubana et al., we say that θ_1 and θ_2 are mode connected along a path $\gamma(t)$ if:

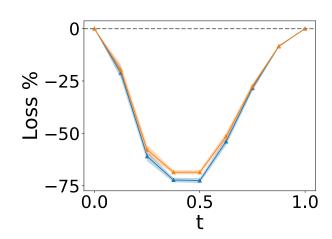
$$\forall t \in [0,1], \quad \mathcal{L}(f_{\gamma(t)}(\mathcal{D})) \leq (1-t)\mathcal{L}(f_{\theta_1}(\mathcal{D})) + t\mathcal{L}(f_{\theta_2}(\mathcal{D})) + \epsilon$$

Mode connectivity

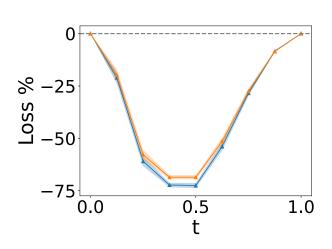
Following Frankle et al. and Lubana et al., we say that θ_1 and θ_2 are mode connected along a path $\gamma(t)$ if:

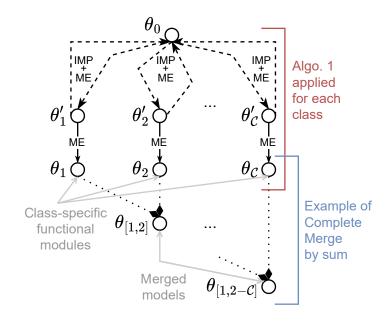
$$\begin{aligned} \forall t \in [0,1], \quad & \mathcal{L}(f_{\gamma(t)}(\mathcal{D})) \leq (1-t)\mathcal{L}(f_{\theta_1}(\mathcal{D})) + t\mathcal{L}(f_{\theta_2}(\mathcal{D})) + \varepsilon \\ \\ \gamma_{\theta_1 \to \theta_2}(t) = \begin{cases} \theta_1 + 2t \cdot \theta_2 & \text{if } t \leq 0.5 \\ 2(1-t) \cdot \theta_1 + \theta_2 & \text{if } t > 0.5 \end{cases} \end{aligned}$$

Our framework: Model merging

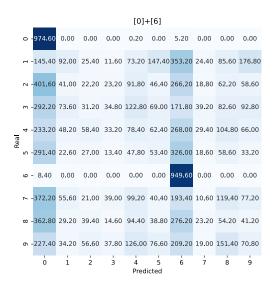


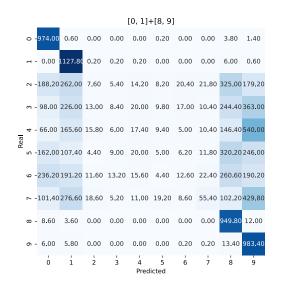
Our framework: Model merging

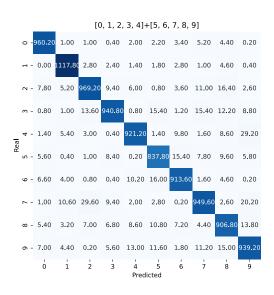




Our framework: Model merging

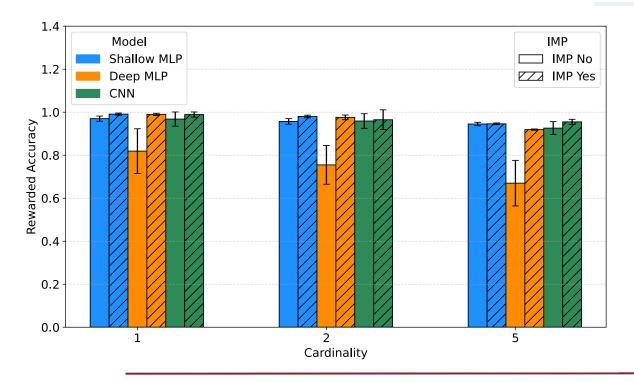






What's the effect of the IMP procedure?

Results: IMP procedure



Can we quantify the effect of the MaxEnt loss?

Our framework: baselines

CrossEntropy:

In this case the model is exposed only to R and not to the whole C.

Our framework: baselines

CrossEntropy:

In this case the model is exposed only to R and not to the whole C.

Quasi-MaxEnt:

$$\tilde{y}_i = \begin{cases} \delta_{i=y} & \text{if } y \in \mathcal{R} \\ \delta_{i \neq j, j \in \mathcal{R}} \frac{1}{|\mathcal{C} \backslash \mathcal{R}|} & \text{otherwise} \end{cases}$$

