
Current state of Automated 
Analysis of CTG signals at the CTU 

in Prague 
 

v.0.98 MFF UK Praha 
Latest revision: 18.12.2013 

 

Václav Chudáček, Jiří Spilka et al. 
 

Skupina zpracování biologických dat  
FEL ČVUT v Praze 



Current state of Automated 
Analysis of CTG signals at the CTU 

in Prague 
 

v.0.98 MFF UK Praha 
Latest revision: 18.12.2013 

 

Václav Chudáček, Jiří Spilka et al. 
 

Skupina zpracování biologických dat  
FEL ČVUT v Praze 



Biomedical Data Processing  G  r  o  u  p 

Overview 

Intro: What is CTG? 

Motivation: From wishfull thinking to possible outcomes 

General automated evaluation framework 

 Database 

 Signal pre-processing 

 Signal representation (features etc.) 

 Classification 

 Outcome evaluation 

Interesting sub-topics in more detail 

 Scattering transform 

 Results from other non-linear features 

 Results based on clinical agreement measures 
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Intro: What is CTG? 

Fetal heart rate + uterine contractions 

Used for estimation of fetal well-being 
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Intro: Current state of evaluation 

FHR is measured by USG or fECG 

Signs of hypoxia are sought for 

Decision are made based on FHR 
and clinical data 

 

Outcomes: 

 Healthy babies 

 Caesarean sections (20-50% in CZ) 

 Missed “pathologies” (1-3%) –> severe 
cases may result in neurological 
damage such as cerebral palsy etc. 
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Motivation: Known problems 

 

High variability in expert evaluation (features, outcomes) 

Weak relation of objective (pH, BDecf) outcome measures 
to the FHR 

Incomplete understanding of fetal physiology 

 

High stakes (medical and legal) in missing the pathology 

Medical and financial burden of increased number of 
Caesarean Sections on the health system  

Future inclusion of midwifes into the decision making 
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Motivation: Possible goals 

 

Saving all the babies 

Reducing number of deliveries with low pH 

Automated prediction of delivery outcome 

Objectivization of clinical decission making 

Automated evaluation of FHR  

  

Computation of features from FHR and publishing results 
on them in journal papers 
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General framework for 
automated evaluation 
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Automated analysis 

 

Instead of evaluation by eye 
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Automated analysis 

 

Automated description of FHR is used 
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Automated analysis - overview 

 

Proper database 

Signal pre-processing 

Feature extraction 

 FIGO features (macroscopic, but clinically well-known) 

 Other features (time, frequency, time-frequency, nonlinear, etc.) 

Feature selection 

Classification with regards to: 

 Objective evaluation 

 Subjective evaluation (experts) 

 Sophisticated combination (Latent Class Model) 
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Database  
CTU-UHB cardiotocograpic database 
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Data from Ob&Gyn 
clinic of FN Brno 

USG and STAN data 

Only mature fetuses 

 

First open-access CTG 
database 

Common ground for 
algorithm comparison 

CTU-UHB database 
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Subjective – expert evaluation 

 Annotations acquired via CTG Annotator (L. Zach et al.). 

 Majority voting, Latent class model based on 9 experts 

 Apgar score 

Objective 

 pH 

 BDecf, BE 

 pCO2 

Mixture 

 Majority 

 LCMs 

 

Available outcome measures 
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FHR pre-processing  
and  

FIGO features 
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Signal pre-processing 

Gap & Artefact detection 

 Gap removal (< 15s) 

 Artefact rejection  

 Bernardes inspired thresholds  

 Adapted to 4Hz from beat to beat 
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FIGO features  

 

Official obstetrics guidelines for CTG evaluation 

Circular definition of Acceleration/Deceleration 

Baseline detection based on histogram assessment 
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Baseline estimation 
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Other features 
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Features 

Morphological features (FIGO) (5) 

Time-domain (6) 

Freq.-domain (13)  

HRV (4) 

Wavelet (15) 

Nonlinear (12) 

 

In total 55 features 



Biomedical Data Processing  G  r  o  u  p 

Classification 
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Classification   

Exact means of classification not crucial 

We have used: 

 Naïve Bayes 

 SVM 

 Decision trees 

 One-class classifiers 

 

What is important: 

 Correct methodology (well described) 

 Proper data with as low bias as possible (documented) 

 Proper and reliable outcome measures 

 Interpretability towards clinicians 
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Classification (2) 
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Classification (3) 

Selected features 

 Low spectral bands 

 Decelerations 

 Poincare plot SD2 
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Results 
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Comparison of results 



Biomedical Data Processing  G  r  o  u  p 

Results – obj. evaluation 

Small data set 

98 pathological 

10-fold crossval. 

