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3/1
Example: Linear embeding for non-linear classification

Input features: x = (x1, . . . , xn)T ∈ Rn

Embedding: The original features are discretized to obtain a sparse representation
φ : Rn → {0, 1}n·D such that

φij(x;ν) =

{
1 if xi ∈ [νi,j−1, νi,j)
0 otherwise

where ν = (ν1,0, . . . , ν1,D, . . . , νn,0, . . . , νn,D) ∈ Rn·(D+1) is a set of thresholds.
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Example: Linear embeding for non-linear classification

Input features: x = (x1, . . . , xn)T ∈ Rn

Embedding: The original features are discretized to obtain a sparse representation
φ : Rn → {0, 1}n·D such that

φij(x;ν) =

{
1 if xi ∈ [νi,j−1, νi,j)
0 otherwise

where ν = (ν1,0, . . . , ν1,D, . . . , νn,0, . . . , νn,D) ∈ Rn·(D+1) is a set of thresholds.

Decision rule h : Rn → {+1,−1} based on thresholding a linear score
h(x;v,ν) = sgn(f(x;v,ν)) where

f(x;v,ν) =

n∑
i=1

D∑
j=1

vijφij(x;ν)

Problem: How to learn v and ν ?
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Example: Learning weights and discretization simultaneously

Idea: construct initial discretization ν uniformly with a high number of bins D and then
merge the bins during the course of learning.
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Example: Learning weights and discretization simultaneously

Idea: construct initial discretization ν uniformly with a high number of bins D and then
merge the bins during the course of learning.

Modified SVM algorithm: Given a set of training examples {(x1, y1), . . . , (xm, ym)}
∈ (Rn × {−1, 1})m, learning of weights v is formulated as a convex problem:

min
v∈Rn·D

[
λ‖v‖2 +

1

m

m∑
i=1

max
{

0, 1− yi
n∑
i=1

D∑
j=1

vijφij(x;ν)
}

︸ ︷︷ ︸
SVM objective function

+ γ

n∑
i=1

D−1∑
j=1

|vi,j − vi,j+1|︸ ︷︷ ︸
Added term

]

where the hyper-parameter γ > 0 implicitly controls the number of similar weights.

Remark: vi,j = vi,j+1 is the same like merging corresponding bin [νi,j−1, νi,j) and
[νi,j, νi,j+1) to a single bin [νi,j−1, νi,j+1).
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5/1
Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.001
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.002
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.003
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.004
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.005
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.006
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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5/1
Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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feature x

fe
a

tu
re

 y

trnerr=12.80%, tsterr=9.80%

0 200 400 600
−0.5

0

0.5

1

feature

w
e

ig
h

t

http://cmp.felk.cvut.cz


0 0.01 0.02 0.03
0

0.05

0.1

0.15

0.2

0.25

rule simplicity (gamma)

e
rr

o
r

 

 

trn err

tst err
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.

λ = 0.001, γ = 0.020
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Example: Results on toy data

� A 2D point (x, y) is described by 5 real-
valued features (x, y, x2, y2, xy).

� Each feature is discretized to D = 100 bins
leading to 5 · 100 = 500 binary features.
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Learning piece-wise constant functions

We want to learn a piece-wise constant (PWC) function

fpwc(x;w,θ) =

B∑
i=1

[[x ∈ [θi−1, θi)]]wi = wk(x,θ)

where x ∈ R is the input variable, B is the number of bins, θ = (θ0, . . . , θB)T ∈ RB+1 is the
discretization of input variable and w = (w1, . . . , wB)T ∈ RB are the weights.

w1

w2

w3

θ0 θ1 θ2 θ3

x

B = 3, θ = (θ0, . . . , θ3)T , w = (w1, . . . , w3)T
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7/1
Learning complete parametrization of PWC functions

Standard approach: for a fixed discretization θ learn weights by a convex algorithm

w∗ ∈ argmin
w∈RB

Fpwc(w,θ) := g
(
fpwc(x

1;w,θ), . . . , fpwc(x
m;w,θ)

)
where g : Rm → R depends on fpwc evaluated on a sample T = {x1, . . . , xm} ∈ Rm.
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7/1
Learning complete parametrization of PWC functions

Standard approach: for a fixed discretization θ learn weights by a convex algorithm

w∗ ∈ argmin
w∈RB

Fpwc(w,θ) := g
(
fpwc(x

1;w,θ), . . . , fpwc(x
m;w,θ)

)
where g : Rm → R depends on fpwc evaluated on a sample T = {x1, . . . , xm} ∈ Rm.

