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Overview

® |arge-scale Artificial Neural Networks.
® Computational Development.

® |ndirect Encodings of ANNs.

® Hyper-cube based encoding.

® Base algorithms.

Note: additional material including implementation details, sources, exact parameter settings
and detailed results can be found here: http://neuron.felk.cvut.cz/~drchaijl
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Evolving Large-scale
ANNs

® |000+ neurons (& corresponding # of links).
® Why to do that?
® Complex models,

® ability to process huge amount of inputs/
outputs without hand-coding features (i.e.
pattern recognition)...
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Direct Encoding

Direct encoding — each structural part
(neuron/link) is represented by a dedicated gene.

phenotype

Not suitable for
Large-scale ANN's:
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Direct optimization methods fail
— the curse of dimensionality.
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Indirect Encoding:
the Way it Works in Nature

® Human genome — 20 000 - 25 000 genes
describing almost 100 billion neurons each
linked to as many as 7 000 others (plus the

rest of organism!).

® We need some kind of compression:
— indirect encoding.

® But we also need a regularity in data being
compressed.

® Q:What are the regularities found in living organisms!?
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Symmetry
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Imperfect Symmetry
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Repetition with
Variation
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® Note that all these regularities
happen at all scales of an organism.
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How Are Organisms
Built?

® Development from a single cell (zygote).

® Evolutionary Development “Evo-Devo”.

Endless On Growth, Form

Forms Most and Computers
deautiful e

SEAN B. CARROLL
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The Cell

DNA (nucleoid),
genome
cytoplasm receptor
membrane
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Genome: A Closer Look

GENE 1 GENE 2
L TAlTA [ L L[ [TIA[T[A
TATA o : product TATA o : product
box cis-regulatory region region box cis-regulatory region region

® TATA box — marks the start of a gene

® (cis-)regulatory region — composed of binding sites.

® binding site — binds regulatory proteins — gene activation/
inhibition

® product region — when gene is active a protein is produced:

® special: cell division, differentiation,

® regulatory: can bind to binding sites of other genes,

® structural.
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Cell Divisions

® Program same A\
for all cells.

I]I[EI
® What differs? &"‘F*’//

® Regulatory
protein concentrations.

® Receptors — selectively pass regulatory
proteins from inter-cellular space.

e Diffusion, decay, cell differentiation.

® Gene Regulatory Networks (GRNs).

COMPUTATIONAL
INTELLIGENCE
GROUP 2012



How to Simulate
Development!?

® Cell program —ANN, FSM or other controller:
® inputs: binding sites,
® outputs: one for each gene — gene activity.

® Physical simulation: diffusion, decay, receptors...

® C(Cell division:

® copy cell program from mother — daughter cell,

® different concentrations for mother/daughter.

® This is called: Computational Development.
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“French Flag” Organism

® Cell program evolved using Cartesian
Genetic Programming (CGP).

_ Output
C'hcmu,al { \ / - } Chemical
bits : bi

its

Cell

o } New cell type bits

CGP encoded adder i { /= }M

010170 0231716 32210 Grow/No Grow bit
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Fig. 4. Growth of fittest cell program from a white seed cell to a mature French flag (two
chemicals)

COMPUTATIONAL  Julian Francis Miller (2004):
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“French Flag” Organism |l

.........................

Fig. 7. Autonomous recovery of badly damaged French flag organism conditions (blue and red
regions Killed at iteration 8 - see Fig. 4). There is no further change after iteration 20

Fig. 8. Autonomous recovery of French flag from randomly rearranged cells (French flag at
iteration 8 - see Fig. 4). There is no further change after iteration 24
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Indirect encodings of
ANNs

® GRN-based

® Cellular Encoding
® Hypercube-based

® Other: rewriting rules, L-systemes, ...

OOOOOOOOOOOOO
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GRN-based
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Peter Eggenberger-Hotz (1997):
Creation of Neural Networks Based on

Developmental and Evolutionary Principles Peter Eggenberger-Hotz (2003):

COMPUTATIONAL Evolving the Morphology of a Neural Network for
INTELLIGENCE Controlling a Foveating Retina and its Test on a 2012
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Cellular Encoding (CE)

® [993, Frederic Gruau: indirect encoding example.