Results: MaxEnt Loss

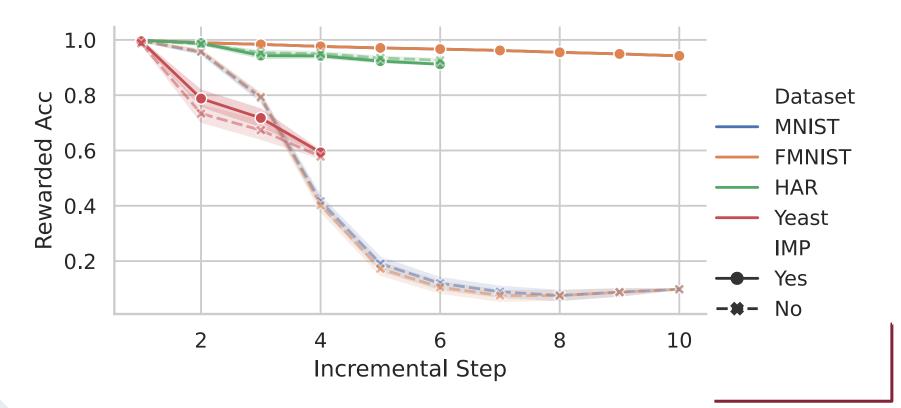
			FMNIST		MN	NIST	НА	.R	Yeast		
Model	$ \mathcal{R} $	Loss	Entropy	R-Acc	Entropy	R-Acc	Entropy	R-Acc	Entropy	R-Acc	
	1	XE QME ME	0.183 (0.151) 0.87 2.031 (0.132) 0.90 2.287 (0.005) 0.9 7	08 (0.105)	2.082 (0.005)	0.708 (0.179) 0.973 (0.014) 0.991 (0.005)	1.196 (0.073)	0.946 (0.046)	1.378 (0.004) 0.631 1.056 (0.082) 0.799 1.146 (0.077) 0.853	(0.106)	
MLP	2	XE QME ME	0.277 (0.108) 0.78 1.824 (0.207) 0.91 2.267 (0.007) 0.9 7	17 (0.049)	1.683 (0.216)	0.838 (0.074) 0.959 (0.016) 0.980 (0.006)	1.013 (0.223)	0.891 (0.024)	- 0.381 - 0.559 - 0.616	(0.011)	
	5	XE QME ME	- 0.74	80 (0.075) 41 (0.026) 46 (0.004)	_	0.842 (0.027) 0.905 (0.023) 0.946 (0.004)	_		- - -		
	1	XE QME ME	0.215 (0.150) 0.80 1.842 (0.329) 0.86 2.245 (0.072) 0.97	68 (0.176)	2.061 (0.046)	0.689 (0.194) 0.954 (0.045) 0.990 (0.005)	1.098 (0.128)	0.819 (0.155)	1.386 (0.0003) 0.553 0.883 (0.118) 0.783 1.063 (0.109) 0.859	(0.114)	
Deep MLP	2	XE QME ME	0.166 (0.083) 0.67 1.347 (0.484) 0.86 2.197 (0.095) 0.8 9	63 (0.088)	1.224 (0.352)	0.743 (0.111) 0.912 (0.038) 0.976 (0.011)	0.665 (0.251)	0.787 (0.093)	- 0.382 - 0.562 - 0.589	(0.023)	
	1	XE QME ME	0.016 (0.026) 0.55 0.981 (0.322) 0.88 2.297 (0.039) 0.96	80 (0.136)	1.001 (0.377)	0.529 (0.080) 0.961 (0.078) 0.989 (0.012)		_ _ _	- - - -		
CNN	2	XE QME ME	0.052 (0.038) 0.60 0.705 (0.397) 0.88 1.984 (0.304) 0.9 3	88 (0.071)	0.312 (0.307)	0.624 (0.138) 0.928 (0.074) 0.965 (0.046)	_		- - -		

Results: MaxEnt Loss

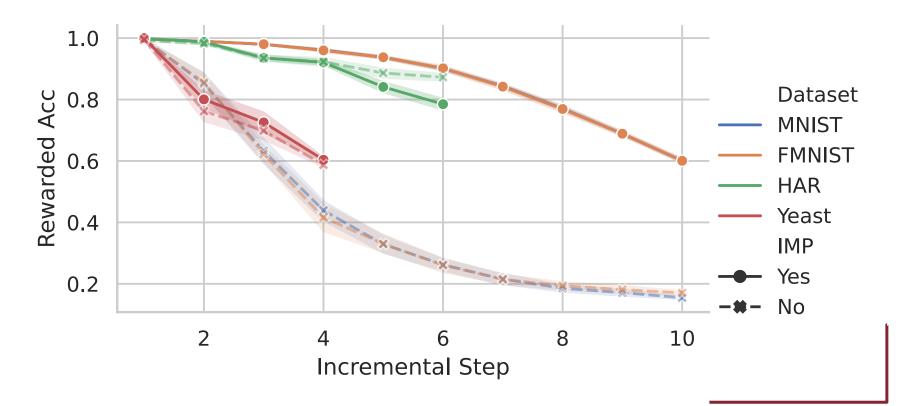
			FMNIST		MNIST			HAR			Yeast			
Model	$ \mathcal{R} $	Loss	Entropy	R-Acc	En	tropy		R-Acc	Entro	ру	R-Acc	Entrop	y	R-Acc
	1	XE QME ME	0.183 (0.151) 0.8° 2.031 (0.132) 0.9° 2.287 (0.005) 0.9 °	08 (0.105)	0.507 (2.082 (2.287 (0.005)	0.973	(0.014)	1.255 (0.19 1.196 (0.07 1.716 (0.03	⁷³⁾ 0.946	(0.046)	1.378 (0.00 1.056 (0.08 1.146 (0.07	2) 0.799	(0.106)
MLP	2	XE QME ME	0.277 (0.108) 0.73 1.824 (0.207) 0.9 2.267 (0.007) 0.9	17 (0.049)	0.332 (1.683 (2.268 (0.216)	0.959	(0.016)	1.167 (0.21 1.013 (0.22 1.670 (0.04	23) 0.891	(0.024)		- 0.381 - 0.559 - 0.616	(0.011)
	5	XE QME ME	-0.74	80 (0.075) 41 (0.026) 46 (0.004)		_	0.905	(0.027) (0.023) (0.004)		- - -	_ _ _		_ _ _	
	1	XE QME ME	0.215 (0.150) 0.80 1.842 (0.329) 0.80 2.245 (0.072) 0.9 °	68 (0.176)	0.422 (2.061 (2.291 (0.046)	0.954	(0.045)	1.059 (0.31 1.098 (0.12 1.697 (0.05	0.819	(0.155)	1.386 (0.000 0.883 (0.11 1.063 (0.10	8) 0.783	(0.114)
Deep MLP	2	XE QME ME	0.166 (0.083) 0.66 1.347 (0.484) 0.86 2.197 (0.095) 0.8 9	63 (0.088)	0.208 (1.224 (2.275 (0.352)	0.912	(0.038)	1.065 (0.34 0.665 (0.25 1.607 (0.13	0.787	0.093)		- 0.382 - 0.562 - 0.58 9	(0.023)
	1	XE QME ME	0.016 (0.026) 0.53 0.981 (0.322) 0.88 2.297 (0.039) 0.9 0	80 (0.136)	0.041 (1.001 (2.286 (0.377)	0.961	(0.078)		- - -	_ _ _		_ _ _	_ _ _
CNN	2	XE QME ME	0.052 (0.038) 0.66 0.705 (0.397) 0.88 1.984 (0.304) 0.9 3	88 (0.071)	0.070 (0.312 (1.950 (0.307)	0.928	(0.074)		- - -	- - -		_ _ _	_ _ _

How far can we go with the naive merge?

