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SOM in Robotic Path Planning

Part I

Problem Motivation
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SOM in Robotic Path Planning Problem Motivation Robotic Problems

Multi-Goal Path Planning Problem Motivation

Inspection, surveillance or environment monitoring missions.
E.g., Visit goal regions to take a sample measurement at each goal
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SOM in Robotic Path Planning Problem Motivation Robotic Problems

Multi-Goal Path Planning Problem Motivation

Inspection, surveillance or environment monitoring missions.
E.g., Visit goal regions to take a sample measurement at each goal

Problem Specification:

• A map of the environment
• A set of goals
• A shortest path visiting all

requested goals
• Sensing and motion constraints
• Autonomous navigation capabilities
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SOM in Robotic Path Planning Problem Motivation Inspection Planning

Inspection Planning

Find paths to “see” the whole environment (the Polygonal
DomainW) as quickly as possible.

Combination of sensing and motion costs
• Discrete sensing - (decoupled approach)

1. Sensor Placement
Art Gallery Problem (AGP) with d-visibility

2. Multi-Goal Path Planning Problem
Traveling Salesman Problem (TSP) inW

• Continuous sensing
• Watchman Route Problem (WRP)

Goals are not explicitly prescribed

• Additional constraints
limited sensing, motion constraints, etc

Jan Faigl,
Multi-Goal Path Planning for Cooperative Sensing,
Ph.D. thesis, CTU in Prague (2010).
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SOM in Robotic Path Planning Problem Motivation Problem Formulations

Multi-Goal Path Planning Problem as the Traveling
Salesman Problem

• Given a set of goals, the problem is to find a sequence of
goals’ visits.

• Having the paths between goals, the problem can be
formulated as the traveling salesman problem.

Traveling Salesman Problem (TSP):
Given a list of cities (goals) and the distances between each
pair of cities (path lengths), what is the shortest possible
route that visits each city exactly once and returns to the
origin city (depot).

http://www.tsp.gatech.edu
http: // www. tsp. gatech. edu/ history/ travelling. html

• Most common problem representations:
• Euclidean TSP – cities are 2D points in a plane.
• TSP on a graph – cities are vertices of the graph.
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SOM in Robotic Path Planning Problem Motivation Problem Formulations

Multi-Goal Path Planning for Multi-Robot Team
For a group of mobile robots, the problem becomes the
Multiple Traveling Salesman Problem (MTSP).

Optimization criteria:
• MinSum – For minimization of the total sum cost the

problem can be transformed to the TSP.
M. Bellmore M. and S. Hong (1974)

• MinMax – A variant with minimizing the maximal cost of a
tour must be solved directly.

• A more suitable for minimizing the time to visit all goals.
• MTSP→TSP provides degenerative solutions.
• The first attempt to solve the MTSP-MinMax was in 1995

P. M. França, M. Gendreau, G. Laporte, F. M. Müller,
The m-Traveling Salesman Problem with Minmax Objective,
Transportation Science, 29(3):267–275 (1995).

The approach is based on a Distance Constrained VRP,
where a solution of the MTSP is used as a constraint.
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SOM in Robotic Path Planning Problem Motivation Variants

Problem Variants

• Robots start from different locations (multi-depot).
• A path does not necessary by closed (planning an open

path without returning to the depot).
• Planning for a heterogenous robotic team (robots can have

different capabilities for traversing environment).

• Considering other constraints arising from robotics:
• kinematic
• sensing
• operational
• . . .
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SOM in Robotic Path Planning

Part II

Self-Organizing Maps for the Traveling
Salesman Problem
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SOM in Robotic Path Planning SOM for the TSP Overview of Approaches

Self-Organizing Maps – Literature

Self-Organizing Maps, Third Edition,
Kohonen, T. and Schroeder, M. R. and
Huang, T. S.,
Springer-Verlag New York, Inc. 2001.

http://www.cis.hut.fi/research/som-research

Self-Organizing Map Formation:
Foundations of Neural Computation,
Edited by K. Obermayer and T. J.
Sejnowski,
The MIT Press, 2001.
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SOM in Robotic Path Planning SOM for the TSP Overview of Approaches

Self-Organizing Maps for the TSP

• First approaches proposed in 1988.
B. Angéniol et al., Neural Networks, 1(4):289–293 (1988).

