Generalized Multiple-Instance-Learning and its applications in biomedical imaging

Jan Hering

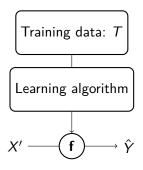
Center for Machine Perception (CMP), Katedra kybernetiky, FEL, ČVUT

21.12.2017

Overview

- Standard MIL
 - formulation and algorithms
- Generalized MIL
 - formulation and algorithms
 - applications
- MIL in deep learning

Supervised learning



Input Data

$$X = \{x_1, x_2, \dots, x_N\}, x_i \in \mathcal{X}$$

$$Y = \{y_1, y_2, \dots, y_N\}, y_i \in \mathcal{Y}$$

$$T = \{(x_i, y_i)\}$$

$$\mathcal{Y} = \{-1, +1\} \text{ (binary case)}$$

 $\begin{array}{l} \text{Classifier} \\ \mathbf{f}: \mathcal{X} \rightarrow \mathcal{Y} \end{array}$

• limited by (pixel-wise) label availability

Get more labels...

• hire a crowd, f.i. Google's re-CAPTCHA

C (i) (i) Report a problem

Verify

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

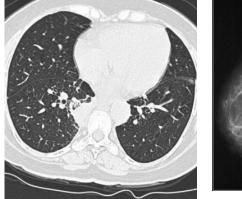
ANSWER QUICKLY-OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

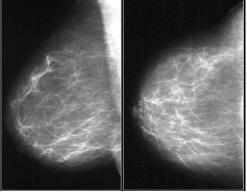
TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

Get more labels...

CT Lung

Mammography





Labels in BioMed

In clinical routine:

- labels available on patient-level
 - healthy/diseased
 - diagnostic staging
- detailed annotations time consuming
- requires a medical expert

General applications:

- molecule polymorphism (MUSK)¹
- content-based image retrieval (semantic annotation)

\rightarrow weakly-supervised learning

¹Dietterich et al.

Definition

Standard Multiple-Instance Learning (MIL)

1

The building blocks are *bags* B_I , $I \in \mathcal{I}$, each denotes a group of instances x_i , i.e. $B_I = \{x_i, i \in I\} \subset \mathbb{R}^m$. Furthermore, each bag is assigned a label $y_I \in \{-1, +1\}$. Instance labels $y(x_i)$ are not given. A standard MIL problem is defined if it holds:

1)
$$y_l = +1 \Leftrightarrow \exists x_i$$
, s.t. $y(x_i) = +1$ (positive identifiability)

2 $y_l = -1 \Leftrightarrow \forall x_i \ y(x_i) = -1$ (negative exclusion)

MIL Classification

For classification, we want either

• an instance classifier

$$f(X): \mathcal{X} \to \mathcal{Y}$$

• a bag classifier

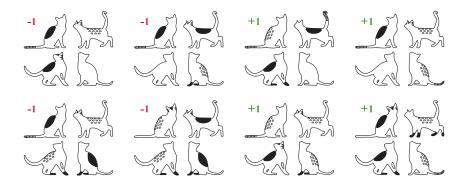
$$F(X^m): \mathcal{X}^m \to \mathcal{Y}$$

Note

Each instance classifier f(X) induces a bag classifier $F(X^m)$ by

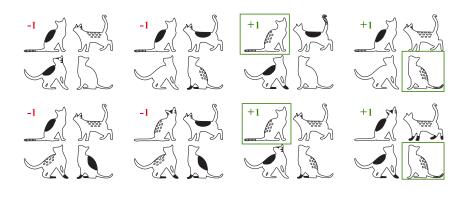
$$F(X^m) = \max\{f(x_1), ..., f(x_m)\},\$$

MIL Example (1)



from Cheplygina, V: PhD Thesis

MIL Example (2)



MIL Approach Illustration

Support Vector Machine classifier:

$$\min \frac{1}{2} \|w\|_2^2 + C \sum_{ij} \xi_{ij}$$

s.t. $y_{ij}(w \cdot x_{ij} + b) \ge 1 - \xi_{ij}$
 $\xi_{ij} \ge 0$

Construction of a MIL classifier:

- MI-SVM (bag-level)
- mi-SVM, MI-RF: (instance-level)
- further approaches²

²Carbonneau et al., J PatRec'2017, Review article

SVM-based MIL algorithms

Solution through iterative heuristics:³

MI-SVM

- start with bag labels
- 2 while labels change:
 - select bag witness s(j)
 - train_SVM($X^- \cup \{s(j)\}$)

mi-SVM

- $1 \quad \text{set } y(x_{ij}) = Y_i$
- 2 while labels change:
 - train_SVM $(X^- \cup X^+)$
 - ensure MIL-conditions

³Andrews et al.