We want to solve: learning the discretization and weights simultaneously

(w∗,θ∗) ∈ argmin
w∈RB,θ∈ΘB

Fpwc(w,θ)
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7/1
Learning complete parametrization of PWC functions

Standard approach: for a fixed discretization θ learn weights by a convex algorithm

w∗ ∈ argmin
w∈RB

Fpwc(w,θ) := g
(
fpwc(x

1;w,θ), . . . , fpwc(x
m;w,θ)

)
where g : Rm → R depends on fpwc evaluated on a sample T = {x1, . . . , xm} ∈ Rm.

We want to solve: learning the discretization and weights simultaneously

(w∗,θ∗) ∈ argmin
w∈RB,θ∈ΘB

Fpwc(w,θ)

A set of admissible discretizations ΘB ⊂ RB+1 of the variable x ∈ R into B bins
contains all vectors θ = (θ0, . . . , θB)T satisfying:

θi = νli , i ∈ {0, . . . , B}, where
l0 = 0 ,
li < li+1 , i ∈ {1, . . . , B − 1} ,
lB = D ,

and ν = (ν0, . . . , νD)T ∈ RD+1 is an initial discretization such that ν0 < · · · < νD.
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8/1
Re-parametrization of PWC functions

For any (w,θ) ∈ (RB ×ΘB) there exists a unique v ∈ VB =
{
v ∈ RD

∣∣c(v) ≤ B − 1
}
,

where c(v) =
∑D−1
i=1 [[vi 6= vi+1]], such that

fpwc(x;w,θ) = fpwc(x;v,ν) , ∀x ∈ R .
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8/1
Re-parametrization of PWC functions

For any (w,θ) ∈ (RB ×ΘB) there exists a unique v ∈ VB =
{
v ∈ RD

∣∣c(v) ≤ B − 1
}
,

where c(v) =
∑D−1
i=1 [[vi 6= vi+1]], such that

fpwc(x;w,θ) = fpwc(x;v,ν) , ∀x ∈ R .

The equivalence between the two parametrizations implies that

min
{
Fpwc(w;θ) | (w,θ) ∈ (RB ×ΘB)

}
= min

{
Fpwc(v;ν) | v ∈ VB

}
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9/1
Learning PWC functions via convex programming

The original problem: Learning of the discretization and the weights of a PWC function is
equivalent to solving

v∗ ∈ argmin
v∈RD

Fpwc(v,ν) s.t. c(v) ≤ B − 1 , (*)

and using v∗ to recover the compressed parametrization (w∗,θ∗).
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9/1
Learning PWC functions via convex programming

The original problem: Learning of the discretization and the weights of a PWC function is
equivalent to solving

v∗ ∈ argmin
v∈RD

Fpwc(v,ν) s.t. c(v) ≤ B − 1 , (*)

and using v∗ to recover the compressed parametrization (w∗,θ∗).

A convex relaxation of the problem (*) reads

v∗ ∈ argmin
v∈RD

Fpwc(v;ν) s.t.
D−1∑
i=1

|vi − vi+1| ≤ B − 1 ,

where c(v) =
∑D−1
i=1 [[vi 6= vi+1]] = ‖d‖0, d = (v1 − v2, . . . , vD−1 − vD)T , is replaced by the

L1-norm c̃(v) = ‖d‖1.
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10/1
Learning piece-wise linear functions

We want to learn a piece-wise linear (PWL) function

fpwl(x;w,θ) = wk(x,θ)−1 · (1− α(x,θ)) + wk(x,θ) · α(x,θ)
)

where x ∈ R is the input variable, θ ∈ RB+1 is the discretization, B is the number of bins,
w ∈ RB+1 are the weights and α : R× RB+1 → [0, 1] is defined as

α(x,θ) =
x− θk(x,θ)−1

θk(x,θ) − θk(x,θ)−1

w1

w2
x

w0

w3

θ0 θ1

θ2

θ3

B = 3, θ = (θ0, . . . , θ3)T , w = (w0, w1, . . . , w3)T
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11/1
Learning piece-wise linear functions

Task formulation: We want to learn the discretization θ∗ ∈ ΘB simultaneously with the
weights w∗ ∈ RB by solving

(w∗,θ∗) ∈ argmin
w∈RB+1,θ∈ΘB

Fpwl(w,θ) := g
(
fpwl(x

1;w,θ), . . . , fpwl(x
m;w,θ)

)
where g : Rm → R depends on fpwl evaluated on a sample T = {x1, . . . , xm} ∈ Rm.

http://cmp.felk.cvut.cz


12/1
Re-parametrization of PWL functions

For any (w,θ) ∈ (RB+1 ×ΘB) there exists uniq u ∈ UB =
{
u ∈ RD+1

∣∣e(u) ≤ B − 1
}
,

where e(u) =
∑D−1
i=1 [[ui 6= 1

2(ui−1 + ui+1)]], such that

fpwl(x;w,θ) = fpwl(x;u,ν) , ∀x ∈ R .

http://cmp.felk.cvut.cz


12/1
Re-parametrization of PWL functions

For any (w,θ) ∈ (RB+1 ×ΘB) there exists uniq u ∈ UB =
{
u ∈ RD+1

∣∣e(u) ≤ B − 1
}
,

where e(u) =
∑D−1
i=1 [[ui 6= 1

2(ui−1 + ui+1)]], such that

fpwl(x;w,θ) = fpwl(x;u,ν) , ∀x ∈ R .

