

Machine Learning and Modeling Seminar

Symbolic Regression Methods in Reinforcement Learning

Erik Derner

erik.derner@cvut.cz

Czech Institute of Informatics, Robotics, and Cybernetics & Faculty of Electrical Engineering Czech Technical University in Prague, Czech Republic

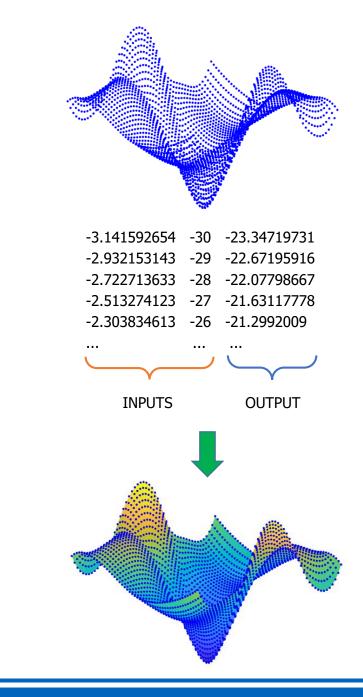
5 December 2019

R4I Robotics for Industry 4.0 http://r4i.ciirc.cvut.cz/

- Fields of interest
 - Industrial robotic manipulators
 - Mobile robotics
 - Machine perception and learning
 - Networked control systems
- Based at CIIRC CTU in Prague
- Czech partner universities
 - Brno University of Technology
 - University of West Bohemia in Pilsen
- International partner universities
 - Delft University of Technology

Motivation

- Data modeling approaches
 - Time-varying linear models
 - Gaussian processes
 - Deep neural networks
 - Local linear regression
- Drawbacks
 - Large number of parameters
 - Local nature of the approximator
 - Data-hungry
 - Black box
- Symbolic regression
 - Low number of parameters
 - Small data sets
 - Analytic expressions



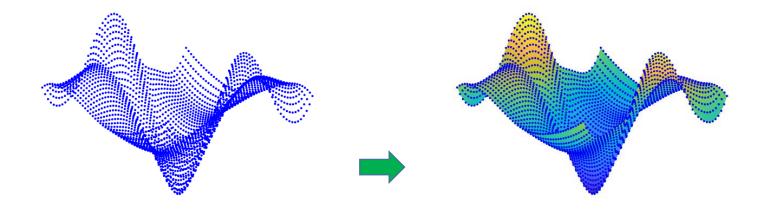
E. Derner: Symbolic Regression Methods in Reinforcement Learning

CTU in Prague

5 December 2019

Symbolic Regression (SR)

- Fitting models in the form of mathematical expressions to a set of discrete data points
- Model found by SR will be called analytic model in this talk



-3.141592654	-30	-23.34719731
-2.932153143	-29	-22.67195916
-2.722713633	-28	-22.07798667
-2.513274123	-27	-21.63117778
-2.303834613	-26	-21.2992009

... ...

f = -15.42978401 + 2.42980826 * ((x1 - (x1 * -1.49416733 + x2 * 0.51196778 + 0.00000756)) + (sqrt(power((x1 - (x1 * -1.49416733 + x2 * 0.51196778 + 0.00000756)), 2) + 1) - 1) / 2) ...

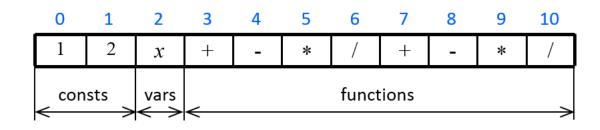
...

