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Federated Learning: Privacy-
Preserving Machine Learning at
Scale.

Part 1: Why Federated Learning?

Regulatory context, Use cases, Frameworks,
and ongoing projects.

Part 3: Contribution Assessment.

Existing method, our observations, our
approaches.

Part 2: Technical Foundations & Challenges.

Enabling Federated Learning, improving
performance, detecting malicious actors.



Would you trust one central
entity with ALL your personal
data?

* More utility > weaker privacy guarantees.

* More privacy > less information for the
model.

* How can we gain as much information
while keeping data (relatively) secure?
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Liu, Fan, Zhiyong Cheng, Huilin Chen, Yinwei Wei, Ligiang Nie, and Mohan Kankanhalli. "Privacy-preserving synthetic data generation for recommendation
systems." In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1379-1389. 2022.



The Regulatory Context

* Mid-2010s: Surge in strict data-
protection regulations following privacy
awareness.

The Act on the
! Protection of X
Personal Information

q‘ N g b S L (APPI)
* Regulations give user control over I 3
P Erona %A‘* .

personal data sale/use, the right to be
forgotten and limit data transfer.

* As aresult, data can no longer freely
move. Companies need to adapt their
data collection processes.



The Exponential Growth
of Data

* Global data creation is doubling
approximately every 2 years.

* |tcomes increasingly from personal and
distributed devices.

* |Infeasible to collect all data in a single
storage location.
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What is Federated
Learning?

“Bring code to the data, not data to the code”

* Video

* Acentral server manages a collection of
distributed data owners.

* All data stays local, all training is local.

e The resultis a common model which
contains information from all data
owners.



https://www.youtube.com/watch?v=X8YYWunttOY
https://www.youtube.com/watch?v=X8YYWunttOY
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Mobile Applications:

Google Gboard, Apple
Quicktype, Siri

...the training
can be brought
to the device!

* Devices: billions of smartphones
worldwide.

* Use cases: next-word prediction,
emoji suggestions, personalized
speech.

* No needto send personal messages
and voice recordings to a central
server.

* Frequent and diverse updates. https://federated.withgoogle.com/



Healthcare: Medical

Self-collected data, e.g. through

I mage Ana lySiS . health apps & wearables
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Screening
e Digital screener:
Patient history & environment data,
scientific data

* Devices: hospital servers, imaging Aftercare
maChineS Aftercare management

* Use cases: diagnostic models for tumor

()
detection, rare disease detection. .{.v.
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* Increased statistical power. Robot_a%isteg’;jéag Eligggg;;i;ssuppm_
image fusion-assisted treatment Image-automated analysis

* GDPR compliance.



Large-Scale Al:

_I[_)chi:nei:;ralized LLM N e B a n k

* Devices: Clusters, private data
centers, cloud.

* Use cases: Train or fine-tune large
language models across <

organizations.

* Proprietary data stays local. nVI DIA®

* Shared foundation model improved
without data leakage.




Finance: Fraud
Prevention

 Devices: Secure servers in banks,
fintech systems, transaction
endpoints.

 Use cases: Fraud detection models,
suspicious behavior pattern
identification.

* Protects sensitive financial records.

* Enhances detection by sharing
insights across silos.




Flower: A Friendly
Federated Learning

Frameworks Framework NVIDIA.
CLARA

* Flower: Open-source, lightweight,
cross-platform.

* Nvidia Clara FL: Closed-source,
healthcare-focused.

 FATE (WeBank): Open-source, strong
security module integration.

 TensorFlow Federated: Open-source,
research and prototyping library.



The Flower
framework

Flower: A Friendly
Federated Learning
Framework
= = = Intra-host connection

Inter-host connection

—> Process launch

Clients and the Server are launched as

separate instances.

Communication through ray.

Easy to deploy, run on different
machines.
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What is Federated
Learning?

“Bring code to the data, not data to the code”

* Video
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e The resultis a common model which
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owners.



https://www.youtube.com/watch?v=X8YYWunttOY
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Federated Averaging (FedAvg).

* Introduced by McMahan et al., 2017,
Google.

