
1

From Fundamentals to first Quantum Algorithms

Quantum Computing

Felix Gemeinhardt
Johannes Kepler University Linz
Institute for Business Informatics – 
Software Engineering



2

Disclaimer

▪ This material, no matter whether in printed or electronic form, may 

be used for personal and non-commercial educational use only. 

Any reproduction of this material, no matter whether as a whole or 

in parts, no matter whether in printed or in electronic form, 

requires explicit prior acceptance of the authors.
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Agenda

Goal: holistic picture and basic understanding of working principles

1.  Motivation and Overview

2.  Basic Working Principles

3.  Near-term Applications

4.  Simple Quantum Algorithms

5.  Challenges and Limitations
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Overview and Motivation
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Quantum Information Science (QIS)

QIS

Computer 
Science

Information 
Theory

Quantum 
Mechanics
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Quantum Technologies

Quantum Computing

Quantum Sensing

Quantum Communication

Maturity Level



7

Classical Computing: Limitations - Hardware

▪ Limits of Moore´s law

➢ Doubling of transistor counts on microchips every 12-24 months

➢ Physical limitations

Source: https://ourworldindata.org/technological-progress 
Source: 

https://web.archive.org/web/20211221191600/https://www.intel.com/pressroom/kits/

events/moores_law_40th/index.htm?iid=tech_mooreslaw+body_presskit 



8

Classical Computing: Limitations – Algorithms

▪ Many complex problems are intractable for classical computing, 

e.g.:

➢ Exponentially growing search spaces

➢ Simulation of quantum processes

▪ Best case:

▫ From O(𝑛𝑛) to O(𝑛1)

Source: Hidary (2019). Quantum Computing: An Applied Approach  



9

Applications – from research to operations

Batteries Drug discovery

Semiconductors Fertilizer production

Materials design Condensed matter physics

Optimization Machine Learning

Research applications Operations applications

Transportation Finance

Energy utilities Telecoms

Manufacturing Marketing
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Current Limitations of Quantum Computing

▪ Technical Challenges:

➢ Sensitivity to environment

➢ Accuracy of quantum operations

➢ Scaling of quantum computers

➢ …

▪ Regimes

➢ Noisy Intermediate Scale Quantum (NISQ-era) 

➢ Fault-tolerant Quantum Computing

Preskill, J., 2018. 
Quantum computing 
in the NISQ era and 
beyond. Quantum, 2, 
p.79.
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NISQ-Era Approaches to QC

▪ Variational Quantum Algorithms

➢ Similar to neural nets in ML

➢ Gate-based → sequential programming

▪ Quantum Annealing

➢ Encode optimization problem into

energy of quantum system

➢ System “wants” to stay in minimum

▪ Quantum Simulators

➢ Encode problem into energy 

of quantum system

➢ Different quantum phenomena
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Quantum Computer – Hardware Architectures (1)

▪ Photonics

➢ Photons are information carrier

➢ Optical elements (mirrors, phase shifters) for manipulation

▪ Superconductors

➢ Google, IBM,…

➢ Electric current produces 

magnetic moment (spin)

➢ Temperatures: mK

➢ Microwave pulses for manipulation
Source: Johnston et. al (2019). 

Programming Quantum Computers
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Quantum Computer – Hardware Architectures (2)

▪ Trapped Ion

➢ Ions in electromagnetic field

➢ Lasers for manipulation

▪ And many more:

➢ Topological Quantum Computation

➢ Neutral Atom Quantum Computation

➢ …

All these approaches seek to make the jump to the next regime. To do this, they 
try to better model a Qubit. 
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Basic Working Principles



15

Basic Concepts – From Bits to Qubits

▪ A qubit is a two-level quantum mechanical system

▪ The state of the qubit can be represented by a vector

ȁ ۧ𝟎 =
𝟏

𝟎
ȁ ۧ𝟏 =

𝟎

𝟏

▪ Similar to classical bit 0,1 → ۧȁ0 , ۧȁ1

▪ Can also be a mixture → superposition Bloch Sphere
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Phase

