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Motivational Example 1

I we deal a speci�c clustering problem of Data Mining
I customers c1, . . . , c6 are watching movies m1,m2,m3 and they

rate them by mark 1, 2, 3, 4 or 5
I 5 for best movies, 1 for the worst movies
I example of sequences of ratings:

I c1 : (m1, 2), (m3, 2) - two ratings of movies m1, m3

I c2 : (m1, 2), (m2, 4)
I c3 : (m2, 5), (m3, 4)
I c4 : (m3, 5), (m1, 2)
I c5 : (m2, 4), (m1, 1)
I c6 : (m3, 1), (m2, 4)

I rating distribution of movies in all sequences:
I m1: 1 - 1x, 2 - 3x (good entropy)
I m2: 4 - 3x, 5 - 1x (good entropy)
I m3: 1 - 1x, 2 - 1x, 4 - 1x, 5 - 1x (bad entropy)



Example 1

I let's analyze following cluster of two respective three groups
I clustering group G1: c1, c6
I rating distribution of movies:

I m1: 2 - 1x
I m2: 4 - 1x
I m3: 1 - 1x, 2 - 1x

I clustering group G2: c3, c4
I rating distribution of movies:

I m1: 2 - 1x
I m2: 5 - 1x
I m3: 4 - 1x, 5 - 1x

I rating distributions of all movies in both groups have good
entropy

I remaining sequences c2, c5 can be included into groups G1, G2

or own new group G3 arbitrarily without increasing of entropy
of any rating distribution



Example 1 - Conclusion

I What we didn't improve by clustering:
I entropy of rating distribution of movies m1, m2 in groups G1,

G2 and their entropy in all sequences didn't change and its
value is still relative low

I What we improved by clustering:
I much better entropy of rating distribution of movie m3 in

groups G1, G2 then its entropy in all sequences
I entropy of rating distribution of all movies in all groups G1, G2

(and eventually G3) are similar and relatively low



Introduction

I we deal a speci�c problem of Data Mining
I let's have several sequences of k-tuples from the same domain.

Let the sequences be called c-sequences
I the c-sequences are related to each other because

I they can contain a few similar tuples
I two tuples are similar when they are equal in one or more items

I the amount of di�erences in the set of c-sequences is entropy
of the entire set - entropy of rating (in general called counting)
distribution of elements in tuples

I the main goal of the presented paper is to cluster the set of
c-sequences to limited number of disjoint subsets so that the
entropy in each subset is minimal. The limit is given before
the clustering process starts. Let a subset of c-sequences of
any clustering be called a c-group.



Introduction

I we introduce a function for measuring entropy of any subset of
c-sequences. The function computes the measure of relevance
between a c-sequence and a c-group (a set of c-sequences).
The function is called the c-reputation. The computation of
the c-reputation is based on the theory of probability and
mainly on the �Kullback-Leibler divergence�. The c-reputation
is normalized. It means that values of several c-reputations
can be compared for all c-sequence-c-group combinations
without loss of meaning.

I we describe one simple clustering algorithm that is based
mainly on the c-reputation. It tries to �nd a clustering of the
set of the input c-sequences such that all other clusterings that
di�ers in only one c-sequence are worse. A worse clustering
means that the c-reputation of the only one shifted c-sequence
and its new c-group is not better than the c-reputation of the
c-sequence and the original c-group. The algorithm is similar
to famous k-mean algorithm.



Formal De�nitions

I Let's de�ne the c-sequence. The c-sequence is sequence of
k-tuples of length n [[s11, . . . , s1k ], . . . , [sn1, . . . , snk ]] where
k , n are positive integer, for all i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
sij ∈ Sj . The sets S1, . . . , Sk are called domains of k-tuples,
related to the speci�c problem.

I in the Example 1:
I k = 2,
I various c-sequences can have various lengths n
I S1 = {m1,m2,m3}, S2 = {1, 2, 3, 4, 5}



Formal De�nitions

I Let's de�ne the c-distribution. The c-distribution is computed
by an algorithm, related to the speci�c problem. Input of the
algorithm is any set of c-sequences. Output of the algorithm
and c-distribution is probability distribution de�ned on sets of
domains {S1, . . . , Sk}.

I in the Example 1:
I there are three c-distributions: probability distributions of

ratings for movies m1, m2, m3. One distribution for each movie
I the domain for all c-distributions is set S2



Formal De�nitions

I Let's de�ne the c-group. The c-group contains a set of
c-sequences and several �xed c-distributions. A c-distributions

in a c-group is typically evaluated on the c-sequences in the
same c-group.

I in the Example 1:
I group G1 from the Example 1 with the three c-distributions

described above is c-group
I groups G2, G3 from the Example 1 with the c-distributions are

c-groups analogically, of course



Formal De�nitions

I Let's de�ne c-cluster. Let's have a set (called input set) of
c-sequences that have the same positive integer k and the
same domains S1, . . . , Sk . Let's have one cluster of input set of
c-sequences, ie. several disjoint subsets of input c-sequences.
Let's have �xed set of c-distributions. The c-cluster contains
the set of c-groups. Each c-group contains one such subset.
Each c-group contain the same given set of c-distributions
that are evaluated on the c-group's subset of c-sequences.

