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Overview
• Large-scale Artificial Neural Networks.

• Computational Development.

• Indirect Encodings of ANNs.

• Hyper-cube based encoding.

• Base algorithms.

Note: additional material including implementation details, sources, exact parameter settings 
and detailed results can be found here: http://neuron.felk.cvut.cz/~drchaj1

http://neuron.felk.cvut.cz/~drchaj1/Jan_Drchal__Publications/Jan_Drchal_-_Publications.html
http://neuron.felk.cvut.cz/~drchaj1/Jan_Drchal__Publications/Jan_Drchal_-_Publications.html
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Evolving Large-scale 
ANNs

• 1000+ neurons (& corresponding # of links).

• Why to do that?

• Complex models,

• ability to process huge amount of inputs/
outputs without  hand-coding features (i.e. 
pattern recognition)...
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Direct Encoding

• Direct encoding → each structural part 
(neuron/link) is represented by a dedicated gene.

• Not suitable for
Large-scale ANN's:

Direct optimization methods fail
→ the curse of dimensionality.
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Indirect Encoding:
the Way it Works in Nature
• Human genome → 20 000 - 25 000 genes 

describing almost 100 billion neurons each 
linked to as many as 7 000 others (plus the 
rest of organism!).

• We need some kind of compression:
→ indirect encoding.

• But we also need a regularity in data being 
compressed. 

• Q: What are the regularities found in living organisms?
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Symmetry

(wikimedia commons)
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Imperfect Symmetry

(wikimedia commons)
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Repetition with 
Variation

• Note that all these regularities
happen at all scales of an organism.

(wikimedia commons)
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How Are Organisms 
Built?

• Development from a single cell (zygote).

• Evolutionary Development “Evo-Devo”.
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The Cell
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Genome: A Closer Look

• TATA box – marks the start of a gene

• (cis-)regulatory region – composed of binding sites.

• binding site – binds regulatory proteins → gene activation/
inhibition

• product region – when gene is active a protein is produced:

• special: cell division, differentiation,

• regulatory: can bind to binding sites of other genes,

• structural.
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Cell Divisions
• Program same

for all cells.

• What differs?

• Regulatory 
protein concentrations.

• Receptors – selectively pass regulatory 
proteins  from inter-cellular space.

• Diffusion, decay, cell differentiation.

• Gene Regulatory Networks (GRNs).
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How to Simulate 
Development?

• Cell program – ANN, FSM or other controller:

• inputs: binding sites,

• outputs: one for each gene → gene activity.

• Physical simulation: diffusion, decay, receptors...

• Cell division:

• copy cell program from mother → daughter cell,

• different concentrations for mother/daughter.

• This is called: Computational Development.
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“French Flag” Organism
• Cell program evolved using Cartesian 

Genetic Programming (CGP).

CGP encoded adder

Julian Francis Miller (2004):
Evolving a Self-Repairing, Self-Regulating, French Flag Organism
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“French Flag” Organism II
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Indirect encodings of 
ANNs

• GRN-based

• Cellular Encoding

• Hypercube-based

• Other: rewriting rules, L-systems, ...
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GRN-based

Figure 4: a. Growing neural network, b. The final neural net-

work controlling a foveating retina. One single cell is placed in

every field which have for computational reasons an upper limit

of 20 X 20. The cells are allowed to grow inside the predefined

fields. All connections and the cellular properties are under evolu-

tionary control and are determined by genetic and developmental

processes. The receptor field (bottom row of the cells which emit

topological, parallel axons) captures the light stimulation. The

activity of the cells in the motor layer causes the eyes to move in

four directions (up, down, right and left).

summed up and used as fitness value.

f =
∑

i,j

ai,j + (vai,j
− vri,j

)2 (7)

• f fitness value

• i, j are indexes running over all retinal sensors

• ai,j activity of motor neurons after stimulation of
retinal sensor (i, j)

• vai,j
actual motor vector after activating the retinal

sensor at the position (i, j).

• vri,j
designer specified target value for the motor vec-

tor

In typical runs with a (6,12)-evolutionary strategy a so-
lution was found after 100 to 200 generations (see Figure
5).