C. Fort, Biological Cybernetics, 59(1):33–40 (1988).

• In general, performance of SOM for the TSP can be
considered poor regarding classical heuristic approaches.

However, notice that Lin-Kernighan was proposed in 1973, while effi-
cient implementation is from 2000 by Keld Helsgaun.

• SOM can be used as a constructing heuristic.
L. I. Burke (1994)

• Many variants of SOM for the TSP:
• modification of adaptation rules
• combinations with heuristics, genetic algorithms, memetic,

or immune systems.
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

SOM for the TSP

• Two-layered unsupervised learning network
• Neurons’ weights are nodes N = {ν1, . . . , νm}) in a plane.

Neurons are “fixed” and only weights are adapted.

• The output layer organizes the nodes into a ring.
• The ring evolves in the problem domain during learning.
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

Adaptation phases

• Network adapts to a goal g, g ∈ G = {g1, . . .gn} in
two phases:

Goals are presented in a random order for a single epoch.

1. Winner is selected using its distance |S(ν,g)| to the goal g

ν∗ = argminν∈N |S(ν,g)|.
Competitive phase.

Neurons compete to be the winner, which is selected as the
closest one (neuron’s weights) to the goal using Euclidean
distance, i.e., |S(ν, g)| = |(ν, g)|.

2. ν∗ and its neighbors are updated using the learning rule

ν(t + 1) = ν(t) + µf (σ, l)|S(ν(t),g)|.
Cooperative phase.

µ – learning rate, f (σ, l) – neighboring (or activation) function
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

Neighbouring function f (σ, l)

• The neurons cooperate in the adaptation of the weights:
ν(t + 1) = ν(t) + µf (σ, l)|(ν(t),g)|.

• f (σ, l) must possess two important characteristics:
1. It should decrease for farther neighbors
2. Its pervasiveness should decrease during learning

f (σ, l) =
{

e−
l2

σ2 l < 0.2M
0 otherwise

,

• l is distance of ν from the winner ν∗.
• M is the number of neurons, M = kN for N goals, k ∈ 〈2,3〉.
• σ is called learning gain and it is decreased after each learn-

ing epoch (presentation of all goals to the network).
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

General adaptation schema

1. Initialization, e.g., randomize weights or create a small ring
around a goal.

2. Present all goals to the network and adapt the network
3. If all winners are sufficiently close to the goals (|(ν,g)| ≤ δ)

stop the adaptation, otherwise go to Step 2.
Alternatively, stop adaptation after n steps.
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

Determination of the final path

• After the adaptation, the final sequence of goals’ visit is
determined by traversing ring.

Each goal should have a distinct winner.

• A solution can be retrieved after each learning epoch.
• An inhibited mechanism can be used to guarantee distinct

winners
A neuron can be a winner only once in a single epoch.
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

A visualization of the learning process

SOM evolution for the problem berlin52 from the TSPLIB.
G. Reinelt, TSPLIB - A Traveling Salesman Problem Library (1991).

step 27 step 36 step 45

step 51 step 63 step 72
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

SOM algorithm for the TSP
• Selected algorithm providing relatively good solutions.

Samerkae Somhom, Abdolhamid Modares, Takao Enkawa,
A self-organising model for the travelling salesman problem,
Journal of the Operational Research Society, 919–928 (1997).

Input: G = {g1, . . . , gn} - given set of goals
Input: δ - maximal allowable error
Output: (ν1, . . . , νM ) - a sequence of neurons’ weights representing the goal tour.
N ← initialization(ν1, . . . , νm) // set weights to form a ring around g1
σ ← σ0 // set the initial value of the learning gain
repeat
I ← ∅ // clear inhibited neurons
error ← 0 // set the maximal error
Π← create a random permutation of the goals
foreach g ∈ Π(G) do

ν∗ ← argminν∈N ,ν /∈I |(g, ν)| // the closest non-inhibited ν to g
error ← max{error , |(g, ν∗)|} // update error
foreach νi in l neighborhood of ν∗ do

νi ← νi + µf (σ, l)|(g, νi )| // adapt winner and its neighbors

σ ← (1− α) · σ // decrease the learning gain
until error ≤ δ
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SOM in Robotic Path Planning SOM for the TSP Euclidean TSP

Parameters of the adaption
Parameters providing good results in practice.

