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Federated Learning: Privacy-
Preserving Machine Learning at 
Scale.

Part 1: Why Federated Learning?
Regulatory context, Use cases, Frameworks, 

and ongoing projects.

Part 3: Contribution Assessment.
Existing method, our observations, our 

approaches.

Part 2: Technical Foundations & Challenges.

Enabling Federated Learning, improving 
performance, detecting malicious actors.



Would you trust one central 
entity with ALL your personal 
data?

• More utility → weaker privacy guarantees.

• More privacy → less information for the
     model.

• How can we gain as much information   
     while keeping data (relatively) secure?

Liu, Fan, Zhiyong Cheng, Huilin Chen, Yinwei Wei, Liqiang Nie, and Mohan Kankanhalli. "Privacy-preserving synthetic data generation for recommendation 
systems." In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1379-1389. 2022.



The Regulatory Context 

• Mid-2010s: Surge in strict data-
protection regulations following privacy 
awareness.

• Regulations give user control over 
personal data sale/use, the right to be 
forgotten and limit data transfer.

• As a result, data can no longer freely 
move. Companies need to adapt their 
data collection processes.



The Exponential Growth 
of Data

• Global data creation is doubling 
approximately every 2 years.

• It comes increasingly from personal and 
distributed devices.

• Infeasible to collect all data in a single 
storage location.



What is Federated 
Learning?

• Video

• A central server manages a collection of 
distributed data owners.

• All data stays local, all training is local.

• The result is a common model which 
contains information from all data 
owners.

“Bring code to the data, not data to the code”

https://www.youtube.com/watch?v=X8YYWunttOY
https://www.youtube.com/watch?v=X8YYWunttOY


Key Use Cases

• Mobile applications.

• Medical Applications.

• Fraud Prevention.

• Decentralized LLM finetuning.



Mobile Applications: 
Google Gboard, Apple 
Quicktype, Siri

• Devices: billions of smartphones 
worldwide.

• Use cases: next-word prediction, 
emoji suggestions, personalized 
speech.

• No need to send personal messages 
and voice recordings to a central 
server.

• Frequent and diverse updates. https://federated.withgoogle.com/



Healthcare: Medical 
Image Analysis

• Devices: hospital servers, imaging 
machines

• Use cases: diagnostic models for tumor 
detection, rare disease detection.

• Increased statistical power.

• GDPR compliance.



Large-Scale AI: 
Decentralized LLM 
Training

• Devices: Clusters, private data 
centers, cloud.

• Use cases: Train or fine-tune large 
language models across 
organizations.

• Proprietary data stays local .

• Shared foundation model improved 
without data leakage.



Finance: Fraud 
Prevention

• Devices: Secure servers in banks, 
fintech systems, transaction 
endpoints.

• Use cases: Fraud detection models, 
suspicious behavior pattern 
identification.

• Protects sensitive financial records.

• Enhances detection by sharing 
insights across silos.



Frameworks

• Flower: Open-source, lightweight, 
cross-platform.

• Nvidia Clara FL: Closed-source, 
healthcare-focused.

• FATE (WeBank): Open-source, strong 
security module integration.

• TensorFlow Federated: Open-source, 
research and prototyping library.



• Clients and the Server are launched as 
separate instances.

• Communication through ray.

• Easy to deploy, run on different 
machines.

      

                  

      

                  

               
               

      

                  

               

      

                  

               

                     

                     

              

The Flower 
framework
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Federated Averaging (FedAvg).

• Introduced by McMahan et al., 2017,      
     Google.

• Repetitive loop between server and 
     clients.

• Each client trains locally on its data.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise 
Aguera y Arcas. "Communication-efficient learning of deep networks from 
decentralized data." In Artificial intelligence and statistics, pp. 1273-1282. 
PMLR, 2017.
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The Server–Client Loop.

• Each round, the server sends the most 
     up-to-date global model checkpoint to a 
     random set of clients.

• Clients continue training from this 
checkpoint. They send their updated 
models back to the server.

• The central server generates a new 
global model checkpoint based on all 
received updates in this round.



Key challenges in Federated 
Learning.

• Data heterogeneity in clients.

https://flower.ai/blog/2024-07-08-announcing-flower-datasets-0.2.0



Key challenges in Federated 
Learning.

• Data heterogeneity in clients.

• Client hardware heterogeneity.

Barona López, L. I., & Borja Saltos, T. (2025). Heterogeneity challenges of federated learning for future wireless communication networks. Journal of Sensor 
and Actuator Networks, 14(2), 37.



Key challenges in Federated 
Learning.

• Data heterogeneity in clients.

• Client hardware heterogeneity.

• Model update security.



Why Repetitive Training?