® |nspiration in embryo-genesis (cell division and
differentiation). Cells — neurons.

® Program to “grow’” ANN is represented by a tree
(Genetic Programming).

® Operations: parallel/sequential divisions, connections
change, change of weights/bias...

SEQ
- AN ~ PAR SEQ
\ ¥, 11 "';? a- v ) A ) <y .
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Cellular Encoding |l
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Cellular Encoding Il

® May use operation which reads a sub-tree

repeatedly — evolved a network
representing parity of arbitrary number of
Inputs.

® Allows ANNs of arbitrary size: neural
module reuse.
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Compositional Pattern
Producing Networks (CPPNs)

® Stanley 2006.

® Can we create such regular patterns
without development in time?

® We can ask a special function called CPPN,
where the cells are, using absolute coordinates.

(applied at : e f
each point) | )
X value y :
at X,y
y | at X.)
X

e A Kenneth O. Stanley (2006):

GROUP Compositional Pattern Producing Networks: A Novel Abstraction of Development 2012



Regularities by CPPN

® Nature uses concentration gradients of
regulatory proteins to determine position.

® CPPN is a composition of symmetric,

periodic and other functions.
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Regularities by CPPN ||

e CPPN is a composition of symmetric,
periodic and other functions.

output pattern
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Bipolar Sigmoid | - +€_2 —— — 1
Linear X
Gaussian e—2:5a°
Absolute value x|
Sine sin(x)
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CPPNs in HyperNEAT

e Compositional and
Pattern Producing
Network (CPPN).

e CPPN is a composition
of symmetric, periodic and
other functions.

In HyperNEAT it has a
form of artificial neural
network with
heterogenous neuron

types.
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Picbreeder

¢ [Interactive evolution of images.

® CPPN output: level of grey.
® CPPNs evolved using NEAT.

¢

-

= < @

(a) Eye warped left (b) Symmetric eye (¢) Eve warped right

® http://picbreeder.org/

K. O. Stanley. Compositior d,l} atte 1 01 ng netw orks: A
q d

COMPUTATIONAL novel abstrac t 10n Of dev lop nt. C etic P mng an
INTELLIGENCE Evolvable Machines Spec l[ D relopn t I Q'J ste
2007. To appear.
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®

COMPUTA
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Picbreeder: Space Ship

(a) 4 func.. 17 conn.

(b) 5 func.. 24 conn.

(¢) 6 func.. 25 conn.

(d) 8 func.. 28 conn.

(e) & func.. 30 conn.

(1) 8 func.. 31 conn.

RVEIE] 7' v bnage

(g) 8 func.. 32 conn.

(h) 8 func.. 34 conn.

N1

&__\\

4

(1) & func.. 36 conn.

(j) 9 func.. 36 conn.

(k) 9 func.. 38 conn.

2012



Endless Forms

® Similar approach in 3D.
® http://endlessforms.com

&
¢ ¢
:,

@

Jeff Clune, Hod Lipson (201 1):

COMPUTATIONAL . . . . . . . .
INTELLIGENCE Evolving Three-Dimensional Objects with a Generative Encoding Inspired by

GROUP Developmental Biology
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Hypercube-based
Encoding

® Stanley 2007.

® Uses CPPNs in a similar way to Picbreeder: evolves
connectivity patterns.

® Best known for HyperNEAT algorithm which
evolves ANNs.

OOOOOOOOOOOOO
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

substrate

Substrate is a
template for a
possibly large-scale
neural network.
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

substrate

Each neuron is
assigned
coordinates. The
weights of
connections are
unknown.
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

The final network is
constructed out of
substrate by
computing all
needed weights.
This is done using

substrate
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

CPPN is a function
which takes
coordinates of both
source and
destination neuron
for each
connection ...

substrate

--------------------------

--------------------------
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

...and computes the
igh
weight of the substrate
corresponding | =000 emmmmmmmmmmsmmmmmeeeeseoes .
connection. !

--------------------------
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

All weights are

computed in a same substrate
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

substrate
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

Note, that the

weights are substrate

symmetric. CPPNs
promote regular

patterns.
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

substrate
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HyperNEAT

® Stanley et al. 2007: Hypercube-based encoding.

substrate
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STANDARD
APPROACH

HYPERNEAT

COMPUTATIONAL
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HyperNEAT vs.
Standard Approaches

genotype to phenotype conversion

fitness evaluation on a given problem

(" genotype to phenotype conversion

2012



Types of Substrate!