MIL Random Forests

- use deterministic annealing(DA) with random forests (RF)⁴
- DA-formulation of the loss function:

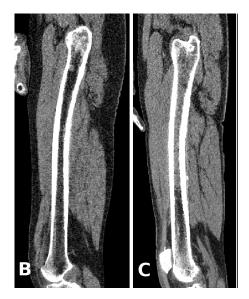
$$\mathcal{L}(\mathsf{F},\hat{p}) = \sum_{i,j}\sum_{k}\hat{p}(k|x_i^j)\ell(\mathsf{F}_k(x_i^j)) + T\sum_i \mathcal{H}(\hat{p}_i).$$

- **1** find minimal \hat{p} for fixed confidences $F_k(x_i)$
- Pre-train the RF with sample distribution p̂ (ensure at least one positive instance in positive bags prior to training phase)

⁴Leistner et al., ECCV'2010

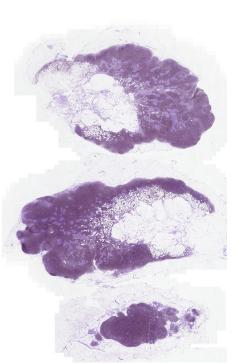
Example I

Detection of bone-marrow infiltrations in low-dose CT images of femurs. Scans of both femurs are provided, labels are available only at patient-level.



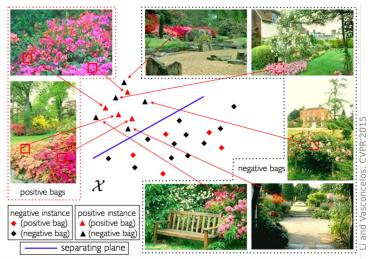
Example II

Detect tumorous histo-pathology sections. The tumor annotations may not be complete or may be missing completely (i.e. only image-level labels).



Weak labels

Concept (flowers) present also in negative bags:



Standard MIL

Weak points of standard MIL

- robustness impact of a single false detection
- weak labels other concepts present in the input image
- counting the number of positive instances is decisive ("traffic jam")

Definition

Standard Multiple-Instance Learning (MIL)

The building blocks are *bags* B_I , $I \in \mathcal{I}$, each denotes a group of instances x_i , i.e. $B_I = \{x_i, i \in I\} \subset \mathbb{R}^m$. Furthermore, each bag is assigned a label $y_I \in \{-1, +1\}$. Instance labels $y(x_i)$ are not given. A standard MIL problem is defined if it holds:

1
$$y_l = +1 \Leftrightarrow \sum_{i \in I} \llbracket y(x_i) > 0 \rrbracket \ge 1$$
 (positive identifiability)
2 $y_l = -1 \Leftrightarrow \sum_{i \in I} \llbracket y(x_i) > 0 \rrbracket < 1$ (negative exclusion)

Definition

Generalized Multiple-Instance Learning (gMIL)

The building blocks are bags B_I , $I \in \mathcal{I}$, each denotes a group of instances x_i , i.e. $B_I = \{x_i, i \in I\} \subset \mathbb{R}^m$. Furthermore, each bag is assigned a label $y_I \in \{-1, +1\}$. Instance labels $y(x_i)$ are not given. A bag is said to be ζ -positive, if it holds

$$y_{l} = +1 \Leftrightarrow \sum_{i \in I} \llbracket y(x_{i}) > 0 \rrbracket \ge \zeta \text{ (positive identifiability)}$$

 $2 \ y_I = -1 \Leftrightarrow \sum_{i \in I} [[y(x_i) > 0]] < \zeta \text{ (negative exclusion)}$

gMIL Algorithms

Common principle: With an instance-classifier *C*

- While labels change
 - predict labels with C
 ensure at least k positive instance in each positive bag
 - 3 retrain C with current labels y(x_{ij})

First approach: introduce a (hyper-)parameter k

Q: How to **learn** the threshold k (resp. ζ).

- *k*-mi-SVM
- k-MI-SVM
 - *k*-top-MI-SVM⁵
- *k*-MIL-RF

⁵Li and Vasconcelos, CVPR'2015

gMIL Algorithms (cont'd)

While labels change:

- 1 predict labels with C
- **2** $\hat{k} \leftarrow \text{get}_k \text{hat}(X^-, X^+)$
- **3** ensure **at least** \hat{k} positive instance in each positive bag
- **4** retrain C with current labels $y(x_{ij})$

get_k_hat

estimate count pos. instances in pos. and neg. bags, \hat{k} their average optimize take \hat{k} that minimizes bag-level classification error

Experiments

Applied to detection of multiple myeloma infiltrations (Example I) 6 .