Stability of the convergence and quality of solution.

N the number of goals (N = |G|)
M = 2.5N the number of neurons
σ0 = 12.41N + 0.06 the initial learning gain

σ0 depends of problem size (regarding quality
of solution). This is a linear regression model
that has been found experimentally.

µ = 0.6 the learning rate
I.e, move ν towards g about 60% of their dis-
tance at maximum.

α = 0.1 the gain decreasing rate
The gain is decreased after each epoch,

σ = (1− α)σ

δ = 0.001 the minimal required distance of
the winner from the goal

S. Somhom et al. (1997)
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SOM in Robotic Path Planning SOM for the TSP SOM variants for the TSP

Selected Modifications for the Euclidean TSP

• Dynamical creation of neurons (duplication/deletion)
B. Angéniol et al. (1988)

• Reducing topological defects using multiple scale
neighborhood functions (βj , γj parameters)

f (σ, l) = βjµe−(l/(γjσ))2
,

where βj ∈ {0.25, 0.5, 1, 0.5, 0.25, 0.125} and γj ∈ {0.25, 0.5, 1, 2, 4, 8}
K. Murakoshi and Y. Sato (2006)

• Initialization of the network (rhombic frame)

W. D. Zhang et al. (2006)

Jan Faigl, 2013 Machine Learning and Modelling Seminar 20 / 67



SOM in Robotic Path Planning SOM for the TSP SOM variants for the TSP

Considering geometrical properties of the ring and
topology of the cities

• Kohonen Network Incorporating Explicit Statistics (KNIES)
• The winner neuron and its neighboring neurons are

adapted towards the presented goal
• Other neurons are dispersed to keep properties unchanged

(the mean of neurons coincides with the mean of the cities).

N. Aras et al. (1999)

• Considering distance to the segment joining two neurons
(points)

A. Plebe (2002)

• Convex-hull expanding property
K.-S. Leung et al. (2004)

H. Yang and H. Yang (2005)
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SOM in Robotic Path Planning SOM for the TSP SOM variants for the TSP

Variants of Adaptation Parameters
Let k be the current number of the learning epoch.

• ν′ = ν + µf (σ, l)|(ν(t),g)|, σk = (1− α)σk−1

• µk = µ0e−
k
τ1 , σk = σ0e−

k
τ2

Kohonen’s exponential evolution of the paramters for
a better convergence.

• Decreasing the learning rate (α = 0.998α)
A. Zhu and S. X. Yang (2003)

Wendong Zhang and Yanping Bai and Hong Ping Hu,
The incorporation of an efficient initialization method and parameter
adaptation using self-organizing maps to solve the TSP,
Applied Mathematics and Computation, 172(1):603–623 (2006).

• µk = 1
4√k

• σk = (1− 0.01k)σk−1

• σ0 = 10
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SOM in Robotic Path Planning SOM for the TSP SOM variants for the TSP

Co-Adaptive Net

E. M. Cochrane and J. E. Beasley,
The co-adaptive neural network approach to the Euclidean travelling
salesman problem,
Neural Networks, 16(10):1499–1525 (2003).

It includes a comprehensive overview of previous approaches.

• One of the most complex SOM for the TSP
• A stronger co-operation between neurons

Adaptation of neighbors without moving the winner.

• Neuron-specific gain
σj = σ(1− |(νj , g)|/

√
(2))

• Adaptive neuron neighborhood
The size of the activation bubble is changed and it
also depends on σ.

• Near-tour to tour construction
An alternative for the inhibition mechanism.

Keeping the best found tour during learning.
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SOM in Robotic Path Planning SOM for the TSP Euclidean MTSP-MinMax

SOM for the MTSP-MinMax
Samerkae Somhom and Abdolhamid Modares and Takao Enkawa,
Competition-based neural network for the multiple travelling salesmen
problem with minmax objective,
Computers and Operations Research, 26(4):395–407 (1999).