* Repetitive loop between server and
clients.

* Each client trains locally on its data.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. "Communication-efficient learning of deep networks from
decentralized data." In Artificial intelligence and statistics, pp. 1273-1282.
PMLR, 2017.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:

initialize wg

for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do

wy, | + ClientUpdate(k, w;)

My = D e, Tk
Wit = D _pes, %wfﬂ

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




The Server-Client Loop.

 Eachround, the server sends the most
up-to-date global model checkpointto a
random set of clients.
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The Server-Client Loop.

 Eachround, the server sends the most
up-to-date global model checkpointto a
random set of clients.

* Clients continue training from this
checkpoint.
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The Server-Client Loop.

 Eachround, the server sends the most
up-to-date global model checkpointto a
random set of clients.

* Clients continue training from this
checkpoint. They send their updated
models back to the server.
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The Server-Client Loop.

Each round, the server sends the most
up-to-date global model checkpointto a
random set of clients.

Clients continue training from this
checkpoint. They send their updated
models back to the server.

The central server generates a new
global model checkpoint based on all
received updates in this round.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do

m < max(C - K, 1)

S; < (random set of m clients)

for each client & € S; in parallel do
wk, , « ClientUpdate(k, w,)

My = D e, Tk

Wit = D _pes, %wfﬂ

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server
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Key challenges in Federated
Learning.

* Data heterogeneity in clients.

* Client hardware heterogeneity.

Barona Ldpez, L. |., & Borja Saltos, T. (2025). Heterogeneity challenges of federated learning for future wireless communication networks. Journal of Sensor
and Actuator Networks, 14(2), 37.



Key challenges in Federated
Learning.

* Data heterogeneity in clients.

* Client hardware heterogeneity.

 Model update security.




Why Repetitive Training?

Combining models trained from different
initial conditions has been shown to
produce an arbitrarily bad model.

Gradual alignment leads to stable
convergence and allows adaptation to
new data.

Communication—-accuracy trade-off:
Sending model updates is not free (time
+ resources).

Independent initialization Common initialization
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Loss of the model generated as 6w + (1-6)w’ on MNIST.
Notice the y-axis scales. Common initialization produces a
model which outperforms both parent models.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. "Communication-efficient learning of deep networks from
decentralized data." In Artificial intelligence and statistics, pp. 1273-1282. PMLR, 2017.



Key hyperparameters of Federated
Averaging.

* LocalepochseE:

* High = Less communication, faster
training, more drift.

* Low = More communication, more
stable but slower convergence.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:

initialize wg

for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do

wy, | + ClientUpdate(k, w;)

My = D e, Tk

ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from|1 to E|do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, £ is the number
of local epochs, and 7 1s the learning rate.

Server executes:
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Key hyperparameters of Federated
Averaging.

* LocalepochseE:

* High =Less communication, faster
training, more drift.

* Low = More communication, more
stable but slower convergence.

e C(Client selection fraction C:

High = More diverse data, faster
convergence, best possible global
model.

Low = Faster training, low

communication, slow convergence.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do

m | max(C - K, 1)

S; < (random set of m clients)

for each client & € S; in parallel do
wy, | + ClientUpdate(k, w;)

My <— ZkESt Tk

Wit1 4= D kes, %wfﬂ

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Client Selection.

Random sampling reduces bias.

Blindly sampling from all available
clients may not always be favorable.

* Alternatives: Clustered sampling,
weighted sampling, contribution-based
sampling.

* Notall clients might be available
(smartphone on/off, plugged in).

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
wy, | + ClientUpdate(k, w;)
My = D e, Tk
Wit = D _pes, %wa

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Server Aggregation.

* FedAvg: weighted mean by dataset size.

* FedOpt: Instead of simple SGD, use
adaptive optimization for aggregation.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
w?, | « ClientUpdate(k, w;)

my < ZkESt Nk
ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Server Aggregation.

* FedAvg: weighted mean by dataset size.

* FedOpt: Instead of simple SGD, use
adaptive optimization for aggregation.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. "Communication-efficient learning of deep networks
from decentralized data." In Artificial intelligence and statistics, pp. 1273-

1282. PMLR, 2017.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number

of local epochs, and 7 1s the learning rate.
Server executes:
initialize wy
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
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Server Aggregation.

