




Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague

2012

Indirect Encodings of
Artificial Neural Networks

Jan Drchal
drchajan@fel.cvut.cz

mailto:dhonza@gmail.com?subject=email%20subject
mailto:dhonza@gmail.com?subject=email%20subject



 2012

Overview
• Large-scale Artificial Neural Networks.

• Computational Development.

• Indirect Encodings of ANNs.

• Hyper-cube based encoding.

• Base algorithms.

Note: additional material including implementation details, sources, exact parameter settings
and detailed results can be found here: http://neuron.felk.cvut.cz/~drchaj1

http://neuron.felk.cvut.cz/~drchaj1/Jan_Drchal__Publications/Jan_Drchal_-_Publications.html
http://neuron.felk.cvut.cz/~drchaj1/Jan_Drchal__Publications/Jan_Drchal_-_Publications.html



 2012

Evolving Large-scale
ANNs

• 1000+ neurons (& corresponding # of links).

• Why to do that?

• Complex models,

• ability to process huge amount of inputs/
outputs without hand-coding features (i.e.
pattern recognition)...



 2012

I1 I2

H1 H2

phenotype

O

�1.5

�1
.5 0.3

0.3 3.1�0.1�2.70.9

0.
9

�2
.7

�0.1

3.
1genome

Direct Encoding

• Direct encoding → each structural part
(neuron/link) is represented by a dedicated gene.

• Not suitable for
Large-scale ANN's:

Direct optimization methods fail
→ the curse of dimensionality.



 2012

Indirect Encoding:
the Way it Works in Nature
• Human genome → 20 000 - 25 000 genes

describing almost 100 billion neurons each
linked to as many as 7 000 others (plus the
rest of organism!).

• We need some kind of compression:
→ indirect encoding.

• But we also need a regularity in data being
compressed.

• Q: What are the regularities found in living organisms?



 2012

Symmetry

(wikimedia commons)



 2012

Imperfect Symmetry

(wikimedia commons)



 2012

Repetition with
Variation

• Note that all these regularities
happen at all scales of an organism.

(wikimedia commons)



 2012

How Are Organisms
Built?

• Development from a single cell (zygote).

• Evolutionary Development “Evo-Devo”.



 2012

The Cell



 2012

Genome: A Closer Look

• TATA box – marks the start of a gene

• (cis-)regulatory region – composed of binding sites.

• binding site – binds regulatory proteins → gene activation/
inhibition

• product region – when gene is active a protein is produced:

• special: cell division, differentiation,

• regulatory: can bind to binding sites of other genes,

• structural.



 2012

Cell Divisions
• Program same

for all cells.

• What differs?

• Regulatory
protein concentrations.

• Receptors – selectively pass regulatory
proteins from inter-cellular space.

• Diffusion, decay, cell differentiation.

• Gene Regulatory Networks (GRNs).



 2012

How to Simulate
Development?

• Cell program – ANN, FSM or other controller:

• inputs: binding sites,

• outputs: one for each gene → gene activity.

• Physical simulation: diffusion, decay, receptors...

• Cell division:

• copy cell program from mother → daughter cell,

• different concentrations for mother/daughter.

• This is called: Computational Development.



 2012

“French Flag” Organism
• Cell program evolved using Cartesian

Genetic Programming (CGP).

CGP encoded adder

Julian Francis Miller (2004):
Evolving a Self-Repairing, Self-Regulating, French Flag Organism



 2012

“French Flag” Organism II



 2012

Indirect encodings of
ANNs

• GRN-based

• Cellular Encoding

• Hypercube-based

• Other: rewriting rules, L-systems, ...



 2012

GRN-based

Figure 4: a. Growing neural network, b. The final neural net-

work controlling a foveating retina. One single cell is placed in

every field which have for computational reasons an upper limit

of 20 X 20. The cells are allowed to grow inside the predefined

fields. All connections and the cellular properties are under evolu-

tionary control and are determined by genetic and developmental

processes. The receptor field (bottom row of the cells which emit

topological, parallel axons) captures the light stimulation. The

activity of the cells in the motor layer causes the eyes to move in

four directions (up, down, right and left).

summed up and used as fitness value.

f =
∑

i,j

ai,j + (vai,j
− vri,j

)2 (7)

• f fitness value

• i, j are indexes running over all retinal sensors

• ai,j activity of motor neurons after stimulation of
retinal sensor (i, j)

• vai,j
actual motor vector after activating the retinal

sensor at the position (i, j).

• vri,j
designer specified target value for the motor vec-

tor

In typical runs with a (6,12)-evolutionary strategy a so-
lution was found after 100 to 200 generations (see Figure
5).