The equivalence between the two parametrizations implies that

min
{
Fpwl(w;θ) | (w,θ) ∈ (RB+1 ×ΘB)

}
= min

{
Fpwl(u;ν) | u ∈ UB

}
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13/1
Learning PWL functions via convex programming

The original problem: Learning of the discretization and the weights of PWL function is
equivalent to solving

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t. e(u) ≤ B − 1 , (*)

and using u∗ to recover the compressed parametrization (w∗,θ∗).
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13/1
Learning PWL functions via convex programming

The original problem: Learning of the discretization and the weights of PWL function is
equivalent to solving

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t. e(u) ≤ B − 1 , (*)

and using u∗ to recover the compressed parametrization (w∗,θ∗).

A convex relaxation: of the problem (*) reads

u∗ ∈ argmin
u∈RD+1

Fpwl(u,ν) s.t
D−1∑
i=1

∣∣ui − 1

2
ui−1 −

1

2
ui+1

∣∣ ≤ B − 1 ,

where e(u) =
∑D−1
i=1 [[ui 6= 1

2(ui−1 + ui+1)]] = ‖d‖0,
d = (u1 − 1

2(u0 + u2), . . . , uD − 1
2(uD−1 + uD+1)T , is replaced by the L1-norm proxy.
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Recovering the bins by rounding the solution

� The histograms emerging in the parameters v ∈ RD are not perfect (c(v) is often high)
due to the L1-norm approximation and numerical errors.

� For given v, a rounded solution v̄ with B bins can be found by

v̄ ∈ argmin
v′∈RD

‖v − v′‖2 s.t. c(v′) = B − 1

which can be solver in O(D2 ·B) time by dynamic programming.

 

 

rounded, B=8
original

0 100 200 300 400
−0.05

0

0.05
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15/1
Example application: classification of histograms

The classification model: a linear classifier h(X;w,θ) = sign(fpwc(X;w,θ)) assigning
X ∈ Rn×d, which describes n sequences of d elements, according to sign of

fpwc(X;w,θ) =

n∑
i=1

bi∑
j=1

1

d

d∑
k=1

[[Xi,k ∈ [θi,j−1, θi,j)]]wi,j
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15/1
Example application: classification of histograms

The classification model: a linear classifier h(X;w,θ) = sign(fpwc(X;w,θ)) assigning
X ∈ Rn×d, which describes n sequences of d elements, according to sign of

fpwc(X;w,θ) =

n∑
i=1

bi∑
j=1

1

d

d∑
k=1

[[Xi,k ∈ [θi,j−1, θi,j)]]wi,j

The task: learn w ∈ RB and θ ∈ ΘB, where ΘB is induced by ν ∈ RD·n, by solving

(w∗,θ∗) = argmin
w∈RB,θ∈ΘB

F svm
pwc (w,θ;λ) :=

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwc(x
i,w,θ)

}
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Example application: classification of histograms

The classification model: a linear classifier h(X;w,θ) = sign(fpwc(X;w,θ)) assigning
X ∈ Rn×d, which describes n sequences of d elements, according to sign of

fpwc(X;w,θ) =

n∑
i=1

bi∑
j=1

1

d

d∑
k=1

[[Xi,k ∈ [θi,j−1, θi,j)]]wi,j

The task: learn w ∈ RB and θ ∈ ΘB, where ΘB is induced by ν ∈ RD·n, by solving

(w∗,θ∗) = argmin
w∈RB,θ∈ΘB

F svm
pwc (w,θ;λ) :=

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yifpwc(x
i,w,θ)

}

The convex relaxation: Learning is converted to a convex program

v∗ ∈ argmin
v∈RnD

[
F svm

pwc (v,ν;λ) + γ

n∑
i=1

D−1∑
j=1

|vi,j − vi,j+1|
]
.
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Experiments: malware detection

Task is to detect malware based on sequences of features which are extracted from HTTP
proxy logs describing communication between a user computer and a server.

Host

server

x1

xn

...

x2

Histograms

x2

x1

xn

...

x2

x1

xn

...