• Combining models trained from different
    initial conditions has been shown to
    produce an arbitrarily bad model.

• Gradual alignment leads to stable 
convergence and allows adaptation to 
new data.

• Communication–accuracy trade-off: 
Sending model updates is not free (time 
+ resources).

Loss of the model generated as θw + (1-θ)w’ on MNIST.
Notice the y-axis scales. Common initialization produces a 
model which outperforms both parent models.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. "Communication-efficient learning of deep networks from 
decentralized data." In Artificial intelligence and statistics, pp. 1273-1282. PMLR, 2017.



Key hyperparameters of Federated 
Averaging.

• Local epochs E: 
• High = Less communication, faster 

training, more drift.
• Low = More communication, more 

stable but slower convergence.



Key hyperparameters of Federated 
Averaging.

• Local epochs E: 
• High = Less communication, faster 

training, more drift.
• Low = More communication, more 

stable but slower convergence.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and 
Blaise Aguera y Arcas. "Communication-efficient learning of deep networks 
from decentralized data." In Artificial intelligence and statistics, pp. 1273-
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Key hyperparameters of Federated 
Averaging.

• Local epochs E: 
• High = Less communication, faster 

training, more drift.
• Low = More communication, more 

stable but slower convergence.

• Client selection fraction C: 
• High = More diverse data, faster 

convergence, best possible global 
model.

• Low = Faster training, low 
communication, slow convergence.



Client Selection.

• Random sampling reduces bias.

• Blindly sampling from all available 
clients may not always be favorable.

• Alternatives: Clustered sampling, 
weighted sampling, contribution-based 
sampling.

• Not all clients might be available 
(smartphone on/off, plugged in).
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     adaptive optimization for aggregation.
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Server Aggregation.

• FedAvg: weighted mean by dataset size.

• FedOpt: Instead of simple SGD, use 
     adaptive optimization for aggregation.

• Other methods use the median, a 
trimmed average, or other variance-
reducing aggregations.



Client Update Strategies.

• FedAvg: All clients run the same local 
     training process.

• FedProx: Partial work and local 
regularization > Improved performance 
on heterogeneous data.

Li, Tian, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, 
and Virginia Smith. "Federated optimization in heterogeneous networks." 
Proceedings of Machine learning and systems 2 (2020): 429-450.
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Client Update Strategies.

• FedAvg: All clients run the same local 
     training process.

• FedProx: Partial work and local 
regularization > Improved performance 
on heterogeneous data.

• Vertical Federated Learning: Different 
feature spaces in client data > Different 
local training.

Trindade, Silvana, Luiz F. Bittencourt, and Nelson LS da Fonseca. 
"Management of resource at the network edge for federated learning." arXiv 
preprint arXiv:2107.03428 (2021).
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Security in Federated Learning.

• Eavesdropping: Client updates can be
     intercepted, revealing potentially private
     information.

• Counter-measure: Encryption of model 
updates.

• Drawback: Computationally expensive.

Yu, Bin, Wenjie Mao, Yihan Lv, Chen Zhang, and Yu Xie. "A survey on 
federated learning in data mining." Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery 12, no. 1 (2022): e1443.
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Security in Federated Learning.

• Model inversion attack: Reconstruct
     training data from gradients, test
     membership of training data.

• Counter-measure : Differential privacy, 
larger batch sizes.

• Drawback: Negative impact on global 
model performance.

Hatamizadeh, Ali, Hongxu Yin, Holger R. Roth, Wenqi Li, Jan Kautz, 
Daguang Xu, and Pavlo Molchanov. "Gradvit: Gradient inversion of vision 
transformers." In Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition, pp. 10021-10030. 2022.
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Security in Federated Learning.

• Model poisoning: Introduce malicious
     data to change global model behaviour.

• Counter-measure: Poisoning detection 
methods, client selection.

• Drawback: False positives, safety vs
     performance trade-off.

https://github.com/michaelthung-illumina/Label_Flipping_Attack
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Federated Learning: Summary.

• Decentralized training on multiple data 
     sources.

• Applications in healthcare, consumer 
     devices, finance.

• Technical challenges include data 
heterogeneity, communication cost and 
security of model updates.
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Contribution Assessment in 
Federated Learning: Motivation.

• Fair reward allocation: (Monetary)
    incentives for participation.

• Accountability: Free rider, malicious
     client detection.

• Transparency: Compliance with
       regulations, audits.



Example Scenarios:

• Healthcare: Spread of COVID-19: High   
     value of datasets which include cases.

• Fraud detection: Different sizes of 
     datasets: More data = more impact?

• Mobile devices: Some devices provide 
higher quality user signals.

• Decentralized LLM finetuning: 
Malicious actors can be detected due to 
bad contribution.