Classification features

Split femur into segments I, t, ϕ and compute intensity-based features. Each instance is then $\mathbf{x}_i = [I, t, \phi, \mu, \sigma, h_1, \dots, h_{N_h}]$.

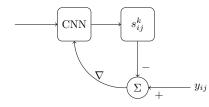
	k	mi-SVM ⁸	$\mathrm{MI}\text{-}\mathrm{SVM}^8$	MIL-ARF ⁹
AUC	$rac{1}{\zeta_{ m est}}$	$\begin{array}{c} 0.747 \pm 0.065 \\ 0.867 \pm 0.049^{\ddagger} \\ 0.823 \pm 0.066^{\ddagger} \end{array}$	$\begin{array}{c} 0.751 \pm 0.053 \\ 0.774 \pm 0.068^{\dagger} \\ 0.764 \pm 0.058 \end{array}$	$\begin{array}{c} 0.854 \pm 0.055 \\ 0.874 \pm 0.048^{\dagger} \\ \textbf{0.876} \pm \textbf{0.048}^{\ddagger} \end{array}$

(Convolutional) Neural Networks

Weakly supervised networks

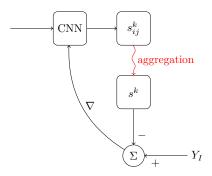
CNN backpropagation

feature map pixels: $s_{i,i}^k$

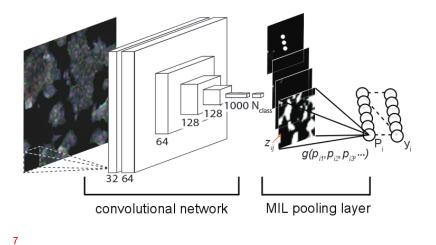


MIL-CNN

need to aggregate $s_{i,i}^k$



MIL-CNN



⁷Kraus et al., J BioInf 2016

MIL-CNN Aggregation

• global sum

$$s^k = \sum_{i,j} s^k_{ij}$$

global max pooling⁸

$$s^k = \max_{i,j} s^k_{ij}$$

• LSE (log-sum-exp)⁹

$$s^{k} = \frac{1}{r} \log[\frac{1}{wh} \sum \exp(r \cdot s_{ij}^{k})]$$

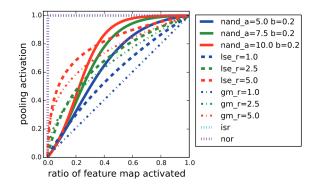
⁸Oquab et al., CVPR'2015 ⁹Pinheiro et al., CVPR'2015

MIL-CNN Aggregation II

• Noisy-AND¹⁰

$$s = \frac{\sigma(a(\bar{s_{ij}} - b_i)) - \sigma(-ab_i)}{\sigma(a(1 - b_i)) - \sigma(-ab_i)}$$

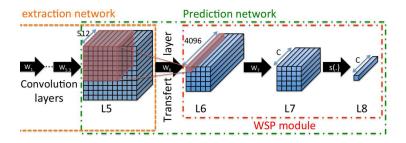
activation once the mean of the instance probabilities $\bar{s_{ij}}$ surpasses a threshold.



¹⁰Kraus et al., J BioInf 2016

gMIL-CNN Aggregation

Two-stage network: feature extraction + weakly-sup. module¹¹



• select *top-k* and *m-low* instances

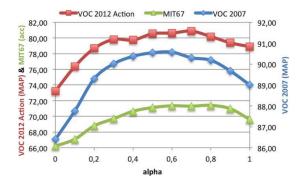
$$\mathbf{L8}(c) = s_{top} \left(\mathbf{L7}(c) \right) + s_{low} \left(\mathbf{L7}(c) \right) = \sum_{t_c^*=1}^{k} \mathbf{l}^{\mathbf{7}}_{t_c^*} + \sum_{l_c^*=1}^{m} \mathbf{l}^{\mathbf{7}}_{l_c^*}$$

¹¹Durand et al., CVPR'2016

gMIL-CNN Aggregation

• weight the contribution of *low* instances¹²

$$s^{c} = \max_{\mathbf{h} \in \mathcal{H}_{k^{+}}} \frac{1}{k^{+}} \sum_{i,j} h_{i,j} \bar{z}^{c}_{i,j} + \alpha \left(\min_{\mathbf{h} \in \mathcal{H}_{k^{-}}} \frac{1}{k^{-}} \sum_{i,j} h_{i,j} \bar{z}^{c}_{i,j} \right)$$



¹²Durand et al. CVPR'17

Summary

- generalization approaches in both traditional and deep learners
- gMIL formulation better suited in multiple scenarios

gMIL - Addressed issues

- robustness impact of a single false detection
- weak labels multiple concepts are present
- counting the number of positive instances is decisive

Thank you for your attention!