User
HTTP request

computer

URL

Proxy log (flow)

duration

user agent

· · ·

transferred bytes

MIME-Type

Linear

classifier

legitimate

malicious

or

features

tdt1 t2

· · ·

Training data has 7,028 positive (malware) and 44,338 negative (legitimate) samples.
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Experiments: malware detection
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Experiments: malware detection

 

 

learned/rounding
learned
equdistant

w
ei
gh

t
va
lu
e

bin index
7100 7200 7300 7400 7500 7600

−0.5

0

0.5

 

 

learned
equdistant

re
ca
ll
a
t9

5
%

number of bins
50 100 150 200 250

45

50

55

60

SVM weights learned with three different
algorithms: a) linear SVM with 256
equidistant bins, b) proposed simultaneous
learning of weights and bins, c) same as b)
to define new bins (rounding) that are used
for learning new linear SVM classifier.

Recall at precision 95% as a function of
the number of bins for the representation
with a) equidistant bins and b) learned non-
equidistant bins.

http://cmp.felk.cvut.cz


19/1
Example application: learning PWL histograms

The model: probability density modeled by a PWL function

p̂pwl(x;w,θ) =
(
1− α(x,θ)

)
wk(x,θ)−1 + α(x,θ)wk(x,θ)

where w ∈ RB+1
+ are non-negative weights selected such that

∫
p̂pwl(x;w,θ)dx = 1.
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Example application: learning PWL histograms

The model: probability density modeled by a PWL function

p̂pwl(x;w,θ) =
(
1− α(x,θ)

)
wk(x,θ)−1 + α(x,θ)wk(x,θ)

where w ∈ RB+1
+ are non-negative weights selected such that

∫
p̂pwl(x;w,θ)dx = 1.

Task: given T = {x1, . . . , xm} ∈ Rm, learn the parameters w ∈ W and θ ∈ ΘB by

(w∗,θ∗) = argmin
w∈W,θ∈ΘB

F nnl
pwl(w,θ) := −

m∑
i=1

log p̂pwl(x
i;w,θ)
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Example application: learning PWL histograms

The model: probability density modeled by a PWL function

p̂pwl(x;w,θ) =
(
1− α(x,θ)

)
wk(x,θ)−1 + α(x,θ)wk(x,θ)

where w ∈ RB+1
+ are non-negative weights selected such that

∫
p̂pwl(x;w,θ)dx = 1.

Task: given T = {x1, . . . , xm} ∈ Rm, learn the parameters w ∈ W and θ ∈ ΘB by

(w∗,θ∗) = argmin
w∈W,θ∈ΘB

F nnl
pwl(w,θ) := −

m∑
i=1

log p̂pwl(x
i;w,θ)

The convex relaxation: Learning is converted to a convex program

u∗ = argmin
u∈RD

[
F nnl

pwl(u,ν) + γ

D−1∑
j=1

∣∣uj − 1

2
uj−1 −

1

2
uj+1

∣∣]
subject to

u0 + uD + 2

D−1∑
i=1

ui =
2D

Max−Min
, ui ≥ 0 , i ∈ {0, . . . , D} ,
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Experiments: learning PWL histograms

� The initial discretization ν = (ν0, . . . , νD)T has D = 100 equidistant bins.

� The optimal number of bins of PWC histogram selected from {5, 10, 20, . . . , 100}.
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� The optimal number of bins of PWC histogram selected from {5, 10, 20, . . . , 100}.

 

 

Equdist PWC(30)
Learned PWL(10)
ground truth

training examples=1000

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

http://cmp.felk.cvut.cz


20/1
Experiments: learning PWL histograms
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Experiments: learning PWL histograms

� The initial discretization ν = (ν0, . . . , νD)T has D = 100 equidistant bins.

� The optimal number of bins of PWC histogram selected from {5, 10, 20, . . . , 100}.
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Experiments: learning PWL histograms

� The initial discretization ν = (ν0, . . . , νD)T has D = 100 equidistant bins.

� The optimal number of bins of PWC histogram selected from {5, 10, 20, . . . , 100}.
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Experiments: learning PWL histograms

� Comparison of three methods: i) PWL histogram with non-equidistant bins, ii) PWL
histogram with equidistant bins and iii) PWC histogram with equidistant bins.

� Methods compared in terms of the KL divergence between the estimated and the true
model and the number of bins.

� The optimal number of bins selected based on validation set.
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Conclusions

� We propose a generic framework which shows allows to modify a wide class of convex
algorithms such that they can learn parameters of PWC and PWL functions.

� The original learning objective is augmented by a convex term which enforces compact
bins to emerge from an initial fine discretization.

� In contrast to existing methods we can learn the non-equidistant bins and the weights
simultaneously.

� We instantiated the framework for three problems: i) learning PWC histograms for
sequence classification, ii) PWL probability density functions and iii) PWL data
embedding.

� The empirical evaluation shows that the proposed algorithms yield models with fewer
number of parameters and with comparable or better accuracy than the existing ones.

More readings:
ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-TR-2016-01.pdf
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ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-TR-2016-01.pdf