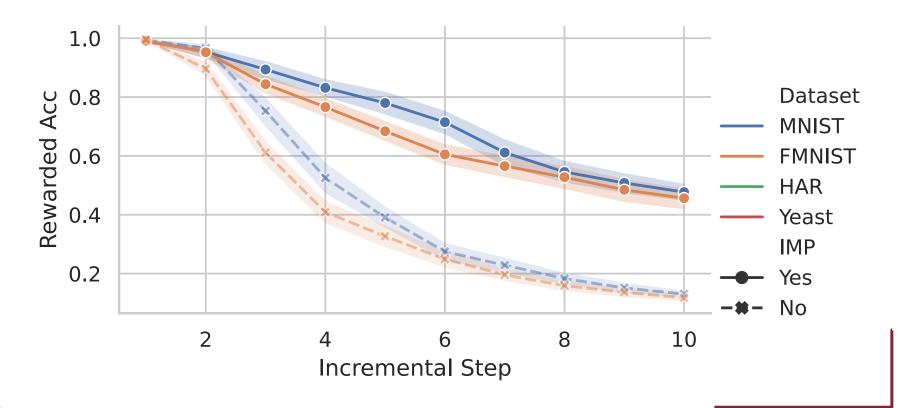
Results: Full merge on shallow MLP



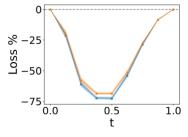
Results: Full merge on deep MLP

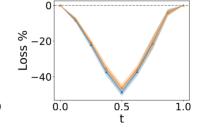


Results: Full merge on CNN

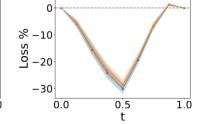


Results: Full merge

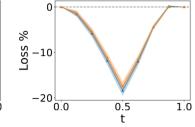




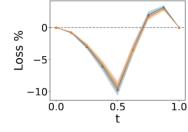
 $\theta_1 = [0] + [1] + [2]$ $\theta_2 = [3]$



 $\theta_1 = [0] + \dots + [4]$ $\theta_1 = [0] + \dots + [6]$ $\theta_2 = [5]$ $\theta_2 = [7]$



$$\theta$$



$$\theta_1 = [0]+...+[8]$$

 $\theta_2 = [9]$

Limitations and Future Directions

- Limitations
- Simple datasets.
- Simple architectures.
- Simple merging procedure.
- How are submodules and circuits connected?

- Future Work
- We are testing more complex datasets.
- We are testing more complex architectures.
- We are testing SOTA merging procedures.

Conclusions

 Can we train class-specialised subnetwork? Yes, through the MaxEnt principle

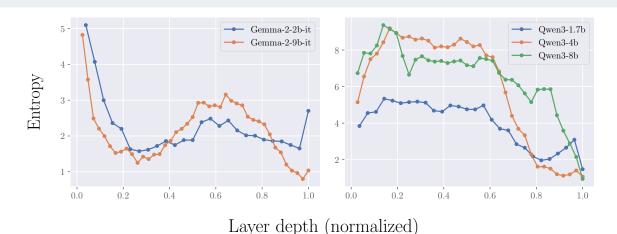
 Can we compose them via naive sum? Yes for couple merging, more merges probably require more complex procedures

Entropy-Lens

The Information Signature of Transformer Computations

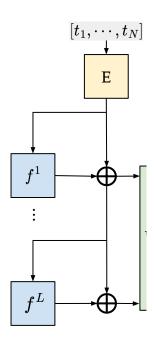
F. Caso*, R. Ali*, C. Irwin*, P. Liò

Under Review, Preprint on arXiv, * equal contribution



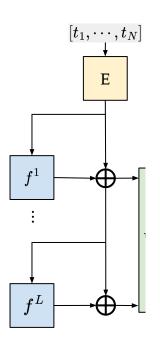
Motivation: Transformers from afar

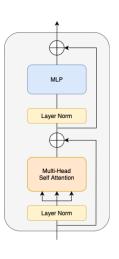
 Look from afar transformers are easy.



Motivation: Transformers from afar

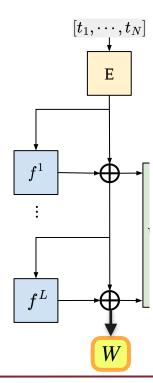
- Look from afar transformers are easy.
- Each block is composed by other elements but we don't need to go that much into the details.