4 Results

4.1 Simulation Results

Figure 5 shows a typical evolutionary run over time.
Typically the task was solved after 300-500 generations
using a (20,600)-evolution strategy. First the fitness in-

Figure 5: Fitness of a typical run of the evolution of the foveating

retina plotted against number of generations.

creased because the sensory cells and the neurons learned
to link each other to the motor cells. Over time more
and more motor cells received input from the other lay-
ers and were able to move. A typical example is illus-
trated in figure 6a, which shows the movement patterns
of evolved neural controllers after stimulating each sin-
gle sensor and indicating the motor response to it. Over
time the results became better and the system learned
to foveate. A typical fitness curve is shown in Figure
5. Figure 6 shows some typical examples of individuals
with increasingly higher fitness. Preliminary analysis of
the cellular dynamics by blocking genes showed that the

Peter Eggenberger-Hotz (1997):
Creation of Neural Networks Based on
Developmental and Evolutionary Principles

Peter Eggenberger-Hotz (2003):
Evolving the Morphology of a Neural Network for
Controlling a Foveating Retina and its Test on a
Real Robot





Cellular Encoding (CE)
• 1993, Fréderic Gruau: indirect encoding example.

• Inspiration in embryo-genesis (cell division and
differentiation). Cells → neurons.

• Program to “grow” ANN is represented by a tree
(Genetic Programming).

• Operations: parallel/sequential divisions, connections
change, change of weights/bias...



 2012

Cellular Encoding II



 2012

Cellular Encoding III

• May use operation which reads a sub-tree
repeatedly → evolved a network
representing parity of arbitrary number of
inputs.

• Allows ANNs of arbitrary size: neural
module reuse.



 2012

Compositional Pattern
Producing Networks (CPPNs)
• Stanley 2006.

• Can we create such regular patterns
without development in time?

• We can ask a special function called CPPN,
where the cells are, using absolute coordinates.

Kenneth O. Stanley (2006):
Compositional Pattern Producing Networks: A Novel Abstraction of Development



 2012

Regularities by CPPN
• Nature uses concentration gradients of

regulatory proteins to determine position.

• CPPN is a composition of symmetric,
periodic and other functions.



 2012

Regularities by CPPN II
• CPPN is a composition of symmetric,

periodic and other functions.



 2012

CPPNs in HyperNEAT

• Compositional and
Pattern Producing
Network (CPPN).

• CPPN is a composition
of symmetric, periodic and
other functions.

• In HyperNEAT it has a
form of artificial neural
network with
heterogenous neuron
types.

source target



 2012

Picbreeder
• Interactive evolution of images.

• CPPN output: level of grey.

• CPPNs evolved using NEAT.

• http://picbreeder.org/

http://picbreeder.org
http://picbreeder.org



 2012

Picbreeder II



 2012

Picbreeder: Space Ship



 2012

Endless Forms

Evolving Three-Dimensional Objects with a Generative Encoding Inspired by
Developmental Biology

Jeff Clune and Hod Lipson

Department of Mechanical and Aerospace Engineering, Cornell University
jeffclune@cornell.edu

Abstract

This paper introduces an algorithm for evolving 3D objects
with a generative encoding that abstracts how biological mor-
phologies are produced. Evolving interesting 3D objects
is useful in many disciplines, including artistic design (e.g.
sculpture), engineering (e.g. robotics, architecture, or prod-
uct design), and biology (e.g. for investigating morphological
evolution). A critical element in evolving 3D objects is the
representation, which strongly influences the types of objects
produced. In 2007 a representation was introduced called
Compositional Pattern Producing Networks (CPPN), which
abstracts how natural phenotypes are generated. To date,
however, the ability of CPPNs to create 3D objects has barely
been explored. Here we present a new way to create 3D
objects with CPPNs. Experiments with both interactive and
target-based evolution demonstrate that CPPNs show poten-
tial in generating interesting, complex, 3D objects. We fur-
ther show that changing the information provided to CPPNs
and the functions allowed in their genomes biases the types of
objects produced. Finally, we validate that the objects transfer
well from simulation to the real-world by printing them with
a 3D printer. Overall, this paper shows that evolving objects
with encodings based on concepts from biological develop-
ment can be a powerful way to evolve complex, interesting
objects, which should be of use in fields as diverse as art, en-
gineering, and biology.

Motivation and Previous Work
The diversity, complexity, and function of natural morpholo-
gies is awe-inspiring. Evolution has created bodies that can
fly, run, and swim with amazing agility. It would be desir-
able to harness the power of evolution to create synthetic
physical designs and morphologies. Doing so would benefit
a variety of fields. For example, artists, architects and engi-
neers could evolve sculptures, buildings, product designs,
and sophisticated robots. Evolution should be especially
helpful in the design of complex objects with many interact-
ing parts made of non-linear materials. In such challenging
problem domains, evolution excels while human intuition
is limited. Being able to evolve sophisticated morpholo-
gies also furthers biological research because it enables the
investigation of how and why certain natural designs were
produced. Evolving 3D objects is thus worthwhile both as a

Figure 1: Examples of evolved objects that were transferred
to reality via a 3D printer.

basic science and for its innumerable potential applications.
This paper describes how 3D shapes can be evolved and then
transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has
typically involved encodings that were either highly biolog-
ically detailed, or highly-abstract with less biological accu-
racy. The former camp frequently simulates the low-level
processes that govern biological development, such as the
diffusing morphogen chemicals and proteins that determine
the identity of embryonic cells (Bongard and Pfeifer 2001,
Eggenberger 1997, Miller 2004). While this approach facil-
itates studying the mechanisms of developmental biology,
the computational cost of simulating chemistry in such de-
tail greatly limits the complexity of the evolved phenotypes.
The most complex forms typically evolved in such systems
are simple geometric patterns (such as three bands) (Miller

• Similar approach in 3D.