Symbolic Regression Algorithms

- Finding models composed of several features ("trees")
 - Multiple Regression Genetic Programming [1]
 - Evolutionary Feature Synthesis [2]
 - Multi-Gene Genetic Programming [3]
 - Single Node Genetic Programming [4, 5]
- [1] I. Arnaldo et al.: Multiple regression genetic programming (2014)
- [2] I. Arnaldo et al.: Building predictive models via feature synthesis (2015)
- [3] M. Hinchliffe et al.: Modelling chemical process systems using a multi-gene genetic programming algorithm (1996)
- [4] D. Jackson: Single node genetic programming on problems with side effects (2012)
- [5] J. Kubalík et al.: An improved Single Node Genetic Programming for symbolic regression (2015)

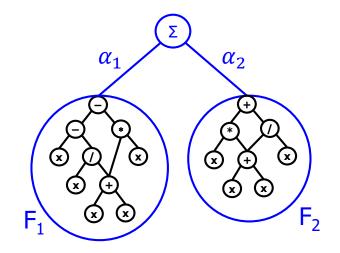
Single Node Genetic Programming (SNGP)

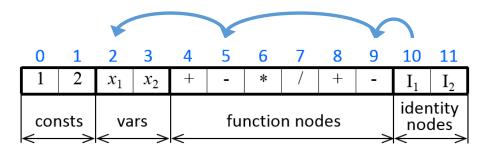
- Graph-based GP technique
- Evolves a population organized as an ordered linear array of individuals, each representing a single program node
- Program node types
 - Terminals variables, constants
 - Functions
- Evolutionary process
 - SMUT successor mutation
 - Acceptance rule best fitness in the population has improved



Analytic Model Structure

- $M = \sum_{j=0}^{n_f} \alpha_j F_j(x_1, \dots, x_n)$
- $F_0 = 1$
- Linear combination of features
- Coefficients α_j can be calculated e.g. by least squares

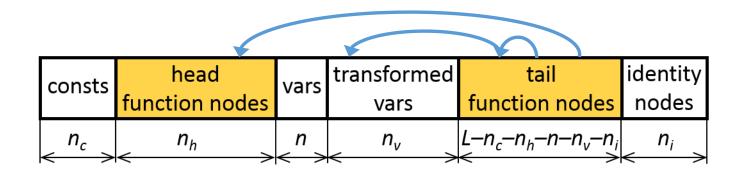


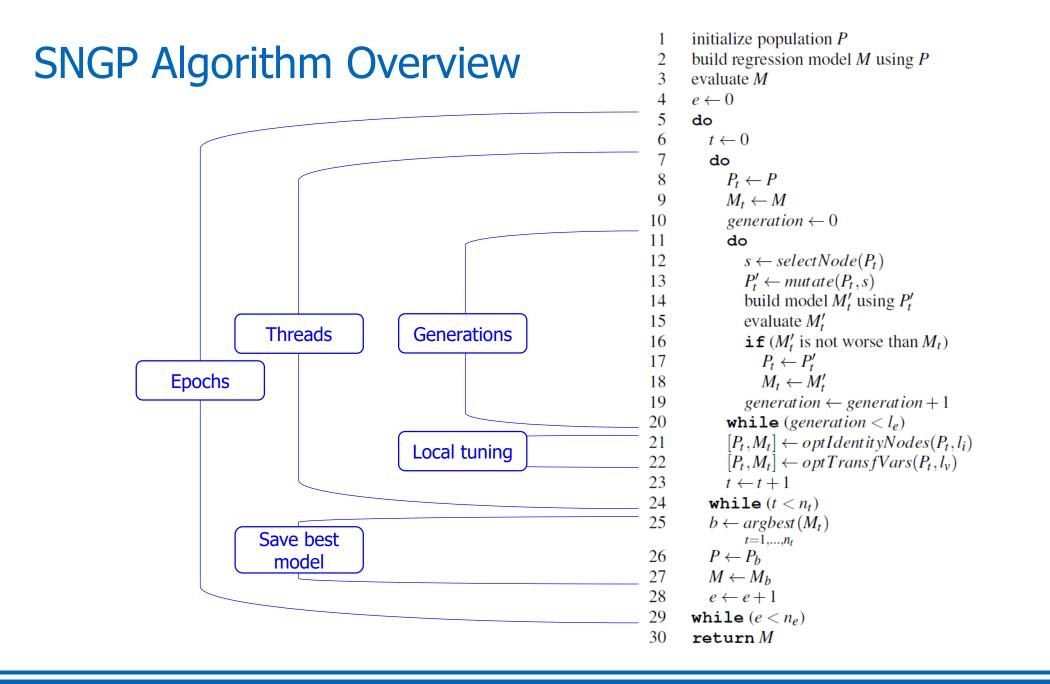


[6] J. Kubalík et al.: Hybrid single node genetic programming for symbolic regression (2016)