• A ring for each salesman
M = 2.5N/k, k no. of salesmen

• Common depot
• A winner from each ring is

adapted towards depot.
• Then, nodes are adapted

towards other goals.
• MinMax criterion

depot

cities

neurons

ring of neurons

ν? = argminν |S(ν,g)| ·
(

1 +
distν − avg

avg

)
, (1)

where distν is length of the ring in which ν is, and
avg is the average length of the rings.
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SOM in Robotic Path Planning SOM for the TSP Euclidean MTSP-MinMax

MTSP-MinMax visualization of SOM evolution

step 36 step 41 step 45

step 51 step 63 step 74
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SOM in Robotic Path Planning

Part III

Self-Organizing Maps for the Multi-Goal Path
Planning
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning Problem Definition

Multi-Goal Path Planning Problem

Find shortest path connecting given set of goals.

Specification:

• Input:
• A map of the environment

The polygonal domainW
• A set of goals

• Output:
• A shortest path visiting all

requested goals

• Paths connecting obstacles must respect obstacles.
Additional motion constraints can be considered.
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the TSP inW

SOM for the Multi-Goal Path Planning Problem (MTP)

• Can be based on SOM for the TSP.
• How to compute |S(ν,g)|?

A distance metric for the input vector and neuron’s weights.

1. Euclidean distance
provides poor solutions

2. |S(ν,g)| has to respect obstacles
• S(ν, g) - the shortest path among

obstacles.
• Adaptation - a movement of ν

toward g along S(ν, g)

Paths between nodes are only for a visualization!
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the TSP inW

Multi-Robot Multi-Goal Path Planning

• Multiple Traveling Salesman
Problem with MinMax inW

• The MTSP-MinMax must be
solved directly

MTSP→TSP provides degenerative solutions

• For the TSP we need to resolve neuron–goal distance and
path queries.

Single point queries, goals are fixed.

• For the MTSP-MinMax we need to resolve neuron–neuron
distance queries.

Two points queries.

Naïve approach works, but it is too computational demanding
to for practical scenarios such as search and rescue missions.

This difficulty has been noted by several authors.
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SOM for a Graph Input

Takeshi Yamakawa, Keiichi Horio, Masaharu Hoshino,
Self-Organizing Map with Input Data Represented as Graph,
Neural Information Processing, Lecture Notes in Computer Science,
4232:907–914 (2006).

• Neurons movements are restricted to the graph edges.
• During adaptation neurons moved along shortest path in

the graph.

It seems as a suitable solution; however, using the
visibility graph of the environment and goals provides
poor solutions.
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Dealing with Shortest Paths inW

Approximate shortest path to the goal using precomputed visi-
bility graph, convex partitioning and ray-shooting technique.

1. A node is always in some convex cell.
All cells are formed from the map vertices.

2. A rough path goes over a map vertex.
3. A path is refined using ray-shooting technique.

path over v0 path over v1 full refinement

Paths are provided in units of µs.

The approximation is enabling technique for applying SOM inW.
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SOM with Approximate Shortest Path inW
Approximate shortest path is sufficient.

A full path refinement is not necessary.

The approximation becomes a more precise as a
node moves towards the goal.

J. Faigl, M. Kulich, V. Vonásek, L. Přeučil,
An Application of Self-Organizing Map in the non-Euclidean
Traveling Salesman Problem,
Neurocomputing, 74(5): 671–679 (2011).

Similar approximation also works for two-points path query.
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SOM for the MTSP-MinMax inW

step 17 step 30 step 40 step 46

step 52 step 55 step 60 step 79
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Example of MTSP-MinMax Solutions

GENIUS, 46.3 m, 1.5 % GENIUS, 11.7 m, 1.6 % GENIUS, 80.5 m, 0.4 %

SOM, 46.1 m, 6.0 % SOM, 11.6 m, 3.4 % SOM, 81.7 m, 5.1 %

SOM provides competitive solutions, while it prefers non-crossing paths.
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the TSP inW

Graph Representation of Freespace ofW
Triangular mesh with a sufficient density.

• SOM for the graph input.
T. Yamakawa et al. (2006)

• Nodes movement (weights’
changes) are restricted to
be on graph edges.

• Paths found in the graph,
e.g., by Dijkstra’s algorithm.

• Sequence of goals’ visits is
determined from the ring

• Final path is found using
visibility graph of the goals.

The approach is usable; however, it does not provide better
solutions or lower computational requirements than the ap-
proximate shortest path.