• http://endlessforms.com

Jeff Clune, Hod Lipson (2011):
Evolving Three-Dimensional Objects with a Generative Encoding Inspired by
Developmental Biology

http://endlessforms.com
http://endlessforms.com



 2012

Hypercube-based
Encoding

• Stanley 2007.

• Uses CPPNs in a similar way to Picbreeder: evolves
connectivity patterns.

• Best known for HyperNEAT algorithm which
evolves ANNs.



 2012

HyperNEAT
• Stanley et al. 2007: Hypercube-based encoding.

I1 I2

O1 O2

substrate

Substrate is a
template for a

possibly large-scale
neural network.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

(1)

(1)(�1)

(�1)

Each neuron is
assigned

coordinates. The
weights of

connections are
unknown.

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)
decode weight values

The final network is
constructed out of

substrate by
computing all

needed weights.
This is done using

CPPN.

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)

(�1) (�1)

decode weight values

CPPN is a function
which takes

coordinates of both
source and

destination neuron
for each

connection ...

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)

(�1) (�1)

�2.5�2.5

decode weight values

... and computes the
weight of the
corresponding
connection.

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.31.3

(1)

(1)(�1)

(�1)

(�1)

�2.5

decode weight values

(1)

All weights are
computed in a same

way...

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5

1.3decode weight values1.3

(1) (�1)

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5�2.5 �2.5

decode weight values

(1)(1)

1.3

Note, that the
weights are

symmetric. CPPNs
promote regular

patterns.

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

EA

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5 �2.5

decode weight values

evolve

1.3

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT

EA

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5 �2.5

decode weight values

evolve

evaluate fitness on target domain

1.3

• Stanley et al. 2007: Hypercube-based encoding.



 2012

HyperNEAT vs.
Standard Approaches

EA ANN

EA

genotype to phenotype conversion

CPPN

fitness evaluation on a given problem

genotype to phenotype conversion

ANN

const
ruc

t

ANN
fitnessevaluation

STANDARD
APPROACH

HYPERNEAT



 2012

Types of Substrate?

• The list of neurons’ coordinates along with
possible connections between them.



 2012

Create or not Create a
Link?

• Substrates are often fully connected → lots of
links → computationally infeasible → pruning is
used.

• If CPPN outputs weights in range [-3; 3] then

• links with weights < 0.2 are not expressed,

• >= 0.2 are scaled to magnitude between 0 and 3.

→ when using this approach the final ANN is a
sub-graph of a substrate.



 2012

Connectivity Patterns

• Patterns evolved using interactive evolution:



 2012

Spatial Representation
• HyperNEAT exploits spatial representation of

a problem. The same happens in Nature:

• connection of eyes to brain hemispheres,

• similar things processed nearby.

• We have to assign coordinates.

• Does every problem have a reasonable
spatial representation?

• It seams that most problems have. The others would
not probably benefit from regularities in ANNs.



 2012

NEAT in HyperNEAT
• HyperNEAT uses a slightly modified NEAT (Stanley 2001) as a

base algorithm to evolve CPPNs.

• NEAT is neuro-evolutionary algorithm able to evolve ANNs of
arbitrary topologies.

• It is based on:

• complexification → evolving gradually more complex ANNs,

• innovation numbers → track structural innovations,

• niching → allows simultaneous evolution of small and large
ANNs in one population. Requires to define a distance
measure for ANNs.



 2012

Visual Discrimination
• Visual targeting: distinguish the larger

object.

• “Sandwich substrate”.

Jason J. Gauci and Kenneth O. Stanley (2007):
Generating Large-Scale Neural Networks Through Discovering Geometric Regularities



 2012

Visual Discrimination II:
Scaling the Substrate

• The substrate density can be scaled using the same
CPPN.

• The function of the final ANN is approximately
preserved.

• We can train on small → get large.



 2012

Visual Discrimination III:
Scaling the Substrate

• An equivalent connectivity concept at
different

• substrate resolutions.



 2012

Food Gathering Problem
• Range-finder sensors detect food.

• More food eaten → higher fitness.

• Experiments with different sensor/effector placement –
exploiting geometric relationships with “outer world”.

David B. D'Ambrosio and Kenneth O. Stanley (2007)
A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry



 2012

Food Gathering Problem II

• Parallel worked better than Concentric
because less computation is needed for
CPPN.