Partitioned Population

- Division of population to head and tail partition
- Head partition
 - Root nodes of expressions producing only constant output
- Tail partition
 - Root nodes of variable-output or constant expressions





SNGP Parameters

- Population size (e.g. 500 individuals)
- Number of epochs (e.g. 30 epochs)
- Epoch length (e.g. 1000 generations)
- Tail function set (e.g. Plus, Minus, Multiply, Sine, Cosine)
- Maximum number of features (e.g. 10 features)
- Maximum depth of tree-like expressions (e.g. 7 levels)

consts	head	vars	transformed	tail	identity
	function nodes	vars	vars	function nodes	nodes
$\langle n_c \rangle$	< n _h >	n ←>	<	L—n _c —n _h —n—n _v —n _i	$\stackrel{n_i}{\longleftrightarrow}$

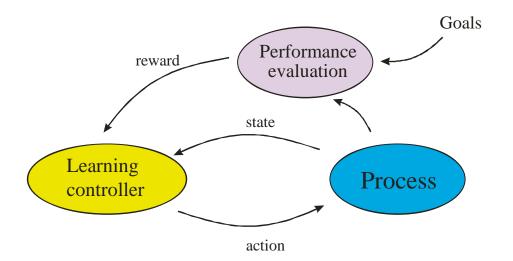
Model Identification – Outline

- Symbolic regression (SR)
 - Single Node Genetic Programming (SNGP)
 - Multi-Gene Genetic Programming (MGGP)
- Constructing models of the system using SR
 - State-space models
 - Input-output models (NARX, nonlinear autoregressive with exogenous input)
- Control using SR models
 - Reinforcement learning (RL) framework
- Data selection
 - Identification of informative samples from a large set collected in a long-term scenario

E. Derner, J. Kubalík, and R. Babuška. **Data-driven Construction of Symbolic Process Models for Reinforcement Learning.** In 2018 IEEE International Conference on Robotics and Automation (ICRA), 5105–5112, Brisbane, Australia.

E. Derner, J. Kubalík, and R. Babuška. **Reinforcement Learning with Symbolic Input–Output Models.** In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3004–3009, Madrid, Spain.

Reinforcement Learning (RL)



Goal:

Learn a control strategy (policy) so that the sum of rewards over time is maximal.

Reinforcement Learning (RL) – Theoretical Background

Nonlinear model

 $x_{k+1} = \underline{f}(x_k, u_k)$

- x_k ... current state
- u_k ... current input
- x_{k+1} ... next state
- Reward function

 $r_{k+1} = \rho(x_k, u_k, x_{k+1})$

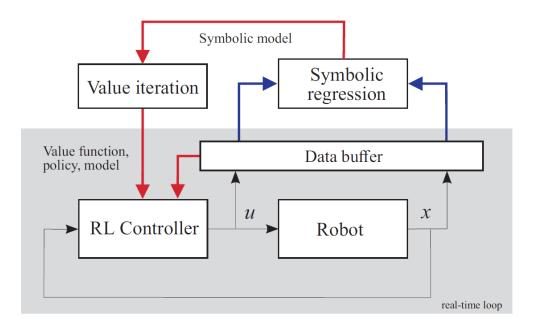
- Bellman equation (value function, V-function) $\hat{V}^*(x) = \max_{u \in \mathcal{U}} \left[\rho(x, \pi(x), f(x, u)) + \gamma \hat{V}^*(f(x, u)) \right]$
- Optimal action

$$u = \underset{u' \in U}{\operatorname{argmax}} \left[\rho(x, u', f(x, u')) + \gamma V(f(x, u')) \right]$$