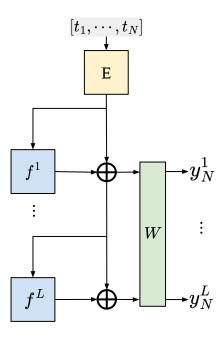


Motivation: Transformers from afar

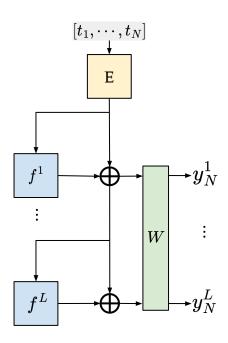
- Look from afar transformers are easy.
- $W := softmax \circ D$



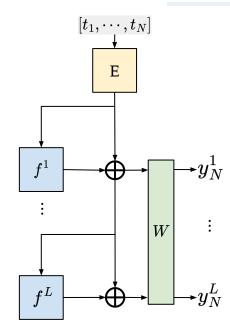
 It can be helpful, depending on the task, to exit earlier



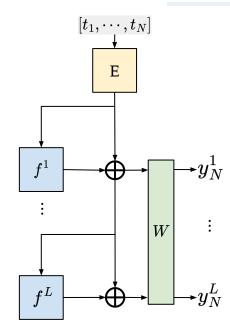
- It can be helpful, depending on the task, to exit earlier
- So we can imagine to have a distribution for each token and layer



These distributions are:

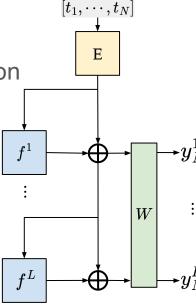


- These distributions are:
 - High dimensional



These distributions are:

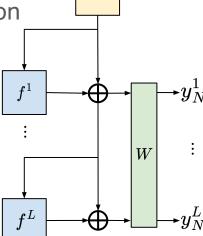
High dimensional → Dimensionality reduction



These distributions are:

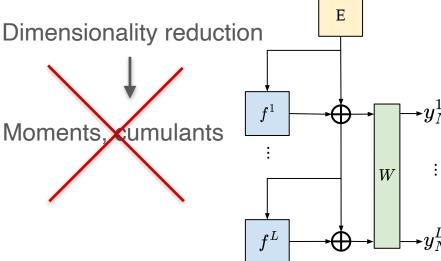
High dimensional → Dimensionality reduction

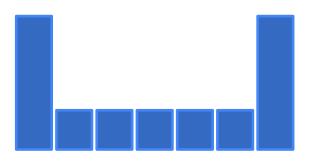
Moments, cumulants



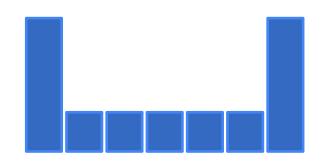
These distributions are:

High dimensional → Dimensionality reduction

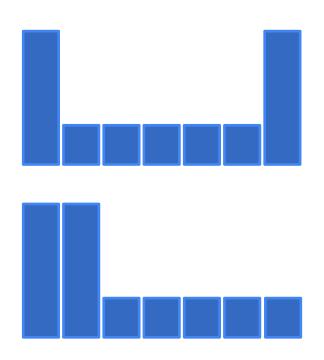




High variance

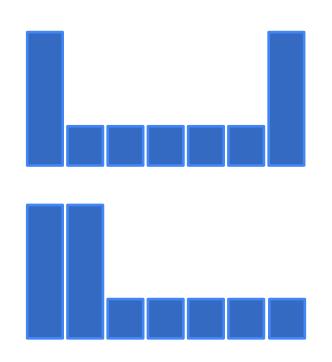


High variance



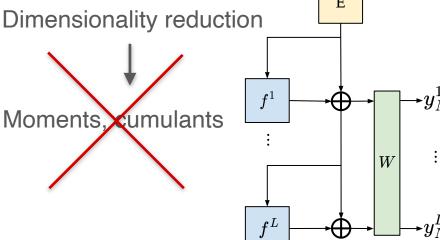
High variance

Low variance



These distributions are:

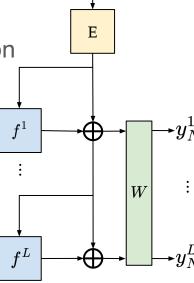
High dimensional → Dimensionality reduction



These distributions are:

High dimensional → Dimensionality reduction

Unordered support → (Rényi) Entropy

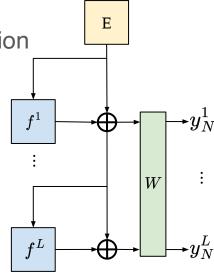


These distributions are:

High dimensional → Dimensionality reduction

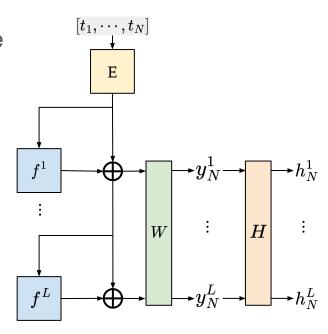
Unordered support → (Rényi) Entropy

• DISCLAIMER: we'll show experimentally that we can use Shannon entropy instead of Rényi one.

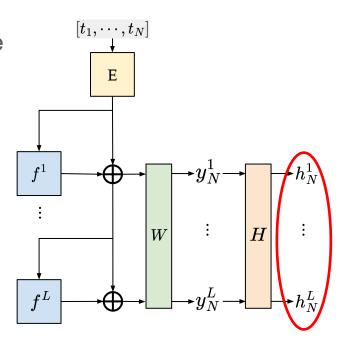


Our framework: Entropy profiles

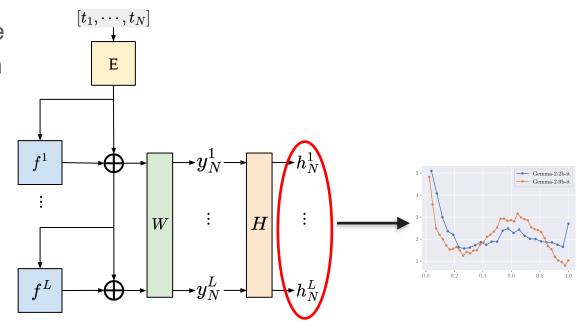
 We look at the evolution of the probability distribution through entropy