Server



Contribution calculation methods:

• Fixed: Determined pre-federation. Examples: Dataset 
     size, company revenue.

• Similarity measures: Allows for  grouping of clients. 
     More useful for outlier detection than rewarding of 
     clients.

• Leave-one-out retraining: Measure influence of
      single datapoints on final model. Requires re-training  
     the model.

• Computation-based contribution: Game-theoretic 
      influence computation methods.

Server



Computation-based contribution 
calculation methods: Challenges.

• Scalability: Potentially hundreds of 
different clients.

• Must handle non-IID data: Evaluation 
should not be biased towards certain 
clients.

• Robustness against manipulation: 
Clients might try to influence final 
values.

• Evaluation difficulties: Often needs 
access to a test set to evaluate model 
updates.

Server



Shapley-value based evaluation:

𝜑𝑘 =  ෍

𝑆⊆𝑁∖{𝑘}

𝑆 ! 𝑛 − 𝑆 − 1 !

𝑛!
(𝑣 𝑆 ∪ 𝑘 − 𝑣(𝑆))

Game-theoretic approach: Fairly 
distribute the gain amongst a group of 
players who cooperated.

Used in explainable AI (XAI), resource 
allocation, financial applications.

Lloyd Shapley, 1923 - 2016
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Complexity: O(2n)
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Shapley-value based evaluation:

𝜑𝑘 =  ෍

𝑆⊆𝑁∖{𝑘}

𝑆 ! 𝑛 − 𝑆 − 1 !

𝑛!
(𝑣 𝑆 ∪ 𝑘 − 𝑣(𝑆))

Game-theoretic approach: Fairly 
distribute the gain amongst a group of 
players who cooperated.

Used in explainable AI (XAI), resource 
allocation, financial applications.

Value of k to the 

cooperation.

Lloyd Shapley, 1923 - 2016



Shapley-value based evaluation:

𝜑𝑘
𝑖 =  ෍

𝑆⊆𝑁∖{𝑘}

𝑆 ! 𝑛 − 𝑆 − 1 !

𝑛!
(𝑣 𝑆 ∪ 𝑘 − 𝑣(𝑆))

Only contribution method which satisfies efficiency (sum of all = total gain), symmetry (same value 
= same contribution), linearity and null player (no value = no gain). 

Federated Learning: Evaluate value of model updates on a per-round basis.

Value of client update k 

to the global model.



Our research.

• Research question: Are Shapley values 
aggregation-strategy-invariant?

• Our approach: Test Shapley values of 
the same clients using different 
aggregation strategies over several 
datasets. Compare to a set baseline.

• Our results: Contributions can differ 
greatly based on the chosen aggregation 
strategy. Distribution of the per-client difference in 

contributions across pairs of aggregation 
strategies (in % of total reward).

Geimer, Arno, Beltran Fiz, and Radu State. "On the Volatility of Shapley-
Based Contribution Metrics in Federated Learning." IJCNN 2025.



Experimental details.

• Framework: Flower.

•  Datasets: MNIST, Fashion-MNIST, 
CIFAR-10 and CIFAR-100 with a simple 
CNN.

• Federation hyperparameters: 5 resp. 3 
clients per federation. 3 values for 
epochs, 3 degrees of heterogeneity in 
data distribution

• 8 different aggregation strategies.

• Total of  20.000 different FL runs.

Distribution of the per-client difference in 
contributions across pairs of aggregation 

strategies (in % of total reward).

Geimer, Arno, Beltran Fiz, and Radu State. "On the Volatility of Shapley-
Based Contribution Metrics in Federated Learning." IJCNN 2025.



Euclidean distance to baseline over all experiments.
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Proposed method.

• If we consider different aggregation 
strategies as noisy samples, can we gain 
additional information from statistical 
properties?

• Can we find a method to produce more 
samples, increasing soundness of our 
results?

• FedRandom: Samples a random 
aggregation strategy each round.

Accuracy of different aggregation strategies on 
two datasets.



Results

• FedRandom drastically reduces (94% of 
cases) sample variance. Thus, the 
contribution values we get from different 
runs lie closer together than in the 
baseline aggregation strategies.
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Results

• FedRandom slightly  reduces (83% of 
cases) sample bias. Thus, the 
contribution values we get from different 
runs lie closer to the size-based 
underlying contributions than the 
baseline aggregation strategies.



Future work.

• A more extensive study of contribution 
value instability. More use cases, bigger 
datasets, more up-to-date models.

• Try to gain an understanding of why 
contributions vary.

• Introduction of a better stability 
mechanism which accurately 
approximates the underlying data 
values.



Any questions?

Federated Learning use 
cases? Doing a PhD?

Technical details?

Please repeat?
Future of Federated 
Learning?
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