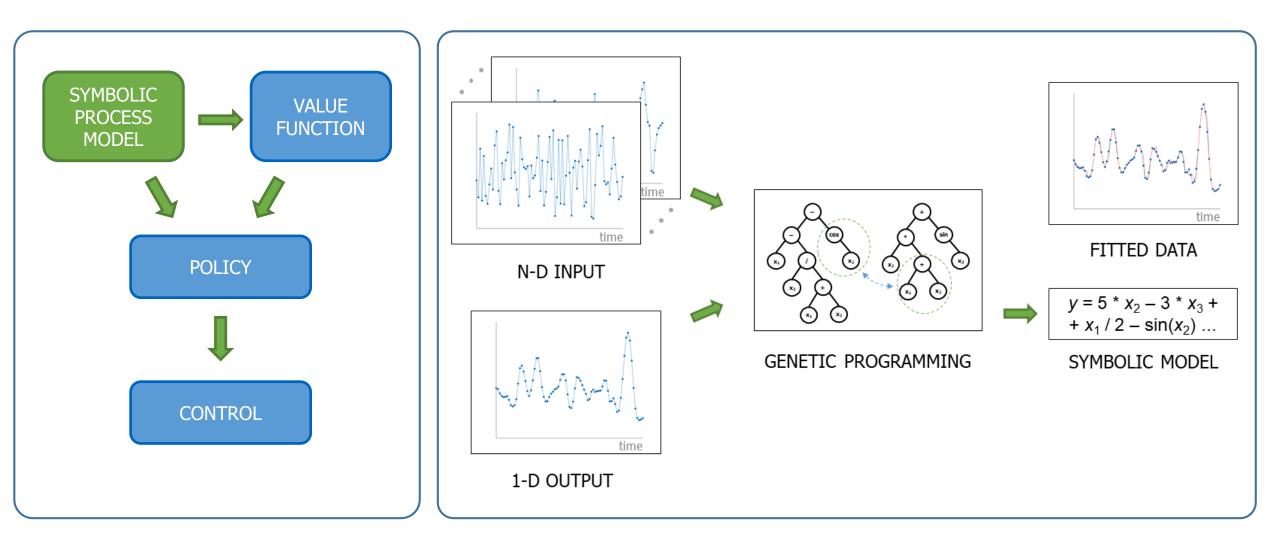
• γ ... discount factor

Model-Based RL Scheme

- Control loop and data logging in the buffer run in real time
- Symbolic regression and value iteration are computed offline in a parallel process
- Sample-efficient methods to construct interpretable analytic model from data
- Application in self-learning control
- Limited amount of data available
- Exploration is costly (safety, wear)
- Inclusion of prior knowledge



Symbolic Regression for RL – State-Space Models

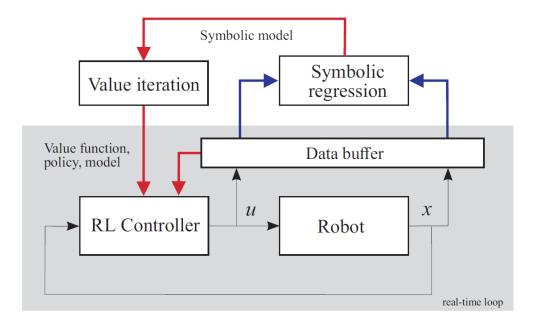


E. Derner: Symbolic Regression Methods in Reinforcement Learning | CTU in Prague

5 December 2019

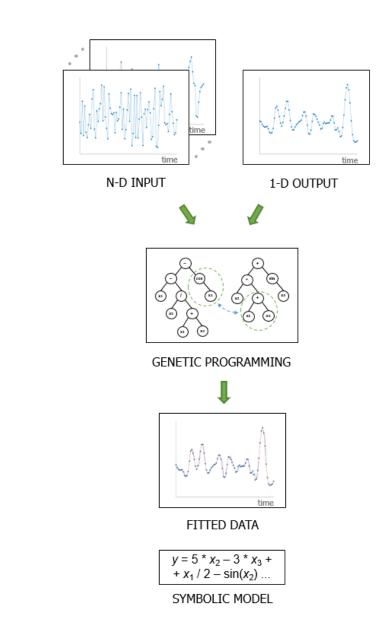
Model-Based RL with Symbolic Regression – Motivation