• New CPPN inputs added: the distances

• (x1-x2) and (y1-y2)

• When CPPN is provided the distances,
both work the same.



 2012

Checkers
• Comparison with classic NEAT.

• HyperNEAT is faster +
generalizes.

• Single CPPN with multiple
outputs.

• The output of the final net is a
heuristic score for the minimax
algorithm.

Jason Gauci and Kenneth O. Stanley (2008):
A Case Study on the Critical Role of Geometric
Regularity in Machine Learning



 2012

HyperNEAT Coordinated
Quadruped Gaits

• Simulation of four legged walker
robot.

• Comparison with classic NEAT.

• Other experiments show that
HyperNEAT can deal with
random substrates.

Jeff Clune:
Evolving Coordinated Quadruped Gaits with the HyperNEAT
Generative Encoding



 2012

Mobile Robot Navigation
• HyperNEAT/HyperGP for robot control.

• ViVAE Simulated 2D environment with rigid
body physics.



 2012

Mobile Robot Navigation II
• Substrate uses polar coordinates.

• Input + 1 fully recurrent layer

• See VIDEO...



 2012

Mobile Robot Navigation III
• Obstacle avoidance.

• Object sensors added (two input layers)

f = distanceTravelled

simulationSteps+1

⇣
1� targetDistance

initialDistance

⌘



 2012

Mobile Robot Navigation IV

Drchal, Koutník and Šnorek (2009):
HyperNEAT Controlled Robots Learn How to Drive
on Roads in Simulated Environment

Buk, Koutník and Šnorek (2009):
NEAT in HyperNEAT Substituted with Genetic
Programming

Drchal, Kapraľ, Koutník and Šnorek (2009):
Combining Multiple Inputs in HyperNEAT Mobile
Agent Controller



 2012

Base Algorithms for
Hypercube-based Encoding

• The large-scale networks produced by
HyperNEAT can be very slow to simulate...

• We need to reduce the number of fitness
function evaluations as much as possible.

• Can we do better when NEAT is replaced
by a different base algorithm?



 2012

What about Genetic
Programming (GP)?

• Zdenek Buk and Jan Koutnik replaced
NEAT in HyperNEAT by GP (2009).

• Experiments on a single domain shown that
HyperGP outperforms HyperNEAT.

• Can we do even better?



 2012

Niching EA
• Originally methods to search all optima in multimodal domain.

• Used to propose diversity in population in order to avoid premature
convergence.

• Population split into separate subpopulations of similar individuals.

• Distance measure is required.

standard EA (premature convergence) niching EA



 2012

GPEFS Overview
• Genetic Programming with Explicit Fitness Sharing (GPEFS).

• GPEFS is basically NEAT which evolves forests of trees using
standard GP genetic operators.

• There is no complexification in GPEFS but niching is essential part
which preserves diversity and prevents premature convergence.

• We do not employ crossover.

• The idea to combine GP and niching is not new but:

• the version of fitness sharing used in NEAT was not employed,

• we experiment with six distance measures (both our and
already published),

• we focus on Hypercube-based indirectly encoded problems.



 2012

GPAT Overview
• We propose Genetic Programming of Augmenting

Topologies (GPAT).

• GPAT is basically NEAT which evolves forests of trees.

• Uses complexification and niching (Explicit Fitness Sharing).

• We do not employ crossover.

• It is much simpler to design an efficient distance measure
for trees than for neural networks: there is no need for
innovation numbers.

• GPAT is general algorithm, here we focus on Hypercube-
based indirectly encoded problems.



 2012

GPAT Genotypes

• GPAT evolves trees (forests) but:

• nodes have a variable arity,

• constants are stored in links (similar to
synaptic weights of ANN).



 2012

GPEFS & GPAT Results

• GPEFS and GPAT have similar performance.

• Significant improvement to GP and NEAT.



 2012

Q&A



 2012

Additional Slides



 2012

GPEFS



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

1 2 3 4 5

population to assign

start with the first individual



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

No niche exists yet - create one.

The individual becomes
a representative of

the niche.

And also becomes
a member.



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

Now continue
with the second.



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

2 3 4 5

NICHE 1 1

1

Compute d(,).1 2



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

3 4 5

Compute d(,).1 2

NICHE 1 1

1 2

If d < δ like here,
make him a member.



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

4 5

NICHE 1 1

1 2

NICHE 2 3

3

Because d(,) ≥ δ here,
we had to create a new niche.

1 3



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

5

NICHE 1 1

1 2

NICHE 2 3

3

NICHE 3 4

4

Both d(,) ≥ δ and d(,) ≥ δ,
we had to create a new niche again.

1 4 2 4



 2012

Assign Species

• Explicit Fitness Sharing as in NEAT.

• Species assigned according to distance d and threshold δ.