4 Results

4.1 Simulation Results

Figure 5 shows a typical evolutionary run over time.
Typically the task was solved after 300-500 generations
using a (20,600)-evolution strategy. First the fitness in-

Figure 5: Fitness of a typical run of the evolution of the foveating

retina plotted against number of generations.

creased because the sensory cells and the neurons learned
to link each other to the motor cells. Over time more
and more motor cells received input from the other lay-
ers and were able to move. A typical example is illus-
trated in figure 6a, which shows the movement patterns
of evolved neural controllers after stimulating each sin-
gle sensor and indicating the motor response to it. Over
time the results became better and the system learned
to foveate. A typical fitness curve is shown in Figure
5. Figure 6 shows some typical examples of individuals
with increasingly higher fitness. Preliminary analysis of
the cellular dynamics by blocking genes showed that the

Peter Eggenberger-Hotz (1997):
Creation of Neural Networks Based on 
Developmental and Evolutionary Principles

Peter Eggenberger-Hotz (2003):
Evolving the Morphology of a Neural Network for 
Controlling a Foveating Retina and its Test on a 
Real Robot
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Cellular Encoding (CE)
• 1993, Fréderic Gruau: indirect encoding example.

• Inspiration in embryo-genesis (cell division and 
differentiation). Cells → neurons.

• Program to “grow” ANN is represented by a tree 
(Genetic Programming).

• Operations: parallel/sequential divisions, connections 
change, change of weights/bias...
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Cellular Encoding II
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Cellular Encoding III

• May use operation which reads a sub-tree 
repeatedly → evolved a network 
representing parity of arbitrary number of 
inputs.

• Allows ANNs of arbitrary size: neural 
module reuse.
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Compositional Pattern 
Producing Networks (CPPNs)
• Stanley 2006.

• Can we create such regular patterns 
without development in time?

• We can ask a special function called CPPN, 
where the cells are, using absolute coordinates.

Kenneth O. Stanley (2006):
Compositional Pattern Producing Networks: A Novel Abstraction of Development
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Regularities by CPPN
• Nature uses concentration gradients of 

regulatory proteins to determine position.

• CPPN is a composition of symmetric, 
periodic and other functions.
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Regularities by CPPN II
• CPPN is a composition of symmetric, 

periodic and other functions.
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CPPNs in HyperNEAT

• Compositional and 
Pattern Producing 
Network (CPPN).

• CPPN is a composition 
of symmetric, periodic and 
other functions.

• In HyperNEAT it has a 
form of artificial neural 
network with 
heterogenous neuron 
types.

source target
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Picbreeder
• Interactive evolution of images.

• CPPN output: level of grey.

• CPPNs evolved using NEAT.

• http://picbreeder.org/

http://picbreeder.org
http://picbreeder.org
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Picbreeder II
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Picbreeder: Space Ship
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Endless Forms

Evolving Three-Dimensional Objects with a Generative Encoding Inspired by
Developmental Biology

Jeff Clune and Hod Lipson

Department of Mechanical and Aerospace Engineering, Cornell University
jeffclune@cornell.edu

Abstract

This paper introduces an algorithm for evolving 3D objects
with a generative encoding that abstracts how biological mor-
phologies are produced. Evolving interesting 3D objects
is useful in many disciplines, including artistic design (e.g.
sculpture), engineering (e.g. robotics, architecture, or prod-
uct design), and biology (e.g. for investigating morphological
evolution). A critical element in evolving 3D objects is the
representation, which strongly influences the types of objects
produced. In 2007 a representation was introduced called
Compositional Pattern Producing Networks (CPPN), which
abstracts how natural phenotypes are generated. To date,
however, the ability of CPPNs to create 3D objects has barely
been explored. Here we present a new way to create 3D
objects with CPPNs. Experiments with both interactive and
target-based evolution demonstrate that CPPNs show poten-
tial in generating interesting, complex, 3D objects. We fur-
ther show that changing the information provided to CPPNs
and the functions allowed in their genomes biases the types of
objects produced. Finally, we validate that the objects transfer
well from simulation to the real-world by printing them with
a 3D printer. Overall, this paper shows that evolving objects
with encodings based on concepts from biological develop-
ment can be a powerful way to evolve complex, interesting
objects, which should be of use in fields as diverse as art, en-
gineering, and biology.