Jan Faigl, 2013 Machine Learning and Modelling Seminar 35 / 67



SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the TSP inW

Generalization of the Graph Based Approach

• Extended variant of the Multi-Depot MTSP-MinMax on a
graph for logistic planning

• Cost is associated not only to
edges, but also to vehicles

• Triangle inequality does not hold
• Vehicles can have initial added

cost
E.g., a travel cost from a garage
to a starting location.

• The problem is to determine the number of particular
vehicles to visit given set of cities within a given time
constraint.

One of the SOM feature is that solutions found look accept-
able for the operators.
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Performance of SOM for the TSP inW
• Combination of the new and already published

modifications with implementation optimizations.
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Initialization (including computation of the distance matrix) is some-
times more computationally demanding than the adaption.

Jan Faigl
On the Performance of Self-Organizing Maps for the non-Euclidean
Traveling Salesman Problem in the Polygonal Domain
Information Sciences, 181(19):4214–4229, (2011)

Jan Faigl, 2013 Machine Learning and Modelling Seminar 37 / 67



SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the TSP inW

SOM’s Features inW

• The geometric interpretation of the adaptation procedure.
Straightforward extensions for variants of multi-goal path planning.

• Any path planning method may eventually be used for de-
termining |S(ν,g)|.

• In MTSP, solutions with mutually non-crossing tours are pre-
ferred in the SOM adaptation.

• Flexible to addressed heterogeneous robots and re-planning.

An evolution of the ring in the polygonal domain is inspiring for other problems.
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the WRP inW

Watchman Route Problem (WRP)
Compute coverage considering d-visibility ofW from the ring of
nodes and adapt nodes towards uncovered parts ofW.

• Convex cover set ofW created on top of a triangular mesh
• Incident convex polygons with a straight line segment are

found by walking in a triangular mesh technique.

Having this supporting structure, we can consider coverage of
the ring and adaptation towards not yet covered parts ofW.
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM for the WRP inW

Algorithm for the d-WRP

Input: T = (V ,E ,T ) – a triangular mesh ofW
Input: P – a set of convex polygons associated to T
Output: (ν1, . . . , νm) - nodes representing a route
r ← initialization // create a ring of nodes
repeat

I ← ∅ // a set of inhibited nodes
Tc ← triangles covered by the current ring r
Π(T )← create a random permutation of triangles
foreach T ∈ Π(T ) do

if T /∈ Tc then
pa ← centroid(T ) // attraction point
ν? ← select winner node to pa, ν? /∈ I
Pc ← {all associated convex polygons to T}
if ν? /∈ P,P ∈ Pc then

adapt(ν?, pa)

T c ← T c ∪ {T |T ∈ P,P ∈ Pc}
I ← I ∪ {ν?} // inhibit winner node

G← (1− α) · G // decrease the gain
until all triangles are covered by the current ring
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Evolution of SOM for the WRP

step 8 step 16 step 48

step 73 step 81 step 111

Supporting triangular mesh with 1417 triangles and 100 convex polygons.
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SOM based WRP with d-visibility

Ring of nodes represents watchman route and nodes are
adapted towards uncovered parts ofW.

Representatives of uncovered parts are used as attraction
points towards them the nodes are adapted.

d-WRP d-WRP MinMax Patrolling routes

Coverage from the ring is determined during the adaptation.

Jan Faigl,
Approximate Solution of the Multiple Watchman Routes Problem with
Restricted Visibility Range,
IEEE Transactions on Neural Networks, 21(10):1668–1679 (2010).
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM with Trajectory Planning

Multi-Goal Planning with Trajectory Generation

• The distance metric can be computed by various
approaches.

It does not affect the main principle of SOM.

• A real computational requirements of the metric evaluation
is crucial.

Many distance / path queries have to be resolved during the SOM learning.

• Two approaches have been studied:
• Artificial Potential Field (APF)

Faigl J., Mačák J., ESANN, 2011
• Rapidly-Exploring Random Tree (RRT)

Vonásek et al., RoMoCo, 2009

Vonásek et al., ECMR, 2011
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM with Trajectory Planning

Artificial Potential Field (APF) – Navigation Function
Navigation function f provides a path to the goal for an arbitrary
point in the environment, i.e., -∇f (q) points to the goal.