NICHE 1 1

1 2

NICHE 2 3

3 5

NICHE 3 4

4

Here, d(,) ≥ δ but d(,) < δ,
so assign to niche 2.

1 5 2 5

Search niche from the first to the last
until sufficiently similar is found. If
none such exists, create a new.



 2012

76
.

10
0.

3.
5

26
.5

75
.5

0.
5 2.

11
.

2.

63
.

27
.

2.
5

64
.5

10
0.

32
.5

10
0.

10
0.

45
.

Bit Reverse

G
P

G
PE
FS

N
EA
T

Bit Shift

G
P

G
PE
FS

N
EA
T

Bit Rotate

G
P

G
PE
FS

N
EA
T

Parity

G
P

G
PE
FS

N
EA
T

Visual Discrimination
G
P

G
PE
FS

N
EA
T

Robot

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

6.
19
.

60
.5

88
.

2.

24
.5
39
.

54
.5

77
.

31
.

57
.5

9.
5 18

.

17
.5

45
.5

96
. 10
0.

24
.5

90
.

24
.5

89
.5

74
.5

10
0.

1.

34
.

99
.5

28
.5

20
.

91
.

33
.

1D-F

G
P

G
PE
FS

N
EA
T

1D-H

G
P

G
PE
FS

N
EA
T

2D-I

G
P

G
PE
FS

N
EA
T

2D-K

G
P

G
PE
FS

N
EA
T

3D-E

G
P

G
PE
FS

N
EA
T

3D-H
G
P

G
PE
FS

N
EA
T

3D-K

G
P

G
PE
FS

N
EA
T

4D-C

G
P

G
PE
FS

N
EA
T

4D-F

G
P

G
PE
FS

N
EA
T

4D-G

G
P

G
PE
FS

N
EA
T

4D-V

G
P

G
PE
FS

N
EA
T

MAZE-1

G
P

G
PE
FS

N
EA
T

MAZE-2

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

GPEFS with Generalized
measure (G) is the

winner (mostly
significant).

D
IR

EC
T

IN
D

IR
EC

T
GP, GPEFS & NEAT

Compared



 2012

76
.

10
0.

3.
5

26
.5

75
.5

0.
5 2.

11
.

2.

63
.

27
.

2.
5

64
.5

10
0.

32
.5

10
0.

10
0.

45
.

Bit Reverse

G
P

G
PE
FS

N
EA
T

Bit Shift

G
P

G
PE
FS

N
EA
T

Bit Rotate

G
P

G
PE
FS

N
EA
T

Parity

G
P

G
PE
FS

N
EA
T

Visual Discrimination
G
P

G
PE
FS

N
EA
T

Robot

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

6.
19
.

60
.5

88
.

2.

24
.5
39
.

54
.5

77
.

31
.

57
.5

9.
5 18

.

17
.5

45
.5

96
. 10
0.

24
.5

90
.

24
.5

89
.5

74
.5

10
0.

1.

34
.

99
.5

28
.5

20
.

91
.

33
.

1D-F

G
P

G
PE
FS

N
EA
T

1D-H

G
P

G
PE
FS

N
EA
T

2D-I

G
P

G
PE
FS

N
EA
T

2D-K

G
P

G
PE
FS

N
EA
T

3D-E

G
P

G
PE
FS

N
EA
T

3D-H
G
P

G
PE
FS

N
EA
T

3D-K

G
P

G
PE
FS

N
EA
T

4D-C

G
P

G
PE
FS

N
EA
T

4D-F

G
P

G
PE
FS

N
EA
T

4D-G

G
P

G
PE
FS

N
EA
T

4D-V

G
P

G
PE
FS

N
EA
T

MAZE-1

G
P

G
PE
FS

N
EA
T

MAZE-2

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

The only case, where
GPEFS with Generalized

measure (G) was
outperformed (by GP).

D
IR

EC
T

IN
D

IR
EC

T
GP, GPEFS & NEAT

Compared



 2012

76
.

10
0.

3.
5

26
.5

75
.5

0.
5 2.

11
.

2.

63
.

27
.

2.
5

64
.5

10
0.

32
.5

10
0.

10
0.

45
.

Bit Reverse

G
P

G
PE
FS

N
EA
T

Bit Shift

G
P

G
PE
FS

N
EA
T

Bit Rotate

G
P

G
PE
FS

N
EA
T

Parity

G
P

G
PE
FS

N
EA
T

Visual Discrimination
G
P

G
PE
FS

N
EA
T

Robot

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

6.
19
.

60
.5

88
.

2.

24
.5
39
.

54
.5

77
.

31
.

57
.5

9.
5 18

.

17
.5

45
.5

96
. 10
0.

24
.5

90
.

24
.5

89
.5

74
.5

10
0.

1.

34
.

99
.5

28
.5

20
.

91
.

33
.