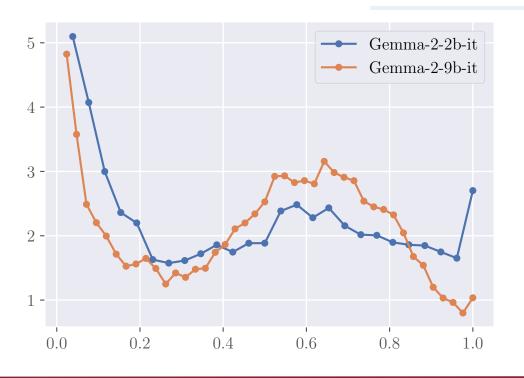
 We look at the evolution of the probability distribution through entropy



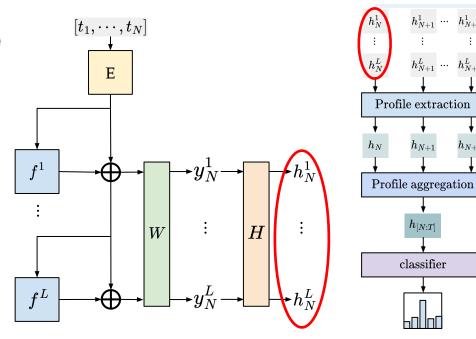
 We look at the evolution of the probability distribution through entropy



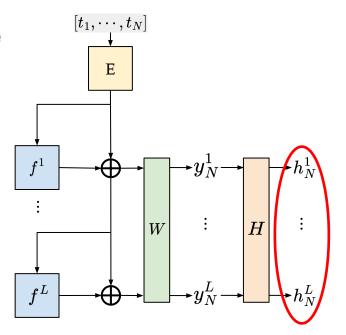
 We look at the evolution of the probability distribution through entropy

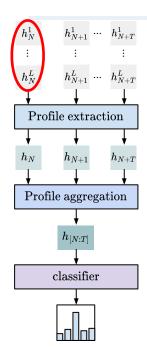


- We look at the evolution of the probability distribution through entropy
- We aggregate the entropy profiles from different tokens



- We look at the evolution of the probability distribution through entropy
- We aggregate the entropy profiles from different tokens
- We study which kind of information they retain



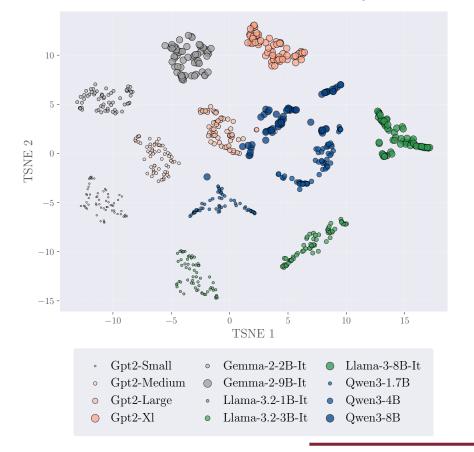


Can entropy profiles identify models?

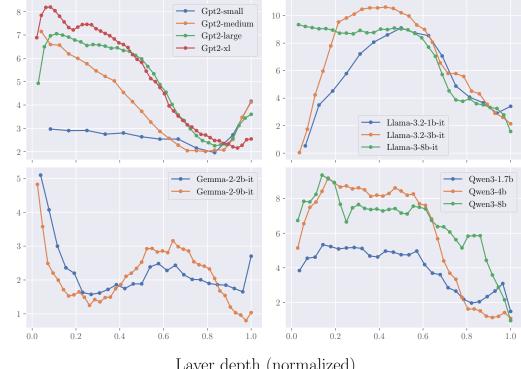
• 12 models, 4 families (GPT, LLaMA, Gemma, Qwen).

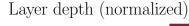
- 12 models, 4 families (GPT, LLaMA, Gemma, Qwen).
- t-SNE clusters by family, independent of model size.

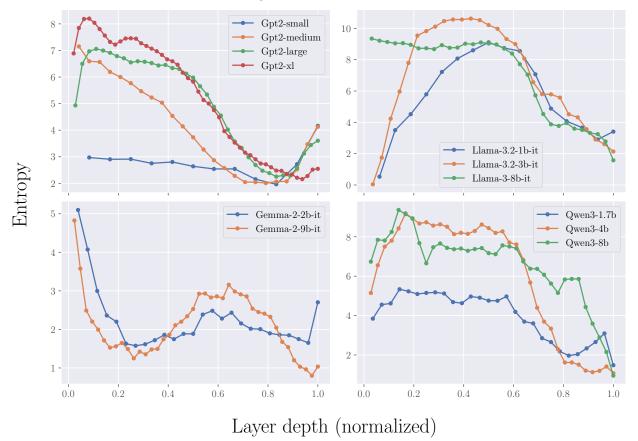
- 12 models, 4 families (GPT, LLaMA, Gemma, Qwen).
- t-SNE clusters by family, independent of model size.



- 12 models, 4 families (GPT, LLaMA, Gemma, Qwen).
- t-SNE clusters by family, independent of model size.
- After depth normalisation, shapes of are invariant.

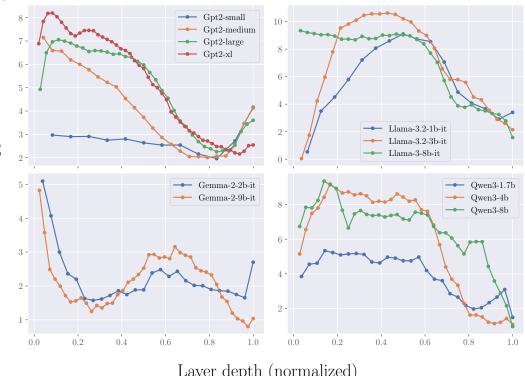


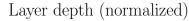




- 12 models, 4 families (GPT, LLaMA, Gemma, Qwen).
- t-SNE clusters by family, independent of model size.
- After depth normalisation, shapes are invariant. are invariant.