I in the Example 1:
I set of c-groups for groups G1, G2, G3 from the Example 1

(described above) forms c-cluster



Kullback-Leibler Divergence

Kullback-Leibler divergence is denoted and de�ned, lets U, V are
probability distributions:

DKL (U|V ) =
∑
i

U(i) ln
U(i)

V (i)

where holds (by a limit) 0 · ln 0
x

= 0.
Facts:

I it measures divergence of two probability distributions -
increases with more divergent distributions

I DKL (U|V ) = 0, DKL (U|V ) = 0⇐⇒ U = V

I it holds: if ∀i ,U(i) > 0⇒ V (i) > 0 then DKL (U|V ) <∞ (1)

A proof:
I based on Jensen inequality: ln is concave function



The Function c-reputation

Denotation:
I let Q be a c-sequence, E be a c-distribution, G be a c-group
I let Φ be a set of c-sequences, Ψ be a set of c-distributions, Ω

be a set of c-groups (or c-cluster too)
I for E ∈ Ψ let's denote the domain of c-distribution E by ED

I let G + Q be c-group such that G with additional c-sequence
Q

I let GE (s) be the probability of item s ∈ ED in counting
distribution evaluated by an algorithm related to a
c-distribution E in a c-group G (on c-group's set of
c-sequences). Then GE is a mapping ED −→ R

I in the Example 1: let G be group G1 in Example 1, let E be
c-distribution that counts rating distribution of movie m1.
Then GE : S2 −→ R : 1, 2 7−→ 1

2
; 3, 4, 5 7−→ 0

I let Q̃ be auxiliary c-group containing only a c-sequence Q



The Function c-reputation

I the function c-reputation of the c-sequence Q ∈ Φ according
to c-group G ∈ Ω is denoted and de�ned:

RG (Q) = exp

(
−
∑
E∈Ψ

DKL(Q̃E |GE )

)

I c-reputation quanti�es the measure of similarity between a
c-sequence Q and a c-group G

I RG (Q) ∈ [0, 1]. Decreases with more divergent Q,G .
Maximum: ∀E ∈ Ψ, Q̃E = GE ⇔ RG (Q) = 1

I from (1) on page 12 holds: if G contains Q then RG (Q) > 0
I RG (Q) can be considered as �average probability�



Clustering Algorithm

I we introduce the simple clustering algorithm.
I it tries to �nd the best clustering of the set of the input

c-sequences.
I it works iteratively and in each iteration it tries to �nd better

clustering. It stops when it �nds such clustering that each
c-sequence has better c-reputation in its c-group then in other
c-group.

I �rst iteration begins with initial cluster. It can be chose:
I randomly
I {Φ, {}, . . . , {}}
I result cluster of the last running of the algorithm
I others

I the input of algorithm is the input set of c-sequences Φ and
limitative constants GroupMax, IterMax. GroupMax limits the
number of groups and IterMax limits the number of iterations.
The output of algorithm is the found set of c-groups Ω.



Scheme of the Algorithm

I set Ω to initial cluster of Φ, |Ω| =GroupMax

I do //do iterations
I for Q ∈ Φ //�nd shifts and do shifts immediately

I denote G ′ such that Q is in G ′

I delete Q from G
′

I �nd G ∈ Ω such that RG+Q(Q) is maximum
I insert Q into G , let's denote this by shift of Q if G ′ 6= G

I while the number of iterations are less then IterMax and at
least one shift of any c-sequence occurred



Clustering Algorithm - Properties

I the complexity of algorithm is:

O

∑
Q∈Φ

|Q|

 · GroupMax · IterMax


It is �multilinear� complexity, it means it can process a quite
large input.

I the algorithm doesn't guarantee to �nd ideal cluster
I di�erent initial clusters can lead to di�erent result clusters

I unless de�ning maximum of iterations the algorithm doesn't
guarantee �nite number of iterations



Clustering Algorithm - Fast Convergency
I the algorithm usually converges very fast

I number of shifts in following iterations decrease exponentially
with base around 2 (usually)

I reason is under research

�Bad� alternative algorithm:
I set Ω to initial cluster of Φ, |Ω| =GroupMax
I do //do iterations

I for Q ∈ Φ //�nd shifts
I �nd G ∈ Ω such that RG+Q(Q) is maximum, denote GQ := G

I for Q ∈ Φ //do shifts
I denote G ′ such that Q is in G ′

I move Q from G
′
into GQ , let's call this by shift of Q if

G
′ 6= GQ

I while the number of iterations are less then IterMax and at
least one shift of any c-sequence occurred

The alternative algorithm usually diverges. It means that the
number of shifts in consecutive iterations usually diverges for
alternative algorithm.



Tests

I I processed several tests with production commercial data
I one test is similar to Example 1, but with 500 000 costumers,

17 700 movies, 100 000 000 ratings

I alone climetropy didn't show su�cient performance till today
I compared with methods specialized to speci�c problem

I but it is possible to use Climetropy as preprocessor for other
e�cient methods that can be used for each group computed
by Climetropy separately
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