▪ Additional degree of freedom in quantum

systems

▪ State as complex valued vector

▪ Often useful to encode information in the

phase
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Basic Concepts – From Classical to Quantum Circuits  

▪ Classical Computing Circuit

▪ Quantum Computing Circuit

▫ Construct and read these 

diagrams from left to right

▫ Input and output space are the 

same
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Quantum Operator - Reversibility

▪ Isolated quantum system

➢ Every quantum operation is reversible

➢ Every quantum operation is unitary

→ describes rotation but no change in vector length

▪ Quantum operations are matrices

▪ Reversibility

➢ 𝑼−𝟏 ۧ𝑼ȁΨ = 𝑼† ۧ𝑼ȁΨ = ۧȁΨ

➢ 𝑼† is U transposed and complex conjugated
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Quantum Operations – Hadamard

▪ Hadamard operator is crucial in quantum computing

▪ Takes a qubit into an equal superposition of two states
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Quantum Operations – Pauli X 

▪ Similar behavior like Not in classical computing

▪ Also known as Not Gate 
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Quantum Operations – Pauli Y & Z 

▪ Pauli Z

▪ Pauli Y
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Single Qubit Gates – Parameterized Gates

▪ Bloch sphere rotations can be parametrized

➢ E.g., rotation of φ around z-axis

▪ 3 angles for any arbitrary rotation

➢ Euler’s rotation theorem

▪ Examples:

➢ RX, RY, RZ 
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Quantum Operations – CNOT 

▪ Controlled-NOT (CNOT)

▪ First Qubit is the control qubit

▪ Second Qubit is the target qubit

▪ Examples

ȁ ۧ𝟏q0

ȁ ۧ𝟎q1 CNOT

C

T

ȁ ۧ𝟏q0

ȁ ۧ𝟏q1 CNOT

C

T



24

Basic Concepts - Measurement

▪ Measurement destroys superposition

➢ Non-reversible quantum operation

➢ What was state before measurement?

▪ Probability distribution → Quantum state

▪ No-cloning theorem

→ Repeated computation and measurement

▪ Intermediate states of the quantum system are 

not accessible
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Tensor Product

▪ Description of space for 2 (or multiple) qubits

▪ Notation 

▪ 2-qubit-state example

𝒂𝟏
𝒃𝟏

𝒂𝟐
𝒃𝟐

=
𝒂𝟏∗

𝒂𝟐
𝒃𝟐

𝒃𝟏∗
𝒂𝟐
𝒃𝟐

=

𝒂𝟏𝒂𝟐
𝒂𝟏𝒃𝟐
𝒃𝟏𝒂𝟐
𝒃𝟏𝒃𝟐

=
𝒂
𝒃
𝒄
𝒅

In general ∶ ۧȁψ = 𝒂ȁ ۧ𝟎𝟎 +𝒃ȁ ۧ𝟎𝟏 + 𝒄ȁ ۧ𝟏𝟎 +𝒅ȁ ۧ𝟏𝟏

Product state:

Condition for separability: 
𝑎

𝑏
=

𝑐

𝑑
,  otherwise: „entangled“

n qubits → length of vector: 2𝑛 
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Basic Concepts – Entanglement

▪ Correlation between states of qubits

➢ One can gain information about a qubits state by knowing the states of 

the other qubits

➢ Non-entangled states can be simulated efficiently by classical 

computers → power of QC comes (a.o.) from entanglement

▪ E.g.,: Bell States (completely entangled):