Task	Macro F1-score
model family model size	97.99±0.66 96.31±0.87





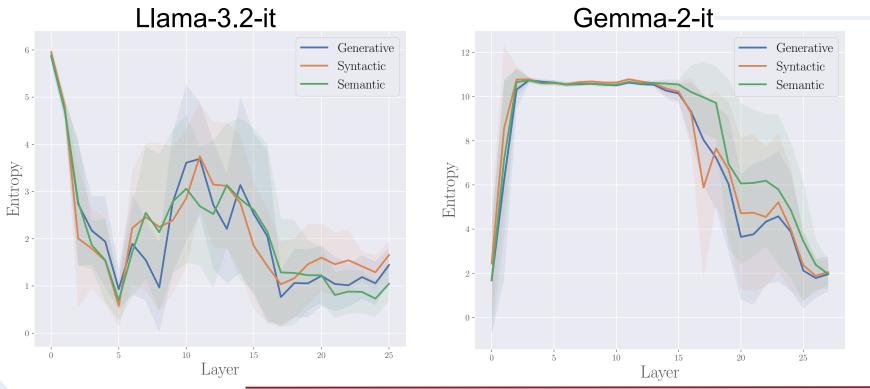
Can entropy profiles identify the task?

Dataset: TinyStories → generative, syntactic, semantic tasks.

- Dataset: TinyStories → generative, syntactic, semantic tasks.
- Three prompt templates: Base, Reversed, and Scrambled
- Total of 2400 prompts

- Dataset: TinyStories → generative, syntactic, semantic tasks.
- Three prompt templates: Base, Reversed, and Scrambled
- Total of 2400 prompts
- 10-fold cross validation ROC-AUC (1-vs-rest)

Model	Size	k-NN AUC
Gemma-2-it	2.1B	97.66 ± 0.47
Gemma-2-it	8.9B	98.38 ± 0.50
Llama-3.2-it	1B	94.94 ± 0.79
Llama-3.2-it	3B	94.77 ± 0.93
Llama-3-it	8B	96.10 ± 0.67
Phi-3	3.6B	97.07 ± 0.87



Considered layers	k-NN AUC
first-only	68.34 ± 2.68
<pre>middle-only last-only</pre>	78.83 ± 3.07 76.78 ± 2.36
first+middle+last	86.13 ± 1.41
all	90.49 ± 1.76

Do entropy profiles correlate with correct task execution?

• Dataset: *MMLU* —> correct, incorrect.

- Dataset: *MMLU* —> correct, incorrect.
- Three prompt templates: Base, Instruct, and Humble

- Dataset: *MMLU* —> correct, incorrect.
- Three prompt templates: Base, Instruct, and Humble
- 10-fold cross validation ROC-AUC (1-vs-rest)

- Dataset: *MMLU* —> correct, incorrect.
- Three prompt templates: Base, Instruct, and Humble
- 10-fold cross validation ROC-AUC (1-vs-rest)
- Dummy model: sampled from distribution reflecting the proportion of correct and incorrect answers.

Model	Prompt	LLM-Acc.	k-NN AUC
Llama	Base Humble Instruct	50.89 58.51 60.62	73.61 ± 1.52 69.90 ± 1.06 67.23 ± 1.62
Gemma	Base Humble Instruct	56.10 54.71 56.38	71.88 ± 1.63 72.78 ± 1.15 68.36 ± 1.23

Is Shannon entropy a good choice?

Shannon entropy

• For a discrete random variable X with output x_i and probability mass function p

Shannon entropy

• For a discrete random variable X with output x_i and probability mass function p

Shannon Entropy
$$H(X) = -\sum_{i} p(x_i) \log p(x_i)$$

• For a discrete random variable X with output x_i and probability mass function p.

• For a discrete random variable X with output x_i and probability mass function p.

. Rényi Entropy
$$H_{\alpha}(X) = \frac{1}{1-\alpha}\log\sum_{i}p(x_{i})^{\alpha}$$
 for $\alpha>0,$ $\alpha\neq1.$

• For a discrete random variable X with output x_i and probability mass function p.

. Rényi Entropy
$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{i} p(x_i)^{\alpha}$$
 for $\alpha > 0$, $\alpha \neq 1$.

• α is (very) roughly speaking like a temperature

• For a discrete random variable X with output x_i and probability mass function p.

. Rényi Entropy
$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{i} p(x_i)^{\alpha}$$
 for $\alpha > 0$, $\alpha \neq 1$.

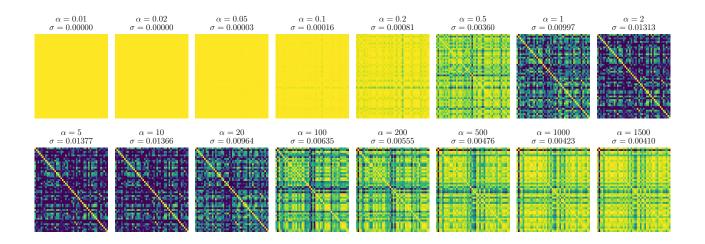
• It reduce to Shannon entropy in the limit $\alpha \to 1$.

• For a discrete random variable X with output x_i and probability mass function p.

. Rényi Entropy
$$H_{\alpha}(X) = \frac{1}{1-\alpha}\log\sum_{i}p(x_{i})^{\alpha}$$
 for $\alpha>0,\,\alpha\neq1.$

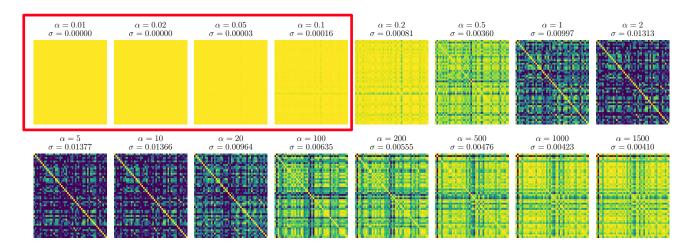
- It reduce to Shannon entropy in the limit $\alpha \to 1$.
- And to other permutation invariant measures: collision entropy ($\alpha = 2$), min-entropy ($\alpha \to \infty$), max-entropy ($\alpha \to 0$)...
- It correlates with indexes like the Gini-Simpson one.