® The list of neurons’ coordinates along with
possible connections between them.

Target (x_,y.)

P P ... O v” 1 C:HO 1.1 @@@
(ID—- {'} _(5)_{'}{5}_('? 0-1.10 (;».lo 01.1 2 /fi’/’ @ @ O @ @
-$-9-4-4-6 I el e
100008 *%? % % Ye.0.0
©-0-0-0-0-0 Source (X .y )

(a) Grid (b) Three-dimensional (¢) Sandwich (d) Circular
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Create or not Create a
Link!?

® Substrates are often fully connected — lots of

links = computationally infeasible = pruning is
used.

® [f CPPN outputs weights in range /-3; 3/ then
® links with weights < ().2 are not expressed,

® >=().2 are scaled to magnitude between 0 and 3.

— when using this approach the final ANN is a
sub-graph of a substrate.

COMPUTATIONAL
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Connectivity Patterns

® Patterns evolved using interactive evolution:

r ! !
é."v""tr (‘ ) N
(a) Sym. (b) Impert. (c) Repet. (d) Var.
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Spatial Representation

e HyperNEAT exploits spatial representation of
a problem. The same happens in Nature:

® connection of eyes to brain hemispheres,
® similar things processed nearby.
® We have to assign coordinates.

e Does every problem have a reasonable
spatial representation?

® [t seams that most problems have.The others would
not probably benefit from regularities in ANNSs.
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NEAT in HyperNEAT

® HyperNEAT uses a slightly modified NEAT (Stanley 2001) as a
base algorithm to evolve CPPNs.

® NEAT is neuro-evolutionary algorithm able to evolve ANNs of

arbitrary topologies. . = . = . 0 O

‘ ()
® |[tis based on: o o o ¢ /

e complexification — evolving gradually more complex ANN:Ss,

® jnnovation numbers — track structural innovations,

® niching — allows simultaneous evolution of small and large
ANNs in one population. Requires to define a distance
measure for ANNSs.

COMPUTATIONAL
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Visual Discrimination

® Visual targeting: distinguish the larger

object.
Target (X,.y,)
¢ o )
Sandwich substrate”. Cf G0
A~ [.1]
4 b e e
/ e o O
®© © @ @ © /”U;)
-1.1 0.1 l.l _
@ @ ¢ o o ' ;O
/ O 'o
%100 00° ° ()/ld =
- 1. l( //,,
@ ©¢ @ o o /
@ © © @ ©
-1.-1 0.-1 |.-1]
‘a) Sensor Field (b) ]l\l] Target Field
(object placement) (12,827 connections) SOUILG (X y )

Jason J. Gauci and Kenneth O. Stanley (2007):

compuTaTioNnaL  Generating Large-Scale Neural Networks Through Discovering Geometric Regularities
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Visual Discrimination ll:

Scaling the Substrate

® The substrate density can be scaled using the same
CPPN.

® The function of the final ANN is approximately
preserved.

® We can train on small = get large.

390

(a) Ser Fll 1111T tFll ()3333T tFll (d) 5 T tFll
(1]t11 (1 827 1) (1,033,603 c ns) (7 u)w
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Visual Discrimination lll:
Scaling the Substrate

® An equivalent connectivity concept at
different

® substrate resolutions.

Sigmoid

| T \.‘/’ ’(:,‘

Sine/ 7=l /| Gaussian . Ay, N
!

/J
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T \\ \?\*\:*= Y . ; by AT
6 & &7 b ! A\
Bias Xi Y1 Xz Yo
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Food Gathering Problem

® Range-finder sensors detect food.
® More food eaten — higher fitness.

® Experiments with different sensor/effector placement —
exploiting geometric relationships with “outer world”.

OOEEMMEE i P
T |1—| 2 ” 3 | 4 H 5| 8 ” 7 | 8 > ﬂm .

™

.