➢ ۧȁΨ+ =
𝟏

𝟐
ۧȁ𝟎𝟎 +

𝟏

𝟐
ۧȁ𝟏𝟏

➢ ۧȁΨ− =
𝟏

𝟐
ۧȁ𝟎𝟎 −

𝟏

𝟐
ۧȁ𝟏𝟏

➢ ۧȁΦ+ =
𝟏

𝟐
ۧȁ𝟎𝟏 +

𝟏

𝟐
ۧȁ𝟏𝟎

➢ ۧȁΦ− =
𝟏

𝟐
ۧȁ𝟎𝟏 −

𝟏

𝟐
ۧȁ𝟏𝟎



27

Multi-qubit gates – Entangled states

▪ Consider the following example:

▪ H ۧȁ00 =
1

2
ۧȁ00 + ۧȁ01 = ۧȁ0 +

▪ CNOT ۧȁ0 + =
1

2
ۧȁ00 + ۧȁ11 → Bell-state
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Quantum Circuits

▪ Qiskit definition: 

„A quantum circuit is a 

computational routine consisting of 

coherent quantum operations on 

quantum data, such as qubits. It is 

an ordered sequence of quantum 

gates, measurements and resets, 

which may be conditioned on real-

time classical computation.”

Source: https://qiskit.org/documentation/apidoc/circuit.html
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Algorithms & Application Areas
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Regimes of Quantum Computing

▪ Fault-tolerant QC → broad application, provable advantage

➢ Quantum Fourier Transform

➢ Grover Search Algorithm

▪ NISQ-era QC → niche applications, probably better heuristic

➢ Quantum Chemistry → VQE

➢ Optimization → QAOA

➢ Quantum Machine Learning → QNN, QTDA
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Quantum Fourier Transform

▪ Quantum implementation of discrete Fourier transform

▪ Part of many quantum algorithms (Shor,…)

Computational basis

Fourier basis
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Grover-search algorithm

▪ Database searches, subroutine in other algorithms,…

▪ Quadratic speed-up
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Quantum Algorithms – Requirements

→ goal today: find promising problem where hybrid 

algorithm is better heuristic than purely classical approach

Solve useful problem Speed-up or
other advantage

Relatively small data

Correctness guarantees Resources can be estimated
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Application Areas – Quantum Chemistry

▪ Closest to idea of Feynman 1981:

➢ Simulate quantum systems (molecules) 

with quantum systems (QC)

▪ Scientific insights

➢ Quantum mechanical properties of 

molecular systems

➢ Physiological processes (e.g., 

photosynthesis, DNA mutation)
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Application Areas – Quantum Chemistry

▪ Simulation of molecular behaviour at quantum level:

➢ Drug design

➢ Materials design

➢ Development of new chemicals (e.g. catalyst in agriculture)

▪ Classical approach:

➢ Calculations based on simplified model of molecule

➢ Check a posteriori validity of the model
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Quantum Chemistry- Example

▪ Molecule as quantum object:

➢ Many particles (e.g., nuclei, electrons)

➢ Many-body problem

➢ Highly interacting

▪ Caffeine: 24 atoms 

▪ Classical computation: 𝟏𝟎𝟒𝟖 bits
➢ 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

▪ Quantum computation: 160 qubits

𝐶8𝐻10𝑁4𝑂2
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Variational Quantum Eigensolver – VQE 

▪ Computes ground state energy

▪ Makes use of parameterized gates (VQA)

▪ Procedure:

➢ Generate trial state with U(θ)

➢ Measure in computational basis

➢ Calculate cost function: energy

➢ Update parameters classically

(e.g. gradient descent)
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Application Areas – Quantum Optimization

▪ Industrial relevance

➢ Logistics,

➢ Manufacturing,

➢ …

▪ Examples: graph optimization, routing, scheduling

➢ Usually exponentially growing search space

▪ Classical computation

➢ Expensive algorithms (e.g., brute force algorithms)

➢ Use of approximative heuristics (e.g., genetic algorithms)
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Quantum Optimization – Example

Travelling Salesman Problem

➢ Visit all cities → shortest route?