* FedAvg: weighted mean by dataset size.

FedOpt: Instead of simple SGD, use
adaptive optimization for aggregation.

Other methods use the median, a
trimmed average, or other variance-
reducing aggregations.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
w?, | « ClientUpdate(k, w;)

my < ZkESt Nk
ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Client Update Strategies.

* FedAvg: All clients run the same local
training process.

* FedProx: Partial work and local
regularization > Improved performance
on heterogeneous data.

Li, Tian, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. "Federated optimization in heterogeneous networks."
Proceedings of Machine learning and systems 2 (2020): 429-450.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:

initialize wy

for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do

wy, | + ClientUpdate(k, w;)

My <— ZkESt Tk
Wit1 4= D kes, %wf+l

ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)

for each local epoch ¢ from 1 to £ do
for batch b € B do
w < w — nVL(w;b)

return w to server




Client Update Strategies.

* FedAvg: All clients run the same local
training process.

* FedProx: Partial work and local
regularization > Improved performance
on heterogeneous data.

Li, Tian, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. "Federated optimization in heterogeneous networks."
Proceedings of Machine learning and systems 2 (2020): 429-450.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, £ is the number

of local epochs, and 7 1s the learning rate.

Server executes:
initialize wy
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Client Update Strategies.

* FedAvg: All clients run the same local
training process.

* FedProx: Partial work and local
regularization > Improved performance
on heterogeneous data.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:

initialize wy

for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do

wy, | + ClientUpdate(k, w;)

My <— ZkESt Tk
Wiy < Zkest %wf+1

ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)

for each local epoch ¢ from 1 to £ do
for batch b € B do
w < w — nVL(w;b)

return w to server




Client Update Strategies.

* FedAvg: All clients run the same local
training process.

* FedProx: Partial work and local
regularization > Improved performance
on heterogeneous data.

* \Vertical Federated Learning: Different
feature spaces in client data > Different
local training.

Trindade, Silvana, Luiz F. Bittencourt, and Nelson LS da Fonseca.
"Management of resource at the network edge for federated learning." arXiv
preprint arXiv:2107.03428 (2021).
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Security in Federated Learning.

 Eavesdropping: Client updates can be
intercepted, revealing potentially private
information.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
wy, | + ClientUpdate(k, w;)

my < ZkESt Nk
ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do
for batch b € 5 do
w < w — nVL(w;b)
return w to server




Algorithm 1 FederatedAveraging. The K clients are

indexed by k; B is the local minibatch size, E is the number
of 1¢
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Yu, Bin, Wenjie Mao, Yihan Lv, Chen Zhang, and Yu Xie. "A survey on
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Security in Federated Learning.

* Model inversion attack: Reconstruct
training data from gradients, test
membership of training data.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
wy, | + ClientUpdate(k|w,

my < ZkESt Nk
ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Security in Federated Learning.

* Model inversion attack: Reconstruct
training data from gradients, test
membership of training data.

 Counter-measure : Differential privacy,
larger batch sizes.

* Drawback: Negative impact on global
model performance.

Hatamizadeh, Ali, Hongxu Yin, Holger R. Roth, Wenqi Li, Jan Kautz,
Daguang Xu, and Pavlo Molchanov. "Gradvit: Gradient inversion of vision
transformers." In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10021-10030. 2022.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.
Server executes:

initialize wy

for eachroundt =1,2,... do
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/ Parameter Server \
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k Global Model /

w<— w —nVEi(w;0)
return w to server




Security in Federated Learning.

* Model poisoning: Introduce malicious
data to change global model behaviour.

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 1s the learning rate.

Server executes:
initialize wg
for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client & € S; in parallel do
wy, | + ClientUpdate(k, w;)

my <— Zke& Nk
ng k
Wi41 ZkESt my Vt+1

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € 5 do
w < w — nVL(w;b)
return w to server




Security in Federated Learning.
* Model poisoning: Introduce malicious
data to change global model behaviour.