- RL agent optimizes its behavior by interacting with the environment
- The goal is to find an optimal policy maximizing the long-term cumulative reward
- RL can work in a completely modelfree fashion
- The absence of a model requires a lot of interaction with the system, which is costly and many real systems cannot withstand it
- To speed up learning, we propose to use symbolic regression to find process models of unknown systems



Problem Statement

- SR is used to estimate the state-transition function of the system
- Given a set of training samples:
 - Multidimensional inputs
 - Known outputs
- Genetic programming is used to form a model composed of features represented as trees
- User-defined parameters of SR
 - Functions used in the inner nodes of the trees
 - Depth of the trees
 - Number of features

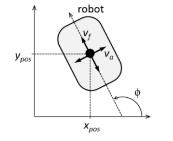


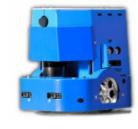
E. Derner: Symbolic Regression Methods in Reinforcement Learning

CTU in Prague

Experiments

- Simulated experiments to evaluate the method for different number of features and various sizes of training sets
 - Mobile robot
 - Inverted pendulum
- Accurate analytic models can be found even for small training sets
 - Only tens of samples
 - Generated using the Euler approximation of the physical process model
- Real-world experiments
 - Inverted pendulum lab setup
 - Analytic process models used within a RL controller to perform the swing-up task





Mobile Robot – Illustrative Example

Continuous-time dynamics

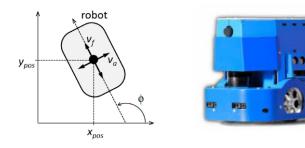
$$\begin{split} \dot{x}_{pos} &= v_f \cos(\phi), \\ \dot{y}_{pos} &= v_f \sin(\phi), \\ \dot{\phi} &= v_a \,. \end{split}$$

Discrete-time dynamics

 $\begin{aligned} x_{pos,k+1} &= x_{pos,k} + 0.05 \, v_{f,k} \cos(\phi), \\ y_{pos,k+1} &= y_{pos,k} + 0.05 \, v_{f,k} \sin(\phi), \\ \phi_{k+1} &= \phi_k + 0.05 \, v_{a,k}. \end{aligned}$

Euler approximation

- x_{pos} ... pose x-coordinate y_{pos} ... pose y-coordinate ϕ ... pose angle
- v_f ... linear ("forward") velocity
- v_a ... angular velocity



Example of an analytic model found by SR

-0.0000059844

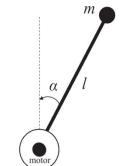
E. Derner: Symbolic Regression Methods in Reinforcement Learning

Real Inverted Pendulum System

$$\ddot{\alpha} = \frac{1}{J} \cdot \left(\frac{K}{R} u - mgl \sin(\alpha) - b\dot{\alpha} - \frac{K^2}{R} \dot{\alpha} - c \operatorname{sign}(\dot{\alpha}) \right)$$

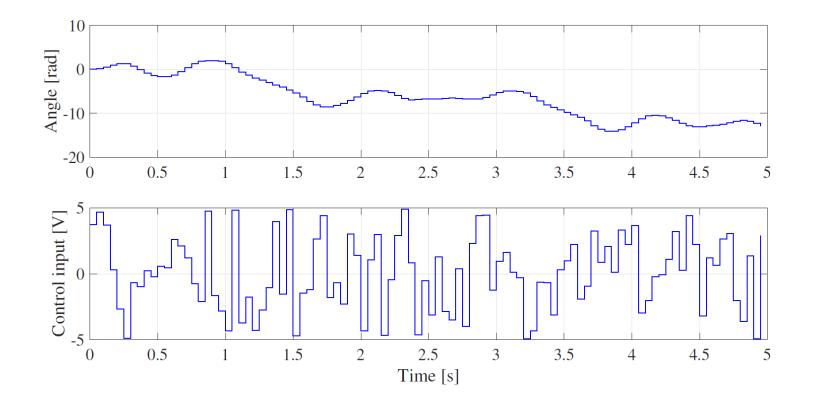
- $J = 1.7937 \times 10^{-4} \text{ kg m}^2$ $K = 0.0536 \text{ N m A}^{-1}$ $R = 9.5 \Omega$ m = 0.055 kg $g = 9.81 \text{ m s}^{-2}$ l = 0.042 m $b = 1.94 \times 10^{-5} \text{ N m s rad}^{-1}$
- $c = 8.5 \times 10^{-4} \text{ kg m}^2 \text{ s}^{-2}$