Motivation and Previous Work
The diversity, complexity, and function of natural morpholo-
gies is awe-inspiring. Evolution has created bodies that can
fly, run, and swim with amazing agility. It would be desir-
able to harness the power of evolution to create synthetic
physical designs and morphologies. Doing so would benefit
a variety of fields. For example, artists, architects and engi-
neers could evolve sculptures, buildings, product designs,
and sophisticated robots. Evolution should be especially
helpful in the design of complex objects with many interact-
ing parts made of non-linear materials. In such challenging
problem domains, evolution excels while human intuition
is limited. Being able to evolve sophisticated morpholo-
gies also furthers biological research because it enables the
investigation of how and why certain natural designs were
produced. Evolving 3D objects is thus worthwhile both as a

Figure 1: Examples of evolved objects that were transferred
to reality via a 3D printer.

basic science and for its innumerable potential applications.
This paper describes how 3D shapes can be evolved and then
transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has
typically involved encodings that were either highly biolog-
ically detailed, or highly-abstract with less biological accu-
racy. The former camp frequently simulates the low-level
processes that govern biological development, such as the
diffusing morphogen chemicals and proteins that determine
the identity of embryonic cells (Bongard and Pfeifer 2001,
Eggenberger 1997, Miller 2004). While this approach facil-
itates studying the mechanisms of developmental biology,
the computational cost of simulating chemistry in such de-
tail greatly limits the complexity of the evolved phenotypes.
The most complex forms typically evolved in such systems
are simple geometric patterns (such as three bands) (Miller

• Similar approach in 3D.

• http://endlessforms.com

Jeff Clune, Hod Lipson (2011):
Evolving Three-Dimensional Objects with a Generative Encoding Inspired by 
Developmental Biology

http://endlessforms.com
http://endlessforms.com
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Hypercube-based 
Encoding

• Stanley 2007.

• Uses CPPNs in a similar way to Picbreeder: evolves 
connectivity patterns.

• Best known for HyperNEAT algorithm which 
evolves ANNs.
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HyperNEAT
• Stanley et al. 2007: Hypercube-based encoding.

I1 I2

O1 O2

substrate

Substrate is a 
template for a 

possibly large-scale 
neural network.
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HyperNEAT

I1 I2

O1 O2

substrate

(1)

(1)(�1)

(�1)

Each neuron is 
assigned 

coordinates. The 
weights of 

connections are  
unknown.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)
decode weight values

The final network is 
constructed out of 

substrate by  
computing all 

needed weights. 
This is done using 

CPPN.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)

(�1) (�1)

decode weight values

CPPN is a function 
which takes 

coordinates of both 
source and 

destination neuron 
for each 

connection ...

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)

(�1) (�1)

�2.5�2.5

decode weight values

... and computes the 
weight of the 
corresponding 
connection.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.31.3

(1)

(1)(�1)

(�1)

(�1)

�2.5

decode weight values

(1)

All weights are 
computed in a same 

way...

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5

1.3decode weight values1.3

(1) (�1)

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5�2.5 �2.5

decode weight values

(1)(1)

1.3

Note, that the 
weights are 

symmetric. CPPNs 
promote regular 

patterns.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

EA

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5 �2.5

decode weight values

evolve

1.3

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

EA

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5 �2.5

decode weight values

evolve

evaluate fitness on target domain

1.3

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT vs. 
Standard Approaches

EA ANN

EA

genotype to phenotype conversion

CPPN

fitness evaluation on a given problem

genotype to phenotype conversion

ANN

const
ruc

t 

ANN
fitnessevaluation

STANDARD 
APPROACH

HYPERNEAT





 2012

Types of Substrate?

• The list of neurons’ coordinates along with 
possible connections between them.
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Create or not Create a 
Link?

• Substrates are often fully connected → lots of 
links → computationally infeasible → pruning is 
used.

• If CPPN outputs weights in range [-3; 3] then

• links with weights < 0.2 are not expressed,

• >= 0.2 are scaled to magnitude between 0 and 3.

→ when using this approach the final ANN is a 
sub-graph of a substrate.
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Connectivity Patterns

• Patterns evolved using interactive evolution:
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Spatial Representation
• HyperNEAT exploits spatial representation of 

a problem. The same happens in Nature:

• connection of eyes to brain hemispheres,

• similar  things processed nearby.

• We have to assign coordinates. 

• Does every problem have a reasonable 
spatial representation?

