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Motivational Example 1

» we deal a specific clustering problem of Data Mining

> customers ¢y, ..., Cs are watching movies my, my, m3 and they
rate them by mark 1, 2, 3, 4 or 5

» 5 for best movies, 1 for the worst movies

» example of sequences of ratings:

> ¢1:(my,2),(ms,2) - two ratings of movies my, ms
> G (m17 ) (m27 )
> C3 . (m27 ) (m3,4)
> ¢ (ms,5),(m,2)
> Cp . (17727 ) (ml,l)
> Cp . (17’737 1) (m2,4)

» rating distribution of movies in all sequences:

» my: 1-1x, 2 - 3x (good entropy)
> my: 4 - 3x, 5 - 1x (good entropy)
» my: 1-1x, 2-1x, 4 - 1x, 5 - 1x (bad entropy)



Example 1

> let's analyze following cluster of two respective three groups
» clustering group Gi: c1, Gg
» rating distribution of movies:
» my: 2- 1x
> my: 4 - 1x
» m3: 1-1x, 2 - 1x
» clustering group Go: ¢3, ¢4
» rating distribution of movies:
> mp: 2-1x
> my: 5- 1x
» m3: 4-1x, 5 - 1x
» rating distributions of all movies in both groups have good
entropy
> remaining sequences ¢y, ¢s can be included into groups Gy, Go
or own new group Gj arbitrarily without increasing of entropy
of any rating distribution



Example 1 - Conclusion

» What we didn't improve by clustering:

» entropy of rating distribution of movies m;, m, in groups Gi,
G> and their entropy in all sequences didn’t change and its
value is still relative low

» What we improved by clustering:

» much better entropy of rating distribution of movie mjs in
groups G, G then its entropy in all sequences

» entropy of rating distribution of all movies in all groups G;, G,
(and eventually Gs) are similar and relatively low



Introduction

» we deal a specific problem of Data Mining

> let's have several sequences of k-tuples from the same domain.
Let the sequences be called c-sequences

» the c-sequences are related to each other because

» they can contain a few similar tuples
» two tuples are similar when they are equal in one or more items

» the amount of differences in the set of c-sequences is entropy
of the entire set - entropy of rating (in general called counting)
distribution of elements in tuples

» the main goal of the presented paper is to cluster the set of
c-sequences to limited number of disjoint subsets so that the
entropy in each subset is minimal. The limit is given before
the clustering process starts. Let a subset of c-sequences of
any clustering be called a c-group.



Introduction

» we introduce a function for measuring entropy of any subset of
c-sequences. The function computes the measure of relevance
between a c-sequence and a c-group (a set of c-sequences).
The function is called the c-reputation. The computation of
the c-reputation is based on the theory of probability and
mainly on the “Kullback-Leibler divergence”. The c-reputation
is normalized. It means that values of several c-reputations
can be compared for all c-sequence-c-group combinations
without loss of meaning.

» we describe one simple clustering algorithm that is based
mainly on the c-reputation. It tries to find a clustering of the
set of the input c-sequences such that all other clusterings that
differs in only one c-sequence are worse. A worse clustering
means that the c-reputation of the only one shifted c-sequence
and its new c-group is not better than the c-reputation of the
c-sequence and the original c-group. The algorithm is similar
to famous k-mean algorithm.



Formal Definitions

> Let’s define the c-sequence. The c-sequence is sequence of

k-tuples of length n [[s11,...,S1k]s- -+, [Sn1,-- -, Snk]] where
k, n are positive integer, for all i € {1,...,n}, j € {1,...,k}
sij € Sj. The sets S1,..., S are called domains of k-tuples,

related to the specific problem.
> in the Example 1:

> k=2,
» various c-sequences can have various lengths n
» 53 ={ml,m2,m3}, S, ={1,2,3,4,5}



Formal Definitions

> Let’s define the c-distribution. The c-distribution is computed
by an algorithm, related to the specific problem. Input of the
algorithm is any set of c-sequences. Output of the algorithm
and c-distribution is probability distribution defined on sets of
domains {Si,..., S}
» in the Example 1:
> there are three c-distributions: probability distributions of

ratings for movies my, my, mz. One distribution for each movie
» the domain for all c-distributions is set S,



Formal Definitions

» Let's define the c-group. The c-group contains a set of
c-sequences and several fixed c-distributions. A c-distributions
in a c-group is typically evaluated on the c-sequences in the
same c-group.

> in the Example 1:

» group G; from the Example 1 with the three c-distributions
described above is c-group

» groups G,, Gz from the Example 1 with the c-distributions are
c-groups analogically, of course



Formal Definitions

> Let's define c-cluster. Let's have a set (called input set) of
c-sequences that have the same positive integer k and the
same domains S1,...,S,. Let’s have one cluster of input set of
c-sequences, ie. several disjoint subsets of input c-sequences.
Let’s have fixed set of c-distributions. The c-cluster contains
the set of c-groups. Each c-group contains one such subset.
Each c-group contain the same given set of c-distributions
that are evaluated on the c-group's subset of c-sequences.

