Agents Heterogeneity in Microscopic Models of Pedestrian Flow

Pavel Hrabák

Faculty of Information Technology Czech Technical University in Prague

Machine Learning and Modelling Seminar Thursday April 27, 2023

(日) (四) (日) (日) (日)

Outline

1 Pedestrian and Evacuation Dynamics

2 Experiments

3 Cellular Models

Introduced Features

5 Non-cellular Model Heterogeneity

Pedestrian and Evacuation Dynamics

Description, modelling, and analysis of

Evacuation

Non-emergent egress

Pedestrian traffic

Application in safety management

- Estimation of total evacuation time (TET).
- Estimation of space usage.
- Estimation of bottleneck capacity.
- Identification of problematic areas, bottlenecks, ...

PED – a Multidisciplinary Field

Experimental studies and data-mining

Agent-based modelling

Statistical analysis and modelling

Statistical physics

P. Hrabák (FIT-CTU)

Multi-Agent Models of Pedestrian Dynamics

¹PathFinder, Thunderhead eng.

P. Hrabák (FIT-CTU)

Social Force Model for Pedestrian Dynamics

Dirk Helbing and Péter Molnár. Phys. Rev. E 51 (1995)

Newtonian equations of motion

$$\ddot{ec{x}}_{lpha}(t)=ec{F}^{(ext{mot})}_{lpha}+ec{F}^{(ext{int})}_{lpha}+ec{F}^{(ext{env})}_{lpha}+ec{F}^{(ext{env})}_{lpha}$$

- Attraction to the exit
 - $ec{F}^{(
 m mot)}_lpha \propto v^0_lpha ec{e}_lpha ec{v_lpha}$
- Repulsion from others

$$ec{F}^{(ext{int})}_lpha = \sum_{eta
eq lpha} ec{F}^{(ext{int})}_{eta lpha}$$

• Repulsion from obstacles

$$ec{F}^{(ext{env})}_{lpha} = \sum_{B}ec{F}^{(ext{env})}_{Blpha}$$

< □ > < 同 > < 回 > < 回 >

Implementation of Social Force Concept

JuPedSim – open-source simulator from JSC

- Generalized Centrifugal Force Model
- Collision-free Speed Model
- Collision avoidance left to the "Forces"

FDS+Evac - commercial evacuation software

- Helbing Social-Force model
- Collison avoidance rules added
- Fire and human interaction

Path-Navigation and Floor-Field models

Navigation + Avoiding colissions + Solving conflicts

- Agent chooses direction along ideal path (navigation mesh, potential gradient).
- Agent adjusts its speed based on state of the neighbourhood (obstacles, density, other agents).
- Agents choosing to enter the same cell "negotiate".

Implemtation of Path-Navigation Models

VADERE - open-source simulator from Munich University of Applied Sciences

- Optimal Steps Model
- Behavioral Heuristics Model
- Navigation using floorfield potential

PathFinder – commercial evacuation software from Thunderhead eng.

• Path navigating concept

- Navigation mesh
- Collision avoidance + conflict solution algorithm

Cellular Models

- Particles/agents hopping along discrete lattice
- Related to cellular automata
- Inspired by 2D lattice-gas models
- Discrete configuration space
- Popular among statistical physicists
- Rule-based dynamics

Models and theory (2010)

FROM MOLECULES TO VEHICLES

ANDREAS SCHADSCHNEIDER DEBASHISH CHOWDHURY KATSUHIRO NISHINARI

< □ > < 同 > < 回 > < 回 >

Latest review: Li et al. A review of cellular automata models for crowd evacuation. Phys. A 526, 120752, 2019

P. Hrabák (FIT-CTU)

Heterogenity in PED

MLMS, 27/04/2023 10/41

Implementation of Cellular Models

Social Distance Model – academic model from AGH University, Krakóv

- Allianz Arena Munich, Wisla Krakow
- Finer lattice + Proxemics inspired repulsion

Exodus - commercial evacuation software from University of Greenwich

- BuildingExodus, TrainExodus, PlainExodus, ...
- Strictly rule based
- Waiting times and similar from measurements

< □ > < 同 > < 回 > < 回 >

Agent in the Model

- Spatial information
- Motivation to reach final destination
- Avoiding collisions
- Interaction
- Movement strategies

< ロ > < 同 > < 回 > < 回 >

• Parameters

Settup of agent-based model

- Consistent with observations
- Calibrated and validated by experimental/field studies
- Providing sufficiently detailed information
- Parameters dedicated to agents, not whole model

Heterogeneity in Pedestrian Evacuation Model

Variance of parameters

Desired velocity

 $v_{lpha}^{0} \sim \mathcal{N}(\mu_{v}, \sigma_{v}^{2})$

• Agent radius/shape

 $R_{lpha} \sim \mathcal{N}(\mu_v, \sigma_R^2)$

• Acceleration parameters

 $a_{\alpha} \sim \mathcal{U}(a_{\min}, a_{\max})$

Different abilities

- Adults, Children, Seniors
- Without or with limitation
- Needing assistance

- Heterogeneity of crowd often neglected
- Draws attention recently
- Focus on vulnerable evacuees

Is heterogeneity important?