• Harmonic functions have only
one extreme

∇2f (g) = 0

Dirichlet condition for the goal boundary
Neuman condition for obstacles boundary

• Finite Element Method
• Solution can be found for a goal

with an arbitrary shape.
• Segment goals (guards).

During the SOM evolution inW particular points from
the segment goals are selected and the final inspec-
tion path is found.
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SOM in Robotic Path Planning SOM for the Multi-Goal Path Planning SOM with Trajectory Planning

SOM with RRT
Rapidly-Exploring Random Tree - (RRT)

kinodynamic constraints

• Standard RRT approaches have poor performance
Especially in narrow passages

• RRT–Path – an improved RRT for narrow passages
Vonásek V. et al., RoMoCo, 2009

• RRT–Pathext – Multi-Goal Motion Planner
A feasibility study to find patrolling trajectories using SOM with the RRT–Pathext

Vonásek et al., ECMR’11
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SOM in Robotic Path Planning

Part IV

Unified Self-Organizing Maps for 2D
Multi-Goal Path Planning Problems
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SOM in Robotic Path Planning Unified SOM for 2D Problems Problem Definition

Multi-Goal Path Planning with Polygonal Goals
Motivation:

Visit a given set of polygonal goals.
E.g., to take a sample measurement at each goal

Snapshot of the goal area

Camera for

navigation

Camera for

navigation

Snapshot of the goal areaSnapshot of the goal areaSnapshot of the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for

navigation

Camera for

navigation

the goal area

Camera for sampling

Snapshot of the goal area

Camera for

navigation

The problem is a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN).

NP-hard, APX-hard
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SOM in Robotic Path Planning Unified SOM for 2D Problems Polygonal Goals

Dealing with Polygonal Goals
Goals are simple (convex) polygons.

A polygonal goal g can be represented by its centroid c(g).

Centroids can be used as point goals.
Straightforward extensions can provide better solutions:

Based on geometrical interpretation.
1. Interior of the goal

• Use c(g) of the goal g as a point goal.
• Do not adapt nodes inside the goal.

2. Attraction point
• Select winner using c(g)
• Adapt neurons towards intersection point

of S(ν, c(g)) and g.

3. Alternate goal
• Select winner using border of the goal g.

g as a set of segments inW
• Adapt neurons towards the point at the

border of g.
The alternate goal approach does not require convex goals.
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SOM in Robotic Path Planning Unified SOM for 2D Problems Proposed Adaptation Schema

SOM for the MTP with Polygonal Goals

• SOM for the TSP inW
• Distance metric - the shortest path bettwen two segments

Approximate path is used – Faigl et al. (2011)

• Goal - segments {sg
1 , . . . , s

g
k }

• Ring - segments {sr
1, . . . , s

r
l }

nodes and map vertices

• Winner Selection
1. Determine a pair (sr

i , s
g
j ) with

minimal distance
two resulting points pr ∈ sr

i , pg ∈ sg
j

2. The winner is at pr

a new neuron may be created at pr

• Adapt the winner toward pg
using adaptation for point goals
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Proposed Adaptation Schema

1. For each goal g
Winner selection

regarding |S(pr , pg)|
Euclidean pre-selection of (sr

i , s
g
j ).

two resulting points pr ∈ sr
i , pg ∈ sg

j

Approx. shortest path S(pr , pg).

Adapt toward the point goal pg

2. Regenerate ring
• Preserve winners
• Connect winners
• Add vertices as additional

neurons

3. Termination condition
“All goals contain a distinct winner.”

r

i

Presented goal

to the network s
g

j

pg

pr

Euclidean distance
s

Ring segment

The final path is constructed from the last winners.
using approx. shortest path
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3. Termination condition
“All goals contain a distinct winner.”

The final path is constructed from the last winners.
using approx. shortest path
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SOM in Robotic Path Planning Unified SOM for 2D Problems Results

Problem Variants

Polygonal Goals
Safari Route Problem

n=9, T= 0.34 s

Convex Cover Set
Watchman Route Problem

n=106, T=2.66 s

Point Goals
Traveling Salesman Problem

n=68, T=0.35 s

• Solutions of the MTP with polygonal goals
• Improved quality of solutions for the Watchman Route Problem
• Scales better for problems with more goals

SOM provides a unified approach to solve various
problems inW.