The three regimes of Rényi entropy

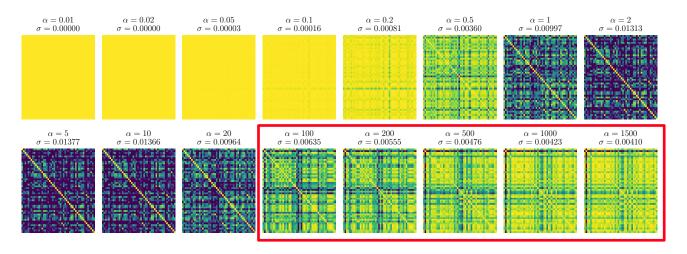


The three regimes of Rényi entropy

 α saturates, all tokens are considered



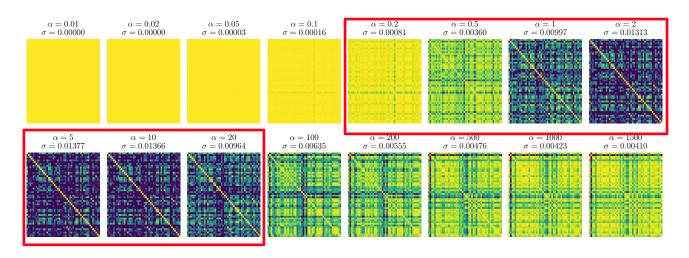
The three regimes of Rényi entropy



The profile collapse into considering only the most probable token

The three regimes of Rényi entropy

Informative regime



It contains Shannon entropy

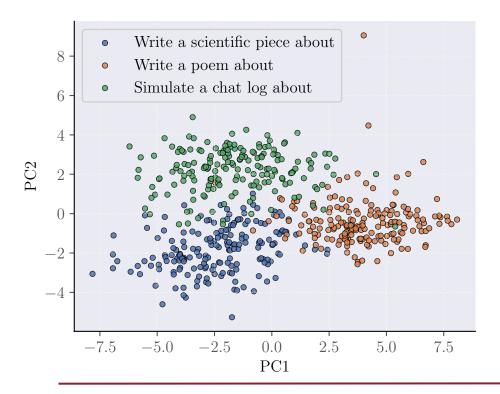
Can entropy profiles identify text format?

• Dataset: *custom* → *poem*, *scientific piece*, *and chat log.* (*Topic-format dataset*)

- Dataset: *custom* → *poem*, *scientific piece*, *and chat log*. (Topic-format dataset)
- Across different α values in the informative range.

- Dataset: *custom* → *poem*, *scientific piece*, *and chat log*. (Topic-format dataset)
- Across different α values in the informative range.

Model	α	k-NN AUC
Gemma-2-2B-it	1.0	97.3 ± 1.6 98.7 ± 1.1 98.4 ± 1.7
Llama-3.2-1B-it	1.0	97.8 ± 1.6 97.8 ± 2.4 96.6 ± 2.6



Can we give a theoretical explanation?

• Training data distribution X, data generating processes distribution Θ (the law), (training algorithm $L: X \to \hat{\Theta}$,) trained models distribution $\hat{\Theta}$.

Brown et al.

- Training data distribution X, data generating processes distribution Θ (the law), (training algorithm $L: X \to \hat{\Theta}$,) trained models distribution $\hat{\Theta}$.
- $\operatorname{mem}(X, \hat{\Theta}) = I(X, \hat{\Theta}) = H(X) H(X | \hat{\Theta})$

• Training data distribution X, data generating processes distribution Θ (the law), (training algorithm $L: X \to \hat{\Theta}$,) trained models distribution $\hat{\Theta}$.

•
$$\operatorname{mem}(X, \hat{\Theta}) = I(X, \hat{\Theta}) = H(X) - H(X \mid \hat{\Theta})$$

How much info is in X

• Training data distribution X, data generating processes distribution Θ (the law), (training algorithm $L: X \to \hat{\Theta}$,) trained models distribution $\hat{\Theta}$.

$$\bullet \ \operatorname{mem}(X,\hat{\Theta}) = I(X,\hat{\Theta}) = H(X) - H(X \,|\, \hat{\Theta})$$
 How much info is in X BUT NOT in $\hat{\Theta}$

How much info is in X

Brown et al.

• Training data instance x, data generating process θ (the law), (training algorithm $L: x \to \hat{\theta}$,) trained model $\hat{\theta}$.

- Training data instance x, data generating process θ (the law), (training algorithm $L: x \to \hat{\theta}$,) trained model $\hat{\theta}$.
- Kolmogorov complexity of an instance x given model parameters $\hat{\theta}$ is

$$H^{k}(x | \hat{\theta}) = \min_{s} \{ |s| : f(s, \hat{\theta}) = x \}$$

- Training data instance x, data generating process θ (the law), (training algorithm $L: x \to \hat{\theta}$,) trained model $\hat{\theta}$.
- Kolmogorov complexity of an instance x given model parameters $\hat{\theta}$ is

$$H^{k}(x | \hat{\theta}) = \min_{s} \{ |s| : f(s, \hat{\theta}) = x \}$$

• $H^k(x | \hat{\theta}) \approx -\log p(x | \hat{\theta})$

From Grunwald & Vitányi (2004)

$$I(X,Y) - H^{K}(f) \le \mathbb{E}_{(x,y) \sim (X,Y)}[I^{K}(x,y)] \le I(X,Y) + 2H^{K}(f)$$