EE

@) :zzz] E!!!!m O
6 5

O]1O]11O]1O]11O]O[O][0O O O

(a) Robot (b) Parallel (c) Concentric

David B. D'Ambrosio and Kenneth O. Stanley (2007)

A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry
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Food Gathering Problem I

® Parallel worked better than Concentric
because less computation is needed for

CPPN.
® New CPPN inputs added: the distances

e (xI-x2) and (vI-y2)

® When CPPN is provided the distances,
both work the same.

OOOOOOOOOOOOO
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Checkers

® Comparison with classic NEAT.
) Al.1363x3
® HyperNEAT is faster + = |eyeszeV/ezi - overlapping subsquares
. All 25 4x4
ge ne ral 1ZES. overlapping subsquares
e Single CPPN with multiple |[Z2%: '
g P =Y O/ 7 ---__J ’ [ overlapping subsquares)
O UtP ucs. Nﬁll 8x8 Board
® The output of the final net is a

heuristic score for the minimax

NG @
algorithm. (oS K o &
[ = = = = A A - Y CPPN
O.'.O‘OOOOO‘O’O v @ @
0.0’0.0.0.0.0"‘ @ OutPUts :
Inputs: Connection
Jason Gauci and Kenneth O. Stanley (2008): = e\ Coordinates Weights
A Case Study on the Critical Role of Geometric = - Z=/ ®
Regularity in Machine Learning =" @) ‘
=7 O
] CPPN
COMPUTATIONAL /
INTELLIGENCE (Y1)
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HyperNEAT Coordinated
Quadruped Gaits

® Simulation of four legged walker

robot.

® Comparison with classic NEAT.

® Other experiments show that
HyperNEAT can deal with

random substrates.

O\ <l rh ™

Jeff Clune:

| i g ‘Pc,
L%le”mm- <> S Gb
" 9023008600
M Siclclochdocing
83@00@8
@@ OQ

/
/
V4

COMPUTATIONAL Evolving Coordinated Quadruped Gaits with the HyperNEAT

INTELLIGENCE

GROUP Generative Encoding
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Mobile Robot Navigation

® HyperNEAT/HyperGP for robot control.

® ViVAE Simulated 2D environment with rigid
body physics.
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Mobile Robot Navigation |l

® Substrate uses polar coordinates.

® |nput + | fully recurrent layer

® SeeVIDEO...

fo (CPPF3) —
Inter-neuron
/, Weights

Output Substrate 4 p

(Neurons) fi (CPPF1) - Input Weights

n/

Input Substrate | 0 y 1
(Sensors)
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Mobile Robot Navigation Il

® (Obstacle avoidance.

300

® Object sensors added (two input Iayers)

11!““" "Ul L — . _——<

CPPN{2) .-~ Obstacle
Inter-nesuron

Woeignts

—___ CPPN(1} - Bias

CPPMNI(4)
Target
Distance

2

Oulpul Subslrale
iNeurans) CPPNI(3) - Object Inpul Target Grass
' ' Weights

..... N |

e I X
S A . Agent
v . = 0 Start
l'(w)put Slubz-trate 0 y 1 Road
(Objects) CPPN(Q) - Surface Input vl
__| creni@) - Surface npu /.Y, 7

¥ o
Input Substrate

(Surface) ‘ ’- |'- l'.\

distancel'ravelled __ targetDistance
stmulationSteps+1 netial Distance
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Mobile Robot Navigation IV

Drchal, Koutnik and Snorek (2009):
HyperNEAT Controlled Robots Learn How to Drive
on Roads in Simulated Environment

Buk, Koutnik and Snorek (2009):
NEAT in HyperNEAT Substituted with Genetic
Programming

Drchal, Kapral, Koutnik and Snorek (2009):
Combining Multiple Inputs in HyperNEAT Mobile
Agent Controller

COMPUTATIONAL
INTELLIGENCE
GROUP 2012



Base Algorithms for
Rypercube-based Encoding

® The large-scale networks produced by
HyperNEAT can be very slow to simulate...

® VWe need to reduce the number of fithess
function evaluations as much as possible.

® Can we do better when NEAT is replaced
by a different base algorithm?

OOOOOOOOOOOOO
EEEEEEEEEEEE
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What about Genetic
Programming (GP)?

® /denek Buk and Jan Koutnik replaced
NEAT in HyperNEAT by GP (2009).