• It seams that most problems have. The others would 
not probably benefit from regularities in ANNs.
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NEAT in HyperNEAT
• HyperNEAT uses a slightly modified NEAT (Stanley 2001) as a 

base algorithm to evolve CPPNs.

• NEAT is neuro-evolutionary algorithm able to evolve ANNs of 
arbitrary topologies.

• It is based on:

• complexification → evolving gradually more complex ANNs,

• innovation numbers → track structural innovations,

• niching → allows simultaneous evolution of small and large 
ANNs in one population. Requires to define a distance 
measure for ANNs.
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Visual Discrimination
• Visual targeting: distinguish the larger 

object.

• “Sandwich substrate”.

Jason J. Gauci and Kenneth O. Stanley (2007):
Generating Large-Scale Neural Networks Through Discovering Geometric Regularities
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Visual Discrimination II: 
Scaling the Substrate

• The substrate density can be scaled using the same 
CPPN.

• The function of the final ANN is approximately 
preserved.

• We can train on small → get large.
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Visual Discrimination III: 
Scaling the Substrate

• An equivalent connectivity concept at 
different

• substrate resolutions.
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Food Gathering Problem
• Range-finder sensors detect food.

• More food eaten → higher fitness.

• Experiments with different sensor/effector placement – 
exploiting geometric relationships with “outer world”.

David B. D'Ambrosio and Kenneth O. Stanley (2007)
A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry
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Food Gathering Problem II

• Parallel worked better than Concentric 
because less computation is needed for 
CPPN.

• New CPPN inputs added: the distances

• (x1-x2) and (y1-y2)

• When CPPN is provided the distances, 
both work the same.
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Checkers
• Comparison with classic NEAT.

• HyperNEAT is faster + 
generalizes.

• Single CPPN with multiple 
outputs.

• The output of the final net is a 
heuristic score for the minimax 
algorithm.

Jason Gauci and Kenneth O. Stanley (2008):
A Case Study on the Critical Role of Geometric 
Regularity in Machine Learning 
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HyperNEAT Coordinated 
Quadruped Gaits

• Simulation of four legged walker 
robot.

• Comparison with classic NEAT.

• Other experiments show that 
HyperNEAT can deal with 
random substrates.

Jeff Clune:
Evolving Coordinated Quadruped Gaits with the HyperNEAT 
Generative Encoding
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Mobile Robot Navigation
• HyperNEAT/HyperGP for robot control.

• ViVAE Simulated 2D environment with rigid 
body physics.
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Mobile Robot Navigation II
• Substrate uses polar coordinates.

• Input + 1 fully recurrent layer

• See VIDEO...
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Mobile Robot Navigation III
• Obstacle avoidance.

• Object sensors added (two input layers)

f = distanceTravelled

simulationSteps+1

⇣
1� targetDistance

initialDistance

⌘
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Mobile Robot Navigation IV

Drchal, Koutník and Šnorek (2009):
HyperNEAT Controlled Robots Learn How to Drive 
on Roads in Simulated Environment

Buk, Koutník and Šnorek (2009):
NEAT in HyperNEAT Substituted with Genetic 
Programming

Drchal, Kapraľ, Koutník and Šnorek (2009):
Combining Multiple Inputs in HyperNEAT Mobile 
Agent Controller
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Base Algorithms for 
Hypercube-based Encoding

• The large-scale networks produced by 
HyperNEAT can be very slow to simulate...

• We need to reduce the number of fitness 
function evaluations as much as possible.

• Can we do better when NEAT is replaced 
by a different base algorithm?
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What about Genetic 
Programming (GP)?

• Zdenek Buk and Jan Koutnik replaced 
NEAT in HyperNEAT by GP (2009).

• Experiments on a single domain shown that 
HyperGP outperforms HyperNEAT.

• Can we do even better?
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Niching EA
• Originally methods to search all optima in multimodal domain.

• Used to propose diversity in population in order to avoid premature 
convergence.

• Population split into separate subpopulations of similar individuals.

• Distance measure is required.

standard EA (premature convergence) niching EA
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GPEFS Overview
• Genetic Programming with Explicit Fitness Sharing (GPEFS).

• GPEFS is basically NEAT which evolves forests of trees using 
standard GP genetic operators.

• There is no complexification in GPEFS but niching is essential part 
which preserves diversity and prevents premature convergence.

• We do not employ crossover.