- Does it bring anything new?
- Crowd modelled by identical agents with average properties is it the same?

イロト イヨト イヨト

• How to implement it?

Outline

Pedestrian and Evacuation Dynamics

2 Experiments

- 3 Cellular Models
- Introduced Features
- 5 Non-cellular Model Heterogeneity

э

Crowd Dynamics Experiment

- Alternative to empirical measurements
- Conducted experiments, field studies, evacuation drills
- Important to understand the human behaviour and interaction
- A lot of various experiments
- Still insufficient
- Some available online: https://ped.fz-juelich.de/da/doku.php

イロト イヨト イヨト

Original Experiments at CTU

ID	Date	Num.	Video proc.	Note	Coorg.
E1	28/02/2012	86	manual	leaving room	MB
E2	10/12/2012	80	automatic (unreliable)	passing through	MB
E3	13/05/2013	80	automatic detection		MB
E4	29/04/2014	76	automatic identification		MB
E5	07/03/2016	54	semiautomatic	merging	MB
E6	20/12/2016	53	semiautomatic	streams	MB
T2	00/06/2018	91	semiautomatic	train	HN
H1	05/06/2023	??	planned	leaving room	HN

MB – Marek Bukáček (FNSPE), HN – Hana Najmanová (FCE)

Future plans

- Series of experiments focusing on heterogeneity planned in 2023-2026.
- Automatic data extraction in cooperation with ImproLab (FIT).
- Machine-learning methods for detecting heterogeneous behaviour.

(日) (四) (日) (日) (日)

Experiments

E4 passing through – measured quantities

Exit angle

N-angle-TT diagram

- Hats with ID enabled analysis of trajectories related to individual pedestrians.
- Internal heterogeneity revealed.

イロト イヨト イヨト イヨト

E4 passing through – strategies

MLMS, 27/04/2023 18/41

э.

0

40

30

20

10

E5+E6 merging streams

 Used for calibration of simple mass-transport process

$$egin{aligned} &J_i(t) = \min(m_i(t), J_i^c) \ &m_i(t+1) = m_i(t) - J_i(t) + \ &+ \sum_{j \mid \exists e_{ii}} J_j(t-t_{ij}) \end{aligned}$$

 Simultaneous experiment at AGH Kraków University of Technology

• • • • • • • • • • • •

Experiments

E5+E6 merging streams – flow decrease

- Flow decreasing in time despite clogging in front of the bottleneck.
- Possible explanation by loss of motivation.
- Heterogeneity offers alternative explanation.

Image: A math the second se

Outline

Pedestrian and Evacuation Dynamics

2 Experiments

3 Cellular Models

4 Introduced Features

5 Non-cellular Model Heterogeneity

э

Cellular automata modelling complex behaviour

- Cell changing state according to states of neighbouring cells.
- Even simple rules can reproduce complex behaviour.
- Advantage: local interactions, computationally effective.

Conway's Game of Life (1970)

- Any live cell with fewer than two live neighbours dies, as if by underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

< ロ > < 同 > < 回 > < 回 >

Hopping Particle Systems and Cellular Automata

- Probabilistic CA as traffic flow model
- Hopping particle random process
- Computer science meets statistical physics
- Cell state \leftrightarrow particle in lattice
- Simple rules lead to complex collective phenomena of 1D traffic flow

Rule 184 (Wolphram 1984)

Cellular Models

Floor-Field CA Model of Pedestrian Dynamics Burstedde et al. Phys. A, 295(3-4):507-525, 2001.