* Counter-measure: Poisoning detection
methods, client selection.

 Drawback: False positives, safety vs
performance trade-off.

https://github.com/michaelthung-illumina/Label_Flipping_Attack

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, F i1s the number
of local epochs, and 7 is the learning rate.

Server executes:
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Label: Cat Label: Frog Label: Dog Label: Dog Label: Horse

w < w — nVL(w;b)

return w to server




Federated Learning: Summary.

* Decentralized training on multiple data
sources.
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* Applications in healthcare, consumer
devices, finance.
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Federated Learning: Privacy-
Preserving Machine Learning at
Scale.

Part 1: Why Federated Learning?

Regulatory context, Use cases, Frameworks,
and ongoing projects.

Part 3: Contribution Assessment.

Existing method, our observations, our
approaches.

Part 2: Technical Foundations & Challenges.

Enabling Federated Learning, improving
performance, detecting malicious actors.



Contribution Assessmentin
Federated Learning: Motivation.

* Fair reward allocation: (Monetary)
incentives for participation.

* Accountability: Free rider, malicious
client detection.

 Transparency: Compliance with
regulations, audits.




Example Scenarios:

Healthcare: Spread of COVID-19: High
value of datasets which include cases.

Fraud detection: Different sizes of
datasets: More data = more impact?

Mobile devices: Some devices provide
higher quality user signals.

* Decentralized LLM finetuning:
Malicious actors can be detected due to
bad contribution.

Server

Incentive
Scheme
JJJ
A
Weight o
updates Distribute
rewards
p Y
[ »
Clients




Contribution calculation methods:

* Fixed: Determined pre-federation. Examples: Dataset
size, company revenue.

* Similarity measures: Allows for grouping of clients.
More useful for outlier detection than rewarding of
clients.

* Leave-one-out retraining: Measure influence of
single datapoints on final model. Requires re-training
the model.

Computation-based contribution: Game-theoretic
influence computation methods.

Server

Incentive
Scheme
JJJ
Weight o
updates Distribute
rewards
Clients




Computation-based contribution

calculation methods: Challenges.

* Scalability: Potentially hundreds of
different clients.

e Must handle non-lID data: Evaluation
should not be biased towards certain
clients.

* Robustness against manipulation:
Clients might try to influence final
values.

e Evaluation difficulties: Often needs
access to a test set to evaluate model
updates.

Server

Incentive
Scheme
JJJ
A
Weight o
updates Distribute
rewards
p Y
Clients




Shapley-value based evaluation:

Game-theoretic approach: Fairly
distribute the gain amongst a group of
players who cooperated.

Used in explainable Al (XAl), resource
allocation, financial applications.

Lloyd Shapley, 1923 - 2016

Sit(n — |5 —1)!
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n!
SCN\{k}



Shapley-value based evaluation:

Game-theoretic approach: Fairly
distribute the gain amongst a group of
players who cooperated.

Used in explainable Al (XAl), resource
allocation, financial applications.

Lloyd Shapley, 1923 - 2016
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Iterate over all I n
subsets not <:| Complexity: O(2")

containing k.




Shapley-value based evaluation:

Game-theoretic approach: Fairly
distribute the gain amongst a group of
players who cooperated.

Used in explainable Al (XAl), resource
allocation, financial applications.

Lloyd Shapley, 1923 - 2016
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Weighting factor.




Shapley-value based evaluation:

Game-theoretic approach: Fairly
distribute the gain amongst a group of
players who cooperated.

Used in explainable Al (XAl), resource
allocation, financial applications.

Lloyd Shapley, 1923 - 2016
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Shapley-value based evaluation:

Only contribution method which satisfies efficiency (sum of all = total gain), symmetry (same value
= same contribution), linearity and null player (no value = no gain).

Federated Learning: Evaluate value of model updates on a per-round basis.

. Sit(n—15] —1)!
oh= Y PTG (s v k) - vs)

n!
(-
SEN\{k} Value of client update k

to the global model.
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Euclidean distance to baseline over all experiments.