➢ E.g., 20 cities: 20x19x18x..x2x1=

2,430,000,000,000,000,000 combinations
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Quantum Approximate Optimization Algorithm – QAOA 

▪ Algorithm for combinatorial optimization problems

▪ Very similar to VQE but with a defined ansatz

▪ Procedure:

➢ Generate trial state with 𝑈𝐶 𝛾 , 𝑈𝐵(𝛽)

⌬ 𝑈𝐶 𝛾 : problem unitary

⌬ 𝑈𝐵(𝛽): mixing unitary

➢ Measure in computational basis

➢ Calculate cost function

➢ Update parameters classically

▪ Discrete form of Quantum Annealing
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Application Areas – Quantum Machine Learning

▪ Mostly quantum-enhanced ML

➢ Hybrid nature

➢ E.g., Quantum GAN

▪ Idea:

➢ Work in large space

➢ Harness non-determinism

▪ Quantum Topology Analysis

▪ Quantum Neural Networks

➢ Variational Quantum Algorithms

▪ And many more (Q-SVM, etc.)
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Quantum Topological Data Analysis

▪ Procedure

➢ Radius around data points

➢ If touch → edge on graph

➢ Graph → topological object

▪ E.g., Betti numbers:

➢ number of k-dimensional holes

➢ E.g., torus → b0: 1, b1: 2, b2: 1

▪ Provable superpolynomial speedup for:

➢ Betti-dense (lot of holes) AND

➢ Large in clique numbers (lot of edges) Gyurik, C., Cade, C., & Dunjko, V. (2022). Towards 
quantum advantage via topological data analysis. 
Quantum, 6, 855.
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Quantum Neural Nets

▪ Advantages supposed esp. for quantum data

➢ Material science,

➢ Drug design,…

▪ Quantum often part of hybrid model

➢ Before, after, parallel, etc. to classical NN

▪ Challenges

➢ Abundance of local minima

➢ Barren plateau

➢ Noise → erase landscape features

➢ Required: classically hard to simulate

➢ Input / output problem
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Challenges & Limitations
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Process 
Quantum 

Information

Quantum Information Processing – Bottlenecks

Classical 
input

Encode 
into 

quantum 
state

Read 
final 

quantum 
state

Get 
classical 
solution
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Challenges and Limitations

Algorithms & Software
• Dequantization
• Error correction
• Compilers
• …

Hardware
• Fidelity
• Error correction
• Scalability
• …
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Challenges and Limitations

Fundamental
• No copies
• No assessment of intermediate states
• Decoherence
• …

Variational Quantum Algorithms
• Abundance of local minima
• Barren plateau
• Require a LOT of runs
• …
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Summary of Challenges

▪ Fidelity has to improve drastically

▪ QCs will NEVER replace classical ones!!!

Fault-tolerant Quantum Computing:
• Provable improvement for 
      some applications
• Requires a lot of research

NISQ-era:
• No provable improvement
• Maybe still better heuristic especially in 
      combination with classical computing
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Summary of Challenges

▪ Fidelity has to improve drastically

▪ QCs will NEVER replace classical ones!!!

Fault-tolerant Quantum Computing:
• Provable improvement for 
      some applications
• Requires a lot of research

NISQ-era:
• No provable improvement
• Maybe still better heuristic especially in 
      combination with classical computing

BUT: 
QC has immense transformative potential 
→ rather time scale is questionable 
→ topics still requires a lot of fundamental and applied research
→ interesting to bring in ideas from various disciplines
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1. Motivation and Overview
• Classical computing faces severe scaling issues
• QC is applicable to a variety of computational problems
• There are diverse approaches to quantum computing

2. Basic Working Principles
• QC harnesses quantum mechanical phenomena
• Mathematically its linear algebra

Wrap-Up
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4. Challenges and Limitations
• Interesting challenges remain
• Quantum computers are (universal) special purpose 

machines
• The potential is worth the effort

Wrap-Up

3. Near-term Applications are
• Quantum chemistry
• Quantum optimization
• Quantum machine learning
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