From Grunwald & Vitányi (2004)

$$I(X,Y) - H^{K}(f) \le \mathbb{E}_{(x,y) \sim (X,Y)}[I^{K}(x,y)] \le I(X,Y) + 2H^{K}(f)$$

• Remember $I^K(x, x) = H^K(x)$; then

From Grunwald & Vitányi (2004)

$$I(X,Y) - H^{K}(f) \le \mathbb{E}_{(x,y) \sim (X,Y)}[I^{K}(x,y)] \le I(X,Y) + 2H^{K}(f)$$

- Remember $I^K(x, x) = H^K(x)$; then
- . $H^K(X \mid \hat{\Theta} = \hat{\theta}) H^K(f) \leq \mathbb{E}_{(x \mid \hat{\theta}) \sim (X \mid \hat{\Theta} = \hat{\theta})} [H^K(x \mid \hat{\theta})] \leq H(X \mid \hat{\Theta} = \hat{\theta}) + 2H^K(f)$

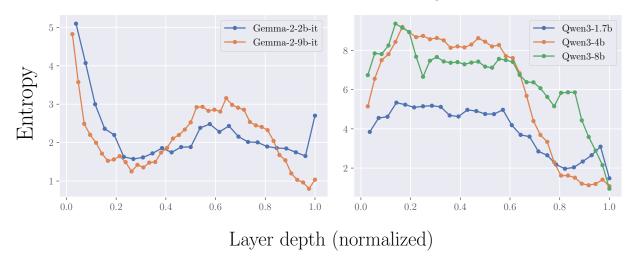
• $H^k(x | \hat{\theta}) \approx -\log p(x | \hat{\theta})$

- $H^k(x | \hat{\theta}) \approx -\log p(x | \hat{\theta})$
- . $H(X \mid \hat{\Theta} = \hat{\theta}) H^K(f) \le \mathbb{E}_{(x \mid \hat{\theta}) \sim (X \mid \hat{\Theta} = \hat{\theta})} [H^K(x \mid \hat{\theta})] \le H(X \mid \hat{\Theta} = \hat{\theta}) + 2H^K(f)$

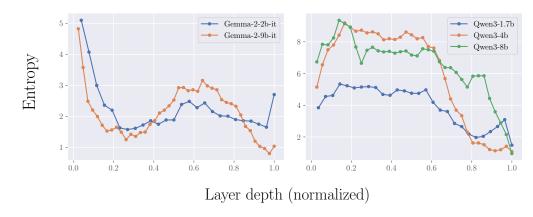
- $H^k(x | \hat{\theta}) \approx -\log p(x | \hat{\theta})$
- . $H(X \mid \hat{\Theta} = \hat{\theta}) H^K(f) \le \mathbb{E}_{(x \mid \hat{\theta}) \sim (X \mid \hat{\Theta} = \hat{\theta})} [H^K(x \mid \hat{\theta})] \le H(X \mid \hat{\Theta} = \hat{\theta}) + 2H^K(f)$
- $H(X | \hat{\Theta} = \hat{\theta}) = H(X) I(X | \hat{\Theta} = \hat{\theta}) = H(X) \text{mem}(X, \hat{\Theta} = \hat{\theta})$

Morris et al. analysed memorisation for the whole model

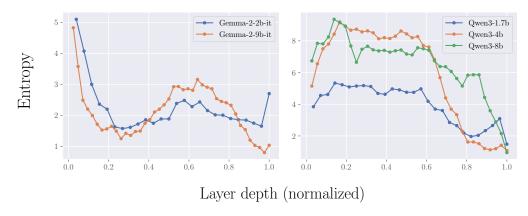
- Morris et al. analysed memorisation for the whole model
- We showed memorisation for sub-models composed of the first n-layers



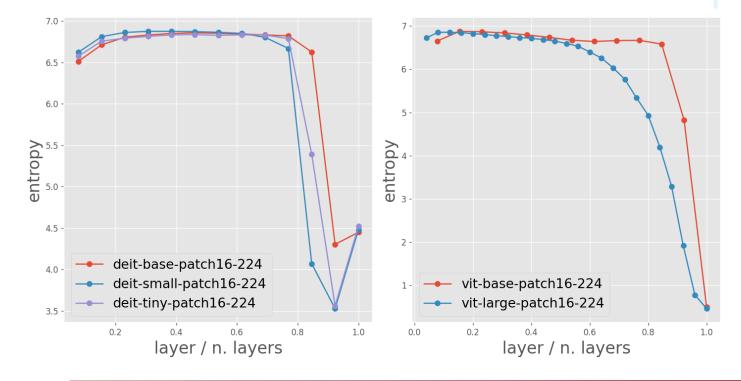
- Morris et al. analysed memorisation for the whole model
- We showed memorisation for sub-models composed of the first n-layers
- Surprisingly the growth is non-monotonic



- Morris et al. analysed memorisation for the whole model
- We showed memorisation for sub-models composed of the first n-layers
- Surprisingly the growth is non-monotonic
- It depends on family (architecture), task, and format.



Beyond language: Vision Transformers



Limitations and Future Directions

- Limitations
- The idea of task is not well defined.
- The idea of format is not well defined.
- We don't know why families show characteristic entropy profiles.

- Future Work
- Understand which parts of the architecture influence the entropy profile.
- Further connect it to memorisation.

Conclusions

- Can we study how the probability of tokens evolve through the layers of a Transformer? Yes, through their entropy.
- What kind of information do entropy profiles contain? They contain information on which task is being computed, which kind of format is being produced and, surprisingly, the family and model processing the information.
- Can we get a grasp on what these profile represent? These profiles tell us that different models memorise differently, also depending on task and format, and most importantly that their memorisation doesn't grow with the number of parameters.

Summary of links

Renormalization Group

Entropy

Entropy for Transformers