- α ... angle [rad] $\dot{\alpha}$... angular velocity [rad s⁻¹]
- $\ddot{\alpha}$... angular acceleration [rad s⁻²]
- u ... voltage [V] control input



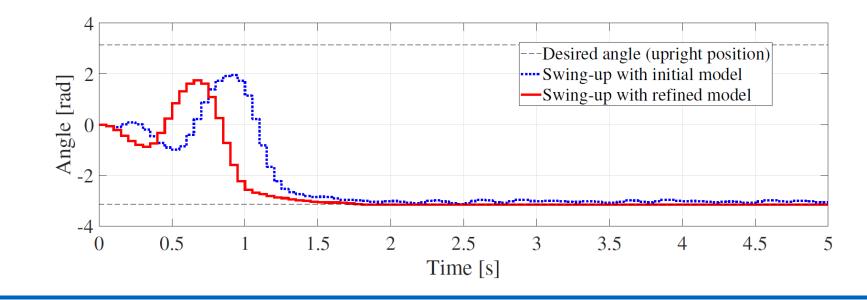
Real Inverted Pendulum Swing-Up

- Under-actuated swing-up task (limited voltage, cannot swing up at once)
- Training data were collected while applying random input to the system



Real Inverted Pendulum Swing-Up

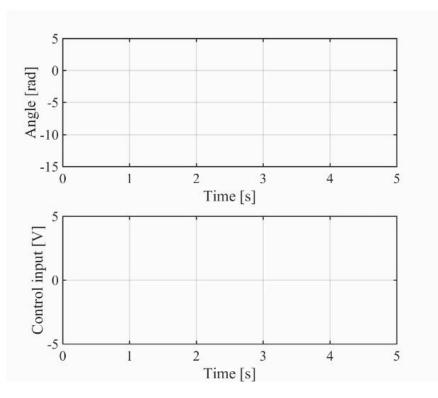
- Only 5 seconds of the random interaction with a sampling period $T_s = 0.05$ s is sufficient to find a symbolic process model that can be used to perform the swing-up task successfully
- Data from several executions of the swing-up task were collected and used together with the initial data set to train the refined model, which shows even better performance



Experiment – Pendulum Swing-Up

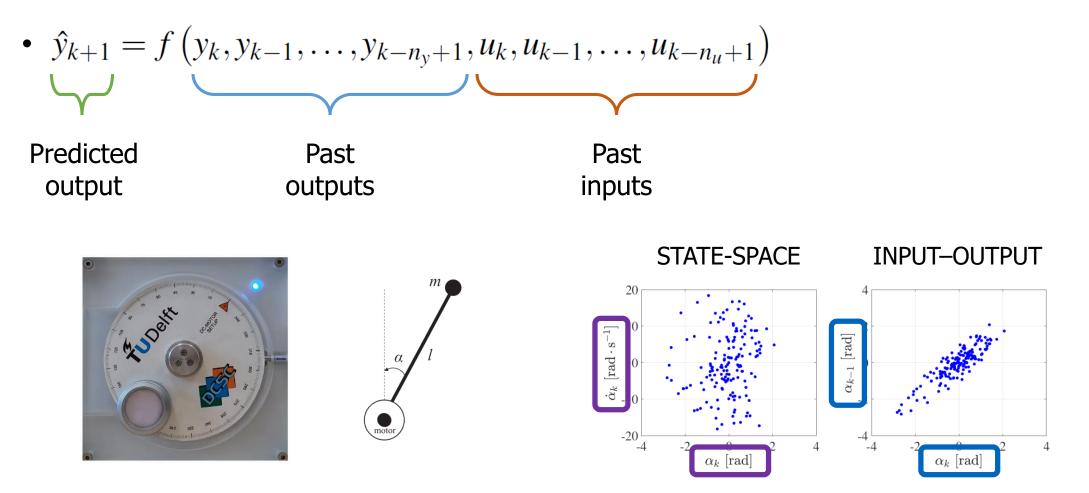
Control task: Make the underactuated inverted pendulum point up.