• The idea to combine GP and niching is not new but:

• the version of fitness sharing used in NEAT was not employed, 

• we experiment with six distance measures (both our and 
already published),

• we focus on Hypercube-based indirectly encoded problems.
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GPAT Overview
• We propose Genetic Programming of Augmenting 

Topologies (GPAT).

• GPAT is basically NEAT which evolves forests of trees.

• Uses complexification and niching (Explicit Fitness Sharing).

• We do not employ crossover.

• It is much simpler to design an efficient distance measure 
for trees than for neural networks: there is no need for 
innovation numbers.

• GPAT is general algorithm, here we focus on Hypercube-
based indirectly encoded problems.
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GPAT Genotypes

• GPAT evolves trees (forests) but:

• nodes have a variable arity,

• constants are stored in links (similar to 
synaptic weights of ANN).
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GPEFS & GPAT Results

• GPEFS and GPAT have similar performance.

• Significant improvement to GP and NEAT.
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Q&A
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Additional Slides
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GPEFS
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

1 2 3 4 5

population to assign

start with the first individual
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

No niche exists yet - create one.

The individual becomes
a representative of

the niche.

And also becomes
a member.
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

Now continue
with the second.
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

Compute d(    ,    ).1 2
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

3 4 5

Compute d(    ,    ).1 2

NICHE 1 1

1 2

If d < δ like here,
make him a member.
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

4 5

NICHE 1 1

1 2

NICHE 2 3

3

Because d(    ,    ) ≥ δ here,
we had to create a new niche.

1 3
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

5

NICHE 1 1

1 2

NICHE 2 3

3

NICHE 3 4

4

Both d(    ,    ) ≥ δ and d(    ,    ) ≥ δ,
we had to create a new niche again.

1 4 2 4
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Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

NICHE 1 1

1 2

NICHE 2 3

3 5

NICHE 3 4

4

Here, d(    ,    ) ≥ δ but d(    ,    ) < δ,
so assign to niche 2.

1 5 2 5

Search niche from the first to the last 
until sufficiently similar is found. If 
none such exists, create a new.
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Compared

NEAT results on symbolic 
regression added for 

completeness, only. While 
GP and GPEFS are able to 

find almost exact 
solutions, NEAT nodes 

computing weighted sums 
are put at disadvantage.
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Compared
The only case, when NEAT 

is not the worst.
Here, it significantly 

outperforms GP.
NEAT performance did 
not improve even for 

doubled population size or 
number of generations. 

The problem seems to be in 
high number of constants 

evolved by NEAT.
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GPEFS: Distance Measures

Unlike for most directly 
encoded problems, for 
indirectly encoded the 

Innovation number 
based measure (I) is 
highly competitive.
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GPEFS: Distance Measures

Phenotypic measure (P) 
is the overall worst 
(both directly and 
indirectly encoded 
problems). Which 

contradicts previously 
published results.
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Tree Description (D) and 
Node Count (N) measures 
performance may vary on 

different tasks. However, most 
often they do not outperform 

Random (R) measure.
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GPEFS: Distance Measures

In many cases Random 
measure (R) is significantly 

outperformed only by 
Generalized measure (G). 

This indicates that a choice 
of an inappropriate measure 

can be disruptive for 
evolution.
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Generalized Measure Parameters
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For all directly encoded 
problems having K>1 was 
harmful.  This contradicts 

previously published results.
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For indirectly encoded 
problems this does not hold.

D
IR

EC
T

IN
D

IR
EC

T





 2012

GPAT





 2012

NEAT, GP & GPAT 
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

NEAT significantly 
outperforms GP for a 
single problem only.
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NEAT significantly 
outperforms GPAT in a 
single case but only for 
the Random distance 

measure.
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These are the only cases in which GP 
significantly outperforms GPAT with the 

Generalized measure.
 Interestingly: 2D-K and 3D-K have 

minimum number of constants (1 and 0) 
and 4D-V is a GP solution to Visual 

Discrimination.
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Only two cases in which GPAT with 
the Randomized measure significantly 

outperforms GP.
This is most probably caused by 

different types of mutation operators 
used in GPAT.
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The only cases in which GPAT with the 
Generalized measure is not significantly 
better than GPAT with the Randomized 

measure:

1) Niching is important.
2) The Generalized measure is efficient.