» in the Example 1:

» set of c-groups for groups Gy, G, Gz from the Example 1
(described above) forms c-cluster



Kullback-Leibler Divergence

Kullback-Leibler divergence is denoted and defined, lets U, V are
probability distributions:

u(i)
Dk (U|V) = Z U(i)In V)
where holds (by a limit) 0-In 2 = 0.
Facts:

> it measures divergence of two probability distributions -
increases with more divergent distributions

> DKL(U‘V)zo, DKL(U’V):0<:> u=vVv
> it holds: if Vi, U(i) >0 = V(i) > 0 then Dy, (U|V) < oo (1)
A proof:

» based on Jensen inequality: In is concave function



The Function c-reputation

Denotation:

>

>

let @ be a c-sequence, E be a c-distribution, G be a c-group

let ® be a set of c-sequences, V be a set of c-distributions, Q2
be a set of c-groups (or c-cluster too)

» for E € VU let's denote the domain of c-distribution E by Ep
> let G + Q be c-group such that G with additional c-sequence

Q

let Ge(s) be the probability of item s € Ep in counting
distribution evaluated by an algorithm related to a
c-distribution E in a c-group G (on c-group’s set of
c-sequences). Then Gg is a mapping Ep — R

> in the Example 1: let G be group Gy in Example 1, let E be

c-distribution that counts rating distribution of movie m;y.
Then Gg: S — R:1,2+— 1;3,4,5+—0

let @ be auxiliary c-group containing only a c-sequence @



The Function c-reputation

» the function c-reputation of the c-sequence @ € ® according
to c-group G € Q is denoted and defined:

Re(Q) =exp <— > DKL(©E|GE)>

Eecv
> c-reputation quantifies the measure of similarity between a
c-sequence @ and a c-group G

> Rg(Q) € [0,1]. Decreases with more divergent Q, G.
Maximum: VE € V, Qe = Ge & Rg(Q) =1

from (1) on page 12 holds: if G contains Q then Rg(Q) >0
» Rg(Q) can be considered as “average probability”

v



Clustering Algorithm

» we introduce the simple clustering algorithm.

> it tries to find the best clustering of the set of the input
c-sequences.

> it works iteratively and in each iteration it tries to find better
clustering. It stops when it finds such clustering that each
c-sequence has better c-reputation in its c-group then in other
c-group.

> first iteration begins with initial cluster. It can be chose:

» randomly

- {0, (b (1)

> result cluster of the last running of the algorithm
» others

» the input of algorithm is the input set of c-sequences ¢ and
limitative constants GroupMax, IterMax. GroupMax limits the
number of groups and lterMax limits the number of iterations.
The output of algorithm is the found set of c-groups 2.



Scheme of the Algorithm

> set Q to initial cluster of ®,
» do //do iterations
» for Q € ¢ //find shifts and do shifts immediately

denote G’ such that Q is in G’

delete Q from G’

find G € Q such that Rg4+q(Q) is maximum

insert Q into G, let's denote this by shift of Q if G' # G

Q| =GroupMax

vVvyyywy

» while the number of iterations are less then /terMax and at
least one shift of any c-sequence occurred



Clustering Algorithm - Properties

» the complexity of algorithm is:

0] Z |Q| | - GroupMax - IterMax
Qeo

It is “multilinear” complexity, it means it can process a quite
large input.
> the algorithm doesn’t guarantee to find ideal cluster

» different initial clusters can lead to different result clusters

» unless defining maximum of iterations the algorithm doesn’t
guarantee finite number of iterations



Clustering Algorithm - Fast Convergency

> the algorithm usually converges very fast
» number of shifts in following iterations decrease exponentially
with base around 2 (usually)
> reason is under research
“Bad"” alternative algorithm:
> set Q to initial cluster of @,
» do //do iterations
» for Q € ¢ //find shifts
> find G € Q such that Rg1@(Q) is maximum, denote Gg := G
» for Q € ¢ //do shifts
> denote G’ such that Q is in G’
» move Q from G’ into Gg, let’s call this by shift of Q if
G' +# Go
» while the number of iterations are less then /terMax and at
least one shift of any c-sequence occurred
The alternative algorithm usually diverges. It means that the
number of shifts in consecutive iterations usually diverges for
alternative algorithm.

Q| =GroupMax



Tests

» | processed several tests with production commercial data

» one test is similar to Example 1, but with 500 000 costumers,
17700 movies, 100 000 000 ratings

» alone climetropy didn’t show sufficient performance till today
» compared with methods specialized to specific problem

» but it is possible to use Climetropy as preprocessor for other
efficient methods that can be used for each group computed
by Climetropy separately
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