1D-F

G
P

G
PE
FS

N
EA
T

1D-H

G
P

G
PE
FS

N
EA
T

2D-I

G
P

G
PE
FS

N
EA
T

2D-K

G
P

G
PE
FS

N
EA
T

3D-E

G
P

G
PE
FS

N
EA
T

3D-H
G
P

G
PE
FS

N
EA
T

3D-K

G
P

G
PE
FS

N
EA
T

4D-C

G
P

G
PE
FS

N
EA
T

4D-F

G
P

G
PE
FS

N
EA
T

4D-G

G
P

G
PE
FS

N
EA
T

4D-V

G
P

G
PE
FS

N
EA
T

MAZE-1

G
P

G
PE
FS

N
EA
T

MAZE-2

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

D
IR

EC
T

IN
D

IR
EC

T
GP, GPEFS & NEAT

Compared

NEAT results on symbolic
regression added for

completeness, only. While
GP and GPEFS are able to

find almost exact
solutions, NEAT nodes

computing weighted sums
are put at disadvantage.



 2012

76
.

10
0.

3.
5

26
.5

75
.5

0.
5 2.

11
.

2.

63
.

27
.

2.
5

64
.5

10
0.

32
.5

10
0.

10
0.

45
.

Bit Reverse

G
P

G
PE
FS

N
EA
T

Bit Shift

G
P

G
PE
FS

N
EA
T

Bit Rotate

G
P

G
PE
FS

N
EA
T

Parity

G
P

G
PE
FS

N
EA
T

Visual Discrimination
G
P

G
PE
FS

N
EA
T

Robot

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

6.
19
.

60
.5

88
.

2.

24
.5
39
.

54
.5

77
.

31
.

57
.5

9.
5 18

.

17
.5

45
.5

96
. 10
0.

24
.5

90
.

24
.5

89
.5

74
.5

10
0.

1.

34
.

99
.5

28
.5

20
.

91
.

33
.

1D-F

G
P

G
PE
FS

N
EA
T

1D-H

G
P

G
PE
FS

N
EA
T

2D-I

G
P

G
PE
FS

N
EA
T

2D-K

G
P

G
PE
FS

N
EA
T

3D-E

G
P

G
PE
FS

N
EA
T

3D-H
G
P

G
PE
FS

N
EA
T

3D-K

G
P

G
PE
FS

N
EA
T

4D-C

G
P

G
PE
FS

N
EA
T

4D-F

G
P

G
PE
FS

N
EA
T

4D-G

G
P

G
PE
FS

N
EA
T

4D-V

G
P

G
PE
FS

N
EA
T

MAZE-1

G
P

G
PE
FS

N
EA
T

MAZE-2

G
P

G
PE
FS

N
EA
T

20

40

60

80

100
SUCCESS %

D
IR

EC
T

IN
D

IR
EC

T
GP, GPEFS & NEAT

Compared
The only case, when NEAT

is not the worst.
Here, it significantly

outperforms GP.
NEAT performance did
not improve even for

doubled population size or
number of generations.

The problem seems to be in
high number of constants

evolved by NEAT.



 2012

10
0.

10
0.

10
0.

99
.

64
.5

92
.

60
.5
75
.5

42
.

36
.

10
.

32
.

2.
5 11

.
6. 4.
5 7.
5

22
. 27
.

17
. 21
.

5.
22
.5

89
.5 10

0.
70
.

66
.5

7.
5

80
.

10
0.

10
0.

10
0.

10
0.

10
0.

95
.

Bit Reverse

I G D N P R

Bit Shift

I G D N P R

Bit Rotate

I G D N P R

Parity

I G D N P R

Visual Discrimination

I G D N P R

Robot

I G D N P R

20

40

60

80

100

42
.
57
.5

27
.

19
.5

12
.

29
.5

0.
5

18
.

3.
8.
5

4.
9.

22
.

45
.5

18
.

13
.
27
.5

20
.

64
.5

10
0.

10
0.

99
.5

97
.5

90
.

3.
5

90
.

48
. 52
.

27
.

50
.5

7.
5

89
.5

39
. 48
.

23
. 30
.5

1.
10
0.

64
.5
79
.5

63
.

63
.5

0.
5

99
.5

55
.
70
.5

26
.

67
.

91
.

29
.
45
.

15
.5

43
.5

3D-E

I G D N P R

3D-H

I G D N P R

3D-K

I G D N P R

4D-C

I G D N P R

4D-F

I G D N P R

4D-G

I G D N P R

4D-V

I G D N P R

MAZE-1

I G D N P R

MAZE-2

I G D N P R

20

40

60

80

100
SUCCESS %

GPEFS: Distance Measures

Unlike for most directly
encoded problems, for
indirectly encoded the

Innovation number
based measure (I) is
highly competitive.

D
IR

EC
T

IN
D

IR
EC

T



 2012

10
0.

10
0.

10
0.

99
.

64
.5

92
.

60
.5
75
.5

42
.

36
.

10
.

32
.

2.
5 11

.
6. 4.
5 7.
5

22
. 27
.

17
. 21
.