FS complete – 6 
selected features 

 

Conclusion: 
Additional features 
(to classical ones) 
improve results 
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Results – obj. annotation (2) 
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Results – expert evaluation I. 
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Results – expert evaluation II. 
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Case studies – different 
experiments / projects in 

the field of CTG processing 
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“Case study ” 1:  
Scattering transformation 
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Scattering transform 

Introduced by S. Mallat 
(http://www.di.ens.fr/data/scattering/) 

 

http://www.di.ens.fr/data/scattering/
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Scattering transform (2) 

Wavelet transform 

 

 

 

 Complex mother wavelet 

Dilated and translated wavelets 

Wavelet coefficients  

First-order coefs: Local time averages of abs. value 
of wavelet coefs. 
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Scattering Transform (3) 

Second order -> beyond Wavelets 

 

 

Wavelet transform of absolute values of wavelet coefs. 

 

2nd order renormalized by the first 

 

Nonlinear transform: 

 Goes beyond wavelet 

 Explores dependencies beyond correlation (or spectrum) 
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Relation scattering - scaling 

Relation between scattering and scaling 

H – Hurst exponent 

z(j1) – scaling exponents that may depart from H 
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Fractal Dynamics of FHR 

First order 

 

 

 

 

 

 

Fractal behaviour: 

 Time scales ranging from 4s < a = 2j < 60s 
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Fractal Dynamics of FHR (2) 

Second order for j1= 1, 2, 3. 

 

 

 

 

 

 

Fractal behaviour: 

 Time scales ranging from 4s < a = 2j < 60s 
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Results 

Discrimination power on SDB (HFME Lyon) 

 

 

 

 

Performance outcome 
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“Case study ” 2:  
Scaling properties of FHR 
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Temporal dynamics  

 

 

Classical measures 

 STV – scale of a = 3.75s (antepartum) 

 LTV – scale of a = 60s (intrapartum) 

 

 

Why to limit ourselves to these arbitrary intervals? 
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Properties of FHR 

 

 

 

 

 

 

Long range dependency, when H > 1/2: 
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Continuous Wavelet Transform 

 

Joint time and frequency energy content 
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Fractal exponents 

Oscilations -> wavelet coefs. 

Variability is not characterized by actual value 

Scale invariance is measured instead -> H 

The H computed via wavelet spectrum provides 

 Variability at all scales jointly (not just STV/LTV scale) 

 Gives information of temporal dynamic of HF/LF ratio 

 

In practice: 
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Scale invariance in FHR 
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Values of H per class 
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Influence of decelerations 
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Influence of decels. on H 
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Conclusion 

Hurst exponent 

 Allows representation of time-scale properties of FHR by a single 
value 

 Measures embraces the Temporal Dynamics as Fractal Variability 

 Gathers time and spectral variabilities of the FHR in one feature 

 Describes temporal dynamics across range of scales rather than 
for specific scales 

 Simplifies the FHR analysis (in contrast to e.g. FIGO) 

 

Behaves consistently irrespective to decelerations 
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“Case study ” 3:  
Mobile CTG 
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General schema of mCTG 
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Phonography signal processing 
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“Case study ” 4:  
Latent class model 
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Motivation 
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Results on pH 
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Latent class model 
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Results on pH with LCM 
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“Case study ” 5:  
OB information system – 

The Delivery Book 
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Data collected 

Mother’s medical 
information  

Labor 

 E.g. diagnosis 
related to delivery 
or indication for 
surgery  

Newborn  
 E.g. umbilical cord 

blood pH and BDecf 

Neonatology 

 E.g. number of 
days at NICU, 
seizures,  
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Thank you for your attention! 