® Experiments on a single domain shown that
HyperGP outperforms HyperNEAT.

® Can we do even better?

OOOOOOOOOOOOO
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Niching EA

® Oiriginally methods to search all optima in multimodal domain.

® Used to propose diversity in population in order to avoid premature
convergence.

® Population split into separate subpopulations of similar individuals.

® Distance measure is required.

standard EA (premature convergence)
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GPEFS Overview

® Genetic Programming with Explicit Fitness Sharing (GPEFS).

® GPEFS is basically NEAT which evolves forests of trees using
standard GP genetic operators.

® There is no complexification in GPEFS but niching is essential part
which preserves diversity and prevents premature convergence.

® We do not employ crossover.
® The idea to combine GP and niching is not new but:

® the version of fitness sharing used in NEAT was not employed,

® we experiment with six distance measures (both our and
already published),

® we focus on Hypercube-based indirectly encoded problems.

COMPUTATIONAL
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GPAT Overview

® We propose Genetic Programming of Augmenting
Topologies (GPAT).

® GPAT is basically NEAT which evolves forests of trees.
® Uses complexification and niching (Explicit Fitness Sharing).
® We do not employ crossover.

® [t is much simpler to design an efficient distance measure
for trees than for neural networks: there is no need for
innovation numbers.

® GPAT is general algorithm, here we focus on Hypercube-
based indirectly encoded problems.

COMPUTATIONAL
INTELLIGENCE
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GPAT Genotypes

® GPAT evolves trees (forests) but:
® nodes have a variable arity,

® constants are stored in links (similar to
synaptic weights of ANN).

2012



GPEFS & GPAT Results

® GPEFS and GPAT have similar performance.

® Significant improvement to GP and NEAT.

OOOOOOOOOOOOO
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Additional Slides
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GPEFS
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

population to assign

010101010
AN

start with the first individual
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

No niche exists yet - create one.

/ The individual becomes

( [ ]
NICHE | . a represeptatlve of
the niche.

0101010

And also becomes
a member.
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Now continue
with the second. (
NICHE | .

0101010 o
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Compute d(@ ,»).

.
NICHE | .

9101010
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Compute d(@ ,»).
If d < & like here,

p
NICHE | . make him a member.

L Q)

0100’
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Because d(@,()) = ¢ here,
we had to create a new niche.

4 (
NICHE | . NICHE 2 .

00
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Both d(@,®) = 6and d(@,) = 4,

we had to create a new niche again.

. r r
NICHE | . NICHE 2 . NICHE 3 .
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Assign Species

® Explicit Fitness Sharing as in NEAT.

® Species assigned according to distance d and threshold 6.

Here, d(@,(%)) = 6 but d(@,() < 4,

so assign to niche 2.

4 a4 4
NICHE | . NICHE 2 . NICHE 3 .

L@ QO @

Search niche from the first to the last
until sufficiently similar is found. If

INTELUGENGE none such exists, create a new.
GROUP 2012



GPEFS with Generalized G P, G PE FS & N EAT
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GP, GPEFS & NEAT

Compared
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The only case, where
GPEFS with Generalized
measure () was
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GP, GPEFS & NEAT
Compared
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GP, GPEFS & NEAT
pared

The only case, when NEAT
SUCCESS % is not the worst.

* Here, it significantly
outperforms GP.
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GPEFS: D

SUCCESS %

stance Measures
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GPEFS: Distance Measures
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GPEFS: Distance Measures
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GPEFS: Distance Measures
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Generalized Measure Parameters
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Generalized Measure Parameters
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NEAT, GP & GPAT
Compared
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NEAT, GP & GPAT
Compared
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outperforms GPAT in a
single case but only for

the Random distance
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NEAT, GP & GPAT
Compared
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These are the only cases in which GP
significantly outperforms GPAT with the
Generalized measure.
Interestingly: 2D-K and 3D-K have
minimum number of constants (| and 0)
and 4D-V is a GP solution to Visual
Discrimination.
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NEAT,GP & GPAT
Compared
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The only cases in which GPAT with the

Generalized measure is not significantly

better than GPAT with the Randomized
measure:

|) Niching is important.
2) The Generalized measure is efficient.
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