CIFAR-10 CIFAR-100 MNIST FMNIST
e 1 10 100 1 10 100 | 10 100 1 10 100
Strategy
FedAvg 1263 | 6.13 @ 5.31 A 6.88 12.62 x 75 13.06 | 7.13 | 5.71
FedAvgM 1255 | 6.59 - . 12.82 773 1297 | 668 | 548
FedAdagrad 2072 | 861 | 644 || 1232 | 729 é.;% 4 | 869 | 7.66 1437 | 69 6.29
2 FedAdam 101 | 7.14 726 | 721 : 9.93 I 1332 | 826 | 723
Fed Yogi @ 821 | 6.49 722 | 917 | 8.18 1522 | 8.15 : 8.09
FedMedian 778 | 618 | 6.73 576 | 645 | 735 1143 | 7.86 X0}
FedTrimAvg 12.6 @ 6.5 5.91 6.21 6.05 1239 | 733 | 746 13.04 | 5% 543
Krum 3577 | 1928 | 1024 || 51.03 | 1899 | 11.68 || 1623 | 971 | 7.41 17.73 | 1035 | 7.07
N N
FedAvg 3.1 6.49 | 738 6.09 %.29 58 13.17 | 869 | 944 6.24
FedAvgM 1285 | 637 | 7.09 5.84 1 | 6.79 1274 | 8.7 8.56 @ @ -
FedAdagrad 1954 | 858 | 6.82 1298 | 655 | 7.18 1452 | 943 | 7.83 13.64 ) 7.32
5 FedAdam 4.2 13.52 | 1165 982 | 11.2 13.96 13.37 13.6 | 1048 | 9.05
Fed Yogi - @ 6.94 Ga8) || 1371 | 727 | 564
FedMedian 1247 - 635 | 583 | 682 @ 7.67 NE: ) | 6.67 | 7.23
FedTrimAvg 1332 | 656 | 6.71 632 | 595 | 658 1297 | 868 | 936 237 | 65 6.78
Krum 33.57 | 18.88 | 10.83 || 3861 | 1548 | 9.04 168 | 10.82 | 1087 17.4 | 1076 | 837
TN TN
FedAvg 13.91 @ 74 729 [ (5.18) | 713 13.49 | 1047 | 1039 || 1231 | 7.21 .01
FedAvgM 13.32 : ’rgg. 7.61 : @ 130 | ¢ 2 || 1248 | 7.05 | 893
FedAdagrad 1928 | 815 | 822 1331 | 832 57 12.67 @ 12.48 | 8.01 8.31
10 || FedAdam 4 1265 | 866 || 11.65 | 739 | 821 1486 | 1135 | IT26 || 13.86 | 1245 | 11.34
Fed Yogi 8.64 | 8.09 774 | 654 | 838 1258 | 9.18 1226 | 963 | 899
FedMedian 1244 | 7.02 | 964 677 | 656 | 825 @ 9.8 10.6 1242 | 865 | 828
FedTrimAvg 1331 | 68 7.91 552 | 6.54 1281 | 954 | 1039
Krum 29.6 | 1843 | 13.73 5 1527 | 1045 || 1698 | 13.64 | 12.93 61




Problem Statement.

Observation: Big variance between
aggregation strategies, no good
approximation of the baseline.

Can we decrease the bias? If not, can
we at least decrease variance between
different runs?

Low Bias

High Bias

Low Variance

High Variance
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Table 1: Average standard deviation in contribution samples generdted by MSM and by FEDRanbpom (FR), lower is better. Bold

entries are best in column.