SOM benefit over other approximating or optimal approaches.
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SOM in Robotic Path Planning Unified SOM for 2D Problems Features of the Schema

Features of the Proposed Adaptation Schema

• Self-adjustment of the number
of neurons

• It Seems to be independent
on adaptation parameters

• σ0 =10
• α =0.001
• µ = 1/ 4

√
k ; µ0 = 1

practically parameter less Non-Convex Goals, T=0.1 s

SOM forms a framework for relatively simple algorithms
providing high quality solutions of routing problems inW.

J. Faigl, L. Přeučil
Self-Organizing Map for the Multi-Goal Path Planning with Polygonal
Goals,
ICANN, 85–92 (2011).
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SOM in Robotic Path Planning

Part V

Multi-Goal Path Planning with Localization
Uncertainty
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SOM in Robotic Path Planning Planning with Localization Uncertainty Problem Definition

Autonomous Inspection / Surveillance

The problem is to maximize the frequency of goals’ visits.

It can be achieved by:
• The shortest (fastest) path

connecting the goals
Multi-Goal Path Planning ∼ TSP

• Precise navigation to the goals

Multi-criteria optimization

The idea is to consider a model of the localization uncertainty during
the planning to find a path to increase robustness and reliability of the
autonomous navigation to the goals.

We need a realistic model of the localization uncer-
tainty evolution.
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SOM in Robotic Path Planning Planning with Localization Uncertainty Autonomous Navigation

Autonomous Navigation
SURFNav - Simple and Stable Navigational Method

• Map and Replay Technique
The map is a sequence of learned segments

• Detection of Salient Objects
Speeded Up Robust Features (SURF)

• Navigation – a sequence of segments
• Bearing-Only Correction
• Dead-Reckoning for switching segments

• Model of the navigation
• Covariance matrix of the robot position

end of the segment (i, i + 1)
Ai+1 = RT

i M i R i Ai RT
i MT

i R i + RT
i S i R i ,

where

M i =

[
1 0
0 m(ai , ai+1,M)

]
,S i =

[
siη

2 0
0 τ2

]
m(ai , ai+1,M) - model of the visible landmarks
η, τ ∼ “odometry and heading error” (variances)
si = |(ai , ai+1)| - the segment length

Jan Faigl, 2013 Machine Learning and Modelling Seminar 55 / 67



SOM in Robotic Path Planning Planning with Localization Uncertainty Autonomous Navigation

Autonomous Navigation
SURFNav - Simple and Stable Navigational Method

• Map and Replay Technique
The map is a sequence of learned segments

• Detection of Salient Objects
Speeded Up Robust Features (SURF)

• Navigation – a sequence of segments
• Bearing-Only Correction
• Dead-Reckoning for switching segments

• Model of the navigation
• Covariance matrix of the robot position

end of the segment (i, i + 1)
Ai+1 = RT

i M i R i Ai RT
i MT

i R i + RT
i S i R i ,

where

M i =

[
1 0
0 m(ai , ai+1,M)

]
,S i =

[
siη

2 0
0 τ2

]
m(ai , ai+1,M) - model of the visible landmarks
η, τ ∼ “odometry and heading error” (variances)
si = |(ai , ai+1)| - the segment length

Jan Faigl, 2013 Machine Learning and Modelling Seminar 55 / 67



SOM in Robotic Path Planning Planning with Localization Uncertainty Autonomous Navigation

Reliability of the Navigation

One-day navigation –
changing lighting conditions

Long-term reliability –
seasonal changes

Night navigation

Autonomous navigation for a low-cost UAV platform

Processing time (1024x768)
CPU (2x2 GHz) ∼ 1 FPS
GPU

• NVS 320 ∼ 25 FPS
• ION ∼ 15 FPS

FPGA (Virtex 5) ∼ 10 FPS, 9 W

Stability theoretically and experimentally proven
Krajník T., Faigl J., Vonásek V., Košnar K., Kulich M., Přeučil L.,
Simple yet stable bearing-only navigation,
Journal of Field Robotics,
27(5):511–533, 2010.
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SOM in Robotic Path Planning Planning with Localization Uncertainty Principle