Collection of training data: random input

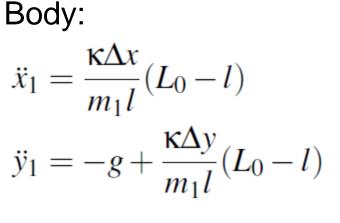


Input–Output (NARX) Models

• Motivation: the whole state is often not measurable, needs to be approximated

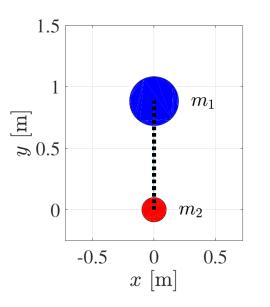


Experiment – Hopping Robot

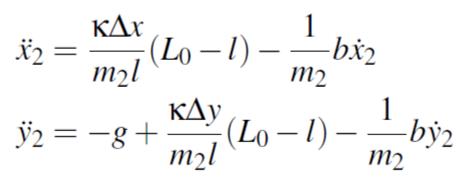


Spring length:

$$l = \sqrt{\Delta x^2 + \Delta y^2}$$



Foot:



 m_1, m_2 ... body and foot mass, connected by a spring

- κ ... variable spring constant
- $g \dots$ gravitational acceleration

 L_0 ... equilibrium spring length

- *l* ... actual spring length
- b ... damping coefficient

Simplification of the problem statement: $x_1, x_2 = 0$... x-coordinate is fixed

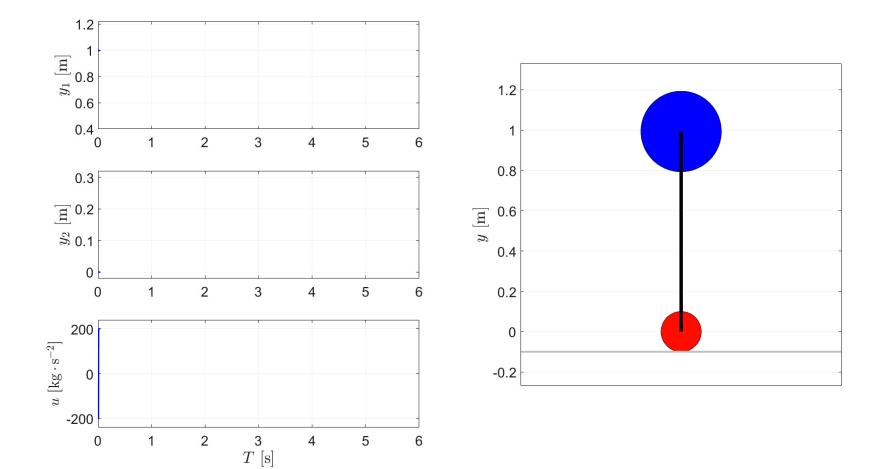
Control input *u*:

 $\kappa = \kappa' + u$

 κ^\prime ... nominal spring constant

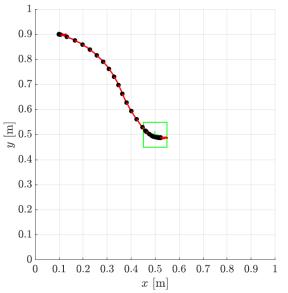
Experiment – Hopping Robot

Control task: Keep the robot hopping.