CIFAR10 CIFAR100 MNIST FMNIST
| 20 B
-@ - b @ *8
FR % @ =
MSM 5
Results i
-' (R &
Ca~ L8O
L
* FedRandom drastically reduces (94% of
cases) sample variance. Thus, the - v §
contribution values we get from different q g) 4 @'-
runs lie closer together than in the A
baseline aggregation strategies. — '
CIFAR-10 CIFAR-100 MNIST FMnNIsT
1 10 100 1 10 100 1 10 100 1 10 100
MSM 9 0.059 | 0.056 | 0.057 0.069 | 0.064 | 0.066 0.052 0.06 0.069 0.046 | 0058 | 0.069
FR 0:009 | G:003 | 6.005 || 0.003 | 6:003 | G.003 || ©.0D | Go1d | €019)|| G00) | 013 | G019
MSM 5 0.057 | 0.051 | 0.067 0.054 | 0.055 | 0,059 0.056 | 0,061 | 0.072 0.045 | 0.062 | 0.072
FR 0.008 | 0.004 | 0.007 || 6,002 ©.005 || 0.012 | Q.012 | 0.017 || 0.01 | 0.014 | 0.017
MSM 10 0.05 0.042 | 0.054 0.05 0.05 0.059 0.057 | 0.067 | 0.074 0.047 | 0.061 | 0.068
FR 0.007 | 0.006 | 0.011 0.003 00 @ 0.012 | 0.015 | 0.016 0.011 | 0.015 | 0.017
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Low Variance High Variance
(]
Results
Low Bias °®
* FedRandom drasticall °
cases) sample varianc
contribution values we
runs lie closer together
baseline aggregation s o 2°
1 High Bias
MSM 9 0.059
FR 6.005
MSM 5 0.057
MSM 10 0.05
FR 0.007 | 0.006 | 0.011 || 0.003 | §.003 | €005 || 0.012 | 0.015 | 0.016 || 0.011 | 0.015 | 0.017

Table 1: Average standard deviation in contribution samplTE; gene;ied by MSM and by FEDRanbpom (FR), lower is better. Bold

entries are best in column.




CIFAR10 CIFAR100 MNIST FMNIST
I . O
T o (B, .
@ L
e FR ‘e
@ Size o
Results
o® 3’
O “ i- . * - 9
o &)
* FedRandom slightly reduces (83% of
cases) sample bias. Thus, the b °©
contribution values we get from different ¢ rl
: . p ° Ced
runs lie closer to the size-based 2 e
underlying contributions than the s '-
baseline aggregation strategies.
CIFAR-10 CIrAr-100 MNIST FMNiIsT
1 10 100 1 10 100 1 10 100 1 10 100
MSM 3 0.245 | 0.299 | 0.349 || 0.206 | 0.359 | 0.268 || 0.147 | 0.165 | 0.176 || 0.156 | 0.178 | 0.256
FR 0214 | 026 | 6342 || 0.148 | 0346 | 0.255 || 0.099 | ©0.12) | 0.111 || ©.143 | 0.128 | 0.221
MSM . 0.223 6.\29 0.37 || 0.198 | 0.344 | 0.251 || 0.133 | 0.201 | 0.137 || 0.16 | 0.19 | 0.237
FR 0.214 | 0.253 @ 0.146 | 0.343 | 0.242 || 0.087 | 0.126 | 0.118 || 0.153 | 0.142
MSM : 0.269 | 0.344 || 0.18 321 | 0.252 || 0.112 | 0.175 | 0 0.177 | 0.161 | 0.22
10
FR @ 0.247 | 0346 || 0,142 | 0389 | 624D || 6075 | 0.13 | 6108 6.143 | 0.15 | 0218
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1 1 10 100
MSM 3 0.24 156 | 0.178 | 0.256
FR 0.2] 143 | 0.128 | 0.221
MSM . 0.2] 16 | 0.19 | 0.237
FR 0.214 | 0.253 | 0.342) || 0.146 | 0.343 | 0.242 || 0.087 | 0.126 | 0.118 || 0.153 | 0.142
MSM : 0.269 | 0.344 || 0.18 321 | 0.252 || 0.112 | 0.175 0.177 | 0.161 | 0.22
10
FR @ 0247 | 0346 || 0,142 | 0389 | 624D || 6075 | 0.13 | 6108 6.143 | 0.15 | 0218




Future work.

A more extensive study of contribution
value instability. More use cases, bigger
datasets, more up-to-date models.

Try to gain an understanding of why
contributions vary.

Introduction of a better stability
mechanism which accurately
approximates the underlying data
values.




Any questions?

Federated Learning use Technical details?

?
cases: Doing a PhD?

Future of Federated
Please repeat? Learning?
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