Principle of Localization Uncertainty Decreasing

The stability of the navigation is based on bearing corrections

position

increased uncertainty

uncertainty

in longitudial direction
selected perimeter

waypoint

uncertainty

position

auxiliary navigation

Heading corrections are more precise than odometry

The localization uncertainty can be decreased by auxiliary
navigation waypoints

Visit an auxiliary navigation waypoint prior visiting the goal
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SOM in Robotic Path Planning Planning with Localization Uncertainty SOM based Planning

Multi-Goal Path Planning with Auxiliary Waypoints

• Map of the environment
• A set of the point goals

Traveling Salesman Problem (TSP)

• Auxiliary navigation waypoints
A variant of the TSPN

• Selection of the most suitable
auxiliary navigation waypoint

w = argminwi∈W ||Awi ,g ||

SOM proposes auxiliary navigation waypoints
that decrease the localization uncertainty at the
goals.
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SOM in Robotic Path Planning Planning with Localization Uncertainty Results

Simulation Results

• SOM selects auxiliary navigation waypoints that decrease
the localization uncertainty at the goals.

L=416 m, Emax =1.23 m L=425 m, Emax =0.7 m
Emax - expected error at the goal
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SOM in Robotic Path Planning Planning with Localization Uncertainty Results

Experimental Results (1/2) - Outdoor Environment

• P3AT robot
• City park - traveling on pathways

several runs

• Random pedestrians
Simple TSP Proposed approach

L=184 m, Eavg=0.57, Emax =0.63 L=202 m, Eavg=0.35, Emax =0.37

• Real overall error at the goals decreased from 0.89 m→ 0.58 m
(improvement about 35%)
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SOM in Robotic Path Planning Planning with Localization Uncertainty Results

Experimental Results (2/2) - Indoor Environment

Small low-cost platforms

Small UGV - MMP5

Overall error at the goals decreased from
16.6 cm→ 12.8 cm

Small UAV - Parrot AR.Drone

Improvement of the success of the goals’
visits 83%→95%

Faigl et al., ICR’10

Faigl J., Krajník T., Vonásek V., Přeučil L.,
On Localization Uncertainty in an Autonomous Inspection,
ICRA, 1119–1124 (2012).
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SOM in Robotic Path Planning

Part VI

Recent, Ongoing and Future Work
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SOM in Robotic Path Planning Recent, Ongoing and Future Work Surveillance in 3D

Surveillance of Objects of Interest in 3D

Problem: Find the shortest closed inspection path I such that
all objects of interest M will be seen from I by the sensor with
the visibility range ρ.

The idea is based on SOM for the WRP (2D):
• SOM evolves on a graph GPRM

• Objects of interest are repre-
sented as a set of triangles

• Objects can be covered from
covering spaces

• Adaptation towards covering
spaces of each m ∈ M

Fast visibility queries are the key issue
P. Janoušek, Master’s Thesis, 2013 (to be defended)
P. Janoušek, J. Faigl, Speeding Up Coverage
Queries in 3D Multi-Goal Path Planning, ICRA 2013.
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SOM in Robotic Path Planning Recent, Ongoing and Future Work Spatio-Temporal Planning

Self-Organizing Maps for Multi-Goal Path Planning

• Problems:
• Optimal sampling design and motion constraints
• High-dimensional configuration spaces
• Models of sources of uncertainties

planning in belief space
• Planning a short and low risk path for autonomous

underwater vehicles (AUVs)
• Planning in Spatio-Temporal Spaces

Considering ocean currents affecting the navigation.
• Framework for Planning Robotic Missions:

• Inspection, Coverage, Surveillance
• Environment Monitoring and Data Collections
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Part VII

Concluding Remarks
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SOM in Robotic Path Planning Conclusion Concluding Remarks

Concluding Remarks

• Self-organizing map for multi-goal path planning problems
in 2D environments.

• The main idea of the planning is based on the SOM princi-
ple augmented by supporting structures.

• Combining simple approximations provide quality solutions.
• Intuitive extensions based on geometric interpretation of the

learning process.

• Further challenges
• High dimensional configuration spaces

kinematic or kinodynamic constraints
• Considering time domain

spatio-temporal spaces
• Considering autonomous navigation (sources of localization

uncertainties)
belief/probability spaces
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SOM in Robotic Path Planning

Questions and Discussion

Looking for motivated students for bachelor, master
or doctoral theses. Contact me via faiglj@fel.cvut.cz

http://agents.fel.cvut.cz/~faigl
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