5.
22
.5

89
.5 10

0.
70
.

66
.5

7.
5

80
.

10
0.

10
0.

10
0.

10
0.

10
0.

95
.

Bit Reverse

I G D N P R

Bit Shift

I G D N P R

Bit Rotate

I G D N P R

Parity

I G D N P R

Visual Discrimination

I G D N P R

Robot

I G D N P R

20

40

60

80

100

42
.
57
.5

27
.

19
.5

12
.

29
.5

0.
5

18
.

3.
8.
5

4.
9.

22
.

45
.5

18
.

13
.
27
.5

20
.

64
.5

10
0.

10
0.

99
.5

97
.5

90
.

3.
5

90
.

48
. 52
.

27
.

50
.5

7.
5

89
.5

39
. 48
.

23
. 30
.5

1.
10
0.

64
.5
79
.5

63
.

63
.5

0.
5

99
.5

55
.
70
.5

26
.

67
.

91
.

29
.
45
.

15
.5

43
.5

3D-E

I G D N P R

3D-H

I G D N P R

3D-K

I G D N P R

4D-C

I G D N P R

4D-F

I G D N P R

4D-G

I G D N P R

4D-V

I G D N P R

MAZE-1

I G D N P R

MAZE-2

I G D N P R

20

40

60

80

100
SUCCESS %

GPEFS: Distance Measures

Phenotypic measure (P)
is the overall worst
(both directly and
indirectly encoded
problems). Which

contradicts previously
published results.

D
IR

EC
T

IN
D

IR
EC

T



 2012

10
0.

10
0.

10
0.

99
.

64
.5

92
.

60
.5
75
.5

42
.

36
.

10
.

32
.

2.
5 11

.
6. 4.
5 7.
5

22
. 27
.

17
. 21
.

5.
22
.5

89
.5 10

0.
70
.

66
.5

7.
5

80
.

10
0.

10
0.

10
0.

10
0.

10
0.

95
.

Bit Reverse

I G D N P R

Bit Shift

I G D N P R

Bit Rotate

I G D N P R

Parity

I G D N P R

Visual Discrimination

I G D N P R

Robot

I G D N P R

20

40

60

80

100

42
.
57
.5

27
.

19
.5

12
.

29
.5

0.
5

18
.

3.
8.
5

4.
9.

22
.

45
.5

18
.

13
.
27
.5

20
.

64
.5

10
0.

10
0.

99
.5

97
.5

90
.

3.
5

90
.

48
. 52
.

27
.

50
.5

7.
5

89
.5

39
. 48
.

23
. 30
.5

1.
10
0.

64
.5
79
.5

63
.

63
.5

0.
5

99
.5

55
.
70
.5

26
.

67
.

91
.

29
.
45
.

15
.5

43
.5

3D-E

I G D N P R

3D-H

I G D N P R

3D-K

I G D N P R

4D-C

I G D N P R

4D-F

I G D N P R

4D-G

I G D N P R

4D-V

I G D N P R

MAZE-1

I G D N P R

MAZE-2

I G D N P R

20

40

60

80

100
SUCCESS %

GPEFS: Distance Measures
D

IR
EC

T
IN

D
IR

EC
T

Tree Description (D) and
Node Count (N) measures
performance may vary on

different tasks. However, most
often they do not outperform

Random (R) measure.



 2012

10
0.

10
0.

10
0.

99
.

64
.5

92
.

60
.5
75
.5

42
.

36
.

10
.

32
.

2.
5 11

.
6. 4.
5 7.
5

22
. 27
.

17
. 21
.

5.
22
.5

89
.5 10

0.
70
.

66
.5

7.
5

80
.

10
0.

10
0.

10
0.

10
0.

10
0.

95
.

Bit Reverse

I G D N P R

Bit Shift

I G D N P R

Bit Rotate

I G D N P R

Parity

I G D N P R

Visual Discrimination

I G D N P R

Robot

I G D N P R

20

40

60

80

100

42
.
57
.5

27
.

19
.5

12
.

29
.5

0.
5

18
.

3.
8.
5

4.
9.

22
.

45
.5

18
.

13
.
27
.5

20
.

64
.5

10
0.

10
0.

99
.5

97
.5

90
.

3.
5

90
.

48
. 52
.

27
.

50
.5

7.
5

89
.5

39
. 48
.

23
. 30
.5

1.
10
0.

64
.5
79
.5

63
.

63
.5

0.
5

99
.5

55
.
70
.5

26
.

67
.

91
.

29
.
45
.

15
.5

43
.5

3D-E

I G D N P R

3D-H

I G D N P R

3D-K

I G D N P R

4D-C

I G D N P R

4D-F

I G D N P R

4D-G

I G D N P R

4D-V

I G D N P R

MAZE-1

I G D N P R

MAZE-2

I G D N P R

20

40

60

80

100
SUCCESS %

GPEFS: Distance Measures

In many cases Random
measure (R) is significantly

outperformed only by
Generalized measure (G).