Probabilistic choice of target cell

$$P(x \rightarrow y \mid N) \propto \exp\left\{\sum_{F} k_F \cdot F(y)\right\}, \quad F(y) = \text{ field value for } y$$

• Navigation to exit given by attractiveness

$$\exp\{-k_S S(y)\}$$

•
$$S(y) = dist(y, exit)$$

Floor-Field CA Model of Pedestrian Dynamics

Floor-field conception

- Hard core repulsion = exclusion rule
- Parallel choice of target cell
- Conflicts appear

- Friction solution: no one wins with prob. μ .
- Otherwise one chosen randomly.
- Various extensions
- Some against advantage of CA
- Cells are limiting realism

Outline

Pedestrian and Evacuation Dynamics

2 Experiments

3 Cellular Models

Introduced Features

5 Non-cellular Model Heterogeneity

э

Our Contribution to FF model

Acknowledged modifications

- 2012 Principle of bonds (line formation, compact crowd)
- 2013 Adaptive time span (heterogeneity in speed, diagonal movement)
- 2015 Aggressiveness (pushing through the crowd)
- 2017 Heterogeneity in aggressiveness and k_O (strategies)
- 2019 Spatially dependent friction (door width)
- 2023 Heterogeneity explaining flow decrease
- Keeping the advantage of CA
- Leaning over conducted experiments
- Focus on introduction of heterogeneity

Collaborators and contribution

Marek Bukáček (bonds, time-span, aggressiveness, strategies). František Gašpar (spatially dependent friction). Matej Šutý (target choice as probability mixture) Hotlib Mykola (flow decrease)

Principle of Bonds

Spontaneous line formation observed in experiments

- The goal was to capture the motion in lines on microscopic bases.
- Floor-field models excluded occupied cells from targets.
- No lines formed.

P. Hrabák (FIT-CTU)

イロト イヨト イヨト イヨト

Principle of Bonds

Target cell choice, original (2013)

$$\Pr(x o y) \propto \exp\{-k_S \cdot S(y)\}(1 - k_O \cdot O_x(y))(1 - k_D \cdot D_{xy})\}$$

• Sensitivity to occupation $k_O \in [0, 1]$,

$$O_x(y) = egin{cases} 1 & y
eq x \land y \text{ occupied}, \ 0 & y = x \lor y ext{ empty.} \end{cases}$$

- Sensitivity to potential $k_{\mathcal{S}} \in [0, +\infty)$.
- Diagonal motion penalization $k_D \in [0, 1]$.

Principle of Bonds

2

Principle of Bonds - Heterogeneity

Target cell choice as distribution mixture (2021-23)

$$\Pr(x \to y) = (1 - k_O)P_S(x \to y) + k_OP_O(x \to y)$$

Adaptive time span

Usual Updating scheme

- Parallel
- Ordered Sequential

- Random sequential
- Random shuffled

Partial synchronization (2014) - conflicts important

- Isochronous time interval
- Synchronous update of agents with activation time within interval

Adaptive time span

 $\tau_1 = .4, \ \tau_2 = .25$

- Effect of heterogeneous velocity vanishes in crowd.
- Yet significant variance in motion in crowd experimentally observed.

P. Hrabák (FIT-CTU)

Heterogenity in PED

Aggressiveness

- "Aggressiveness" $\gamma \in [0,1]$ represents the ability to win conflict.
- Conflict is won by the agents with higher γ .
- Friction μ plays role only when aggressiveness equals.
- Dedicated property of the agent.

Aggressiveness

$$\tau_1 = .4, \ \tau_2 = .25, \ \gamma_1 = 0, \ \gamma_2 = 1$$

- Significant variance in congested crowd.
- Note: bonds principle still on \implies increases number of conflicts.

P. Hrabák (FIT-CTU)

MLMS, 27/04/2023 35/41

Heterogeneity and Strategies

- Occupation sensitivity k₀ affects the willingness to bypass the crowd or join the line.
- Aggressiveness γ affects the ability to win conflicts.
- Observed strategies can be revealed.

Image: A math the second se

Heterogeneity Explains Decrease of Flow

- More aggressive leaving earlier, less aggressive staying longer.
- May explain the observed decrease of flow.

P. Hrabák (FIT-CTU)

MLMS, 27/04/2023 37/41

(日) (四) (日) (日) (日)

Spatially dependent friction

- Measured/estimated maximal flow through given bottleneck
- Local friction according to **model** friction-flow dependence
- How to find the dependence

 $J = J(\zeta; k_S, \text{parameters})?$

Friction-flow dependence

$$J=J(\zeta;k_S,\dots)$$

Image: A math a math

Spatially dependent friction

э

メロト メロト メヨト メヨト

Outline

Pedestrian and Evacuation Dynamics

2 Experiments

3 Cellular Models

Introduced Features

5 Non-cellular Model Heterogeneity

э

Train Evacuation

2

・ロト ・四ト ・ヨト ・ヨト