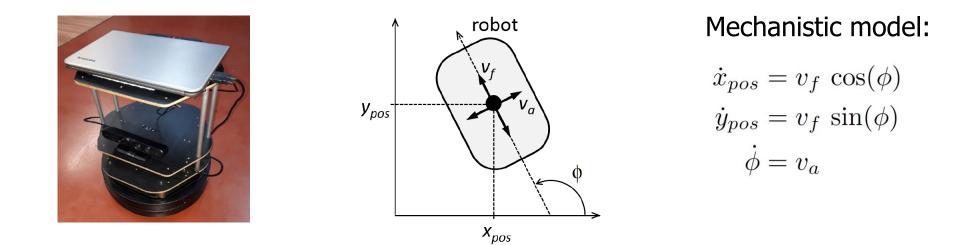


Data Selection

- A robot collects a large amount of data during its long-term operation
- Only some data samples are informative
- The method iteratively adds samples, starting with a very small data set
- In every iteration, a set of models of the robot's dynamics is constructed
- The proposed sample selection method is based on the prediction error of the models from the previous iteration

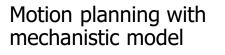


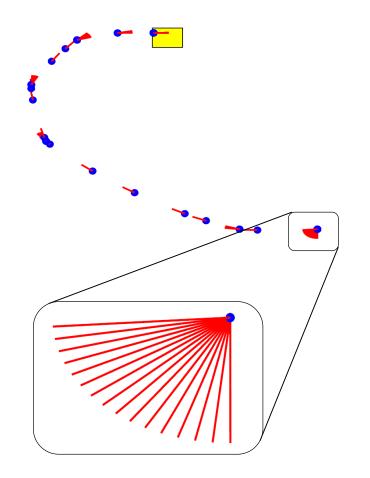
Experiment – Mobile Robot



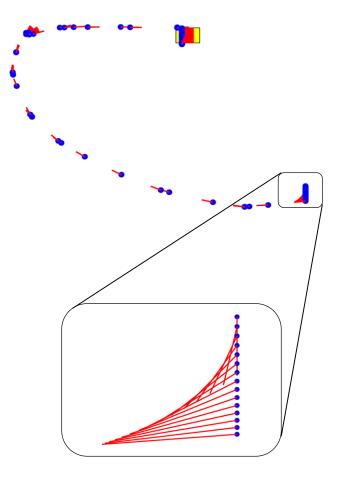
- Mechanistic model correctly represents the physics, but is inaccurate as a prediction model (actuator nonlinearities)
- Data-driven model constructed via symbolic regression is accurate, but does not necessarily respect the physical constraints

Experiment – Mobile Robot



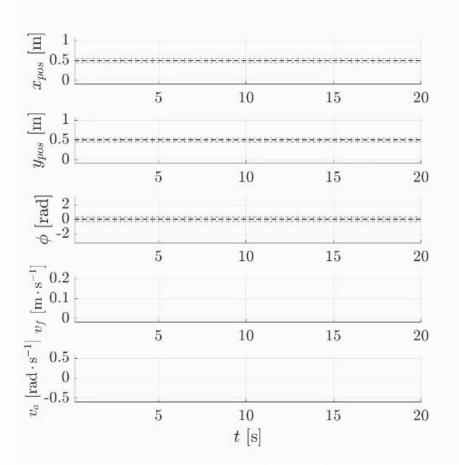


Motion planning with data-driven model



Experiment – Mobile Robot

17 training samples



E. Derner: Symbolic Regression Methods in Reinforcement Learning

Conclusions

- Genetic programming methods allow to automatically construct analytic models
- Such models can be easily plugged into other algorithms and facilitate further analysis
- In a long-term scenario, a robot collects a large amount of data
- If the data are selected in an informed way, only a few samples are necessary to train a precise model of the robot's dynamics
- Experimental evaluation has shown that a model trained on only 24 samples can be used in a RL framework to perform the control task successfully

Future Work

- Reinforcement learning powered by symbolic regression
 - Analytic model of the system dynamics
 - Symbolic V-function
 - Completely automated construction of an RL controller
 - Evaluate on the inverted pendulum and on the mobile robot, then on high-dimensional systems
- Data selection in long-term scenarios
 - Novel algorithm for sample selection with outlier detection (data loss, sensor faults)
 - Automated data set maintenance (removal of wrong data)
 - Real-world long-term autonomy experiment

Thank you for your attention!

http://people.ciirc.cvut.cz/derneeri

E. Derner: Symbolic Regression Methods in Reinforcement Learning

CTU in Prague

5 December 2019

9 |

33/33