This indicates that a choice
of an inappropriate measure

can be disruptive for
evolution.

D
IR

EC
T

IN
D

IR
EC

T



 2012

Generalized Measure Parameters

9
8
.

9
0
.

7
9
.

8
1
.5

4
6
.5

7
.5

8
0
.

3
9
.

5
.

9
4
.

6
8
.

2
9
.

9
3
.5

4
7
.5

1
9
.5

8
0
.5

2
2
.5

6
.5

4D!C

1 2 10

4D!F

1 2 10

4D!G

1 2 10

4D!V

1 2 10

MAZE!1

1 2 10

MAZE!2

1 2 10

20

40

60

80

100

SUCCESS "

K

9
7
.

1
0
0
.

1
0
0
.

3
4
.5

4
8
.

7
2
.5

6
.5

3
.5

3
.5

1
5

. 2
2
.5

7
.

9
8
.

9
7
.5

7
8
.

Reverse

1 2 10

Shift

1 2 10

Rotate

1 2 10

Parity

1 2 10

Visual

Discrimination

1 2 10

20

40

60

80

100
SUCCESS !

K

For all directly encoded
problems having K>1 was
harmful. This contradicts

previously published results.

D
IR

EC
T

IN
D

IR
EC

T



 2012

Generalized Measure Parameters

9
8
.

9
0
.

7
9
.

8
1
.5

4
6
.5

7
.5

8
0
.

3
9
.

5
.

9
4
.

6
8
.

2
9
.

9
3
.5

4
7
.5

1
9
.5

8
0
.5

2
2
.5

6
.5

4D!C

1 2 10

4D!F

1 2 10

4D!G

1 2 10

4D!V

1 2 10

MAZE!1

1 2 10

MAZE!2

1 2 10

20

40

60

80

100

SUCCESS "

K

9
7
.

1
0
0
.

1
0
0
.

3
4
.5

4
8
.

7
2
.5

6
.5

3
.5

3
.5

1
5

. 2
2
.5

7
.

9
8
.

9
7
.5

7
8
.

Reverse

1 2 10

Shift

1 2 10

Rotate

1 2 10

Parity

1 2 10

Visual

Discrimination

1 2 10

20

40

60

80

100
SUCCESS !

K

For indirectly encoded
problems this does not hold.

D
IR

EC
T

IN
D

IR
EC

T



 2012

GPAT



 2012

NEAT, GP & GPAT
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

NEAT significantly
outperforms GP for a
single problem only.



 2012

NEAT, GP & GPAT
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

NEAT significantly
outperforms GPAT in a
single case but only for
the Random distance

measure.



 2012

NEAT, GP & GPAT
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

These are the only cases in which GP
significantly outperforms GPAT with the

Generalized measure.
 Interestingly: 2D-K and 3D-K have

minimum number of constants (1 and 0)
and 4D-V is a GP solution to Visual

Discrimination.



 2012

NEAT,GP & GPAT
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

Only two cases in which GPAT with
the Randomized measure significantly

outperforms GP.
This is most probably caused by

different types of mutation operators
used in GPAT.



 2012

NEAT,GP & GPAT
Compared

3.

76
.

72
.5

10
0.

2.

26
.5

28
.5

10
0.

2. 2. 3. 5.
5

1.
5

63
.

44
.

62
.

45
.

64
.5

31
.5

91
.

40
.

10
0.

10
0.

10
0.

Bit Reverse

N G A
R

A
G

Bit Shift

N G A
R

A
G

Bit Rotate

N G A
R

A
G

Parity

N G A
R

A
G

Visual Discrimination

N G A
R

A
G

Robot

N G A
R

A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

6. 4.
5

27
.

5.
60
.5

50
.

82
.

24
.5

3.
39
.

54
.5

0.
5
15
.5

31
.

1.
5

50
.

9.
5

1.
5
18
.5

17
.5

2. 3.
5

96
.

84
.5
10
0.

24
.5

49
.

24
.5

0.
5

57
.

2.
74
.5

2.
5
18
.

34
.

34
.

74
.

96
.5

31
.

20
.

48
.

44
.5

1D-F

N G A
R
A
G

1D-H

N G A
R
A
G

2D-I

N G A
R
A
G

2D-K

N G A
R
A
G

3D-E

N G A
R
A
G

3D-H

N G A
R
A
G

3D-K

N G A
R
A
G

4D-C

N G A
R
A
G

4D-F

N G A
R
A
G

4D-G

N G A
R
A
G

4D-V

N G A
R
A
G

MAZE-1

N G A
R
A
G

MAZE-2

N G A
R
A
G

20

40

60

80

100
SUCCESS %

Algorithm
Distance

D
IR

EC
T

IN
D

IR
EC

T

The only cases in which GPAT with the
Generalized measure is not significantly
better than GPAT with the Randomized

measure:

1) Niching is important.
2) The Generalized measure is efficient.

