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A story of curve fitting

Remedies:

e Parametric models
polynomial regression
‘ neural networks

 Non-parametric models
kernel (ridge) regression
k-nearest neighbor

 Local models
local linear regression



A story of curve fitting

Local models have two components:

e Parametric “controller”
linear regression

 Non-parametric “memory”
k-nearest neighbor

— a small model class can fit a rich function class!

— one local model needs only little data!

— too good to be true?



Local learning in a picture

“Interesting”
all of natural language
language
all token
seqguences

iInductive learning “fine-tuning” local learning
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History

since 1950s: k-nearest neighbors

Fix Hodges Cover Hart

since 1960s: kernel regression (Nadaraya & Watson)
since 1970s: |local (linear) learning (Cleveland & Devlin)
since 1980s: transductive learning (Vapnik)

“When solving a problem of interest, do not solve
a more general problem as an intermediate step.

Try to get the answer that you really need but not
a more general one.”

® In 1990s: local fine-tuning
CNNs on MNIST

(Vapnik & Bottou)




History

® since 2020s: (few-shot) in-context learning (GPT-3)

parametric controller: LLM
non-parametric memory: context (+ retrieval from database)

® recently: local fine-tuning (again!) with GPT-2 (Hardt & Sun)

Pile text
embeddings

Server 180
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Hypothesis for LLMs

\ all of natural

language
LLMs with test-time
fine-tuning?

current LLMs




Does local learning work with LLMs?
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DeepMind Math 100.2¢0.y 70.121  130.1 DeepMind Math 100.2 07 74203  |26.0 GitHub 71.3 46.5 124.8
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FreeLaw 87.2 3.6) 65542  |21.7 FreeLaw 87.2 (3.6) 68342  |18.9 ArXiv 101.0 94.3 16.4
GPT-2 GPT-2-large Phi-3
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Key challenge: which data to select?
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SIFT: selecting informative data for fine-tuning

Principle:
Select data that maximally reduces “uncertainty”
about how to respond to the prompit.

1. Estimate uncertainty

2. Minimize “posterior” uncertainty
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@ Estimating uncertainty

» Making this tractable: nown

unknown /

\
Surrogate model: logit-linear model s(f*(x)) with f*(x) = W*¢(x)

p
FHW;D)=— ) logs,(flx: W) + SIW = WPEIIE - W, = argmin ZX(W:D,)
|14
(x,y)ED

cross-entropy loss (NLL)

s¥ () = s 5,(0) = s(W, ()

“truth” model trained on n pieces of data
 Confidence sets: dp (s, (x),s*(x)) < f,.(0) 6,(x) (W.p.1—5)
error scaling key object

— 0,(x) measures uncertainty about response to x!
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@ Estimating uncertainty

* Are regularized loss minimization and fine-tuning related?

Consider two alternative models:
- W, = arg min E’I(W) — minimizer of regularized loss
W

N

o W}7 = WP — nV.ZL(WP*) — single gradient-step fine-tuning (£ is NLL)

. Proposition: HWl/,7 —W\nHF <nl[VZW,,) = VZ(WP)]

Ridge Regression Stochastic Gradient Descent
n | @© _] @© _]
I ' S o
— models similar for 4 =~ 1/n
| o o
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— 0, (x) measures uncertainty about response to x!
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® Minimizing “posterior” uncertainty

 Choose data that minimizes uncertainty of the model after seeing this data:

_ - *
Xp+1 = alrgmin GXnu{x}(x N

X prompt
— — T — —
k(x™, x,) k(x*, x;)
. . : A T /
= argglax k(x*,xn) k(x*,xn) with k(x, x) = ¢(x) P (x)
k(% x) k(% x)
maximize relevance minimize redundancy

 Convergence guarantee (in case of no synergies):

o2(x*) — 0%(x*) < O(4log m)/\/n

— predictions can be only as good as the data and the learned abstractions!
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® Minimizing “posterior”’ uncertainty (example)

 Example: suppose embeddings are normalized

*\ T 2 2
xr, = arg min a%w}(az*) = arg max CACIRIC)) = arg max (Aqb(w*,:c)) . (1st point)

x D x D 1+ A xeD N e’

cosine similarity of (&™), ¢(x)

- —1r

. Lo(x*, )] [ 14+ £Lo(x1, ) Lo(x*, 1)

_ 2 *\ 0 y L] d\L1) o y L1

Lo = arg min r*) = arg ma K * .

2 :%ED O {212} (T7) %EB = Lp(x*, ) | [Lp(T1, ) L+ X | | Lgp(z*, )
(2nd point)

« Example: suppose X is such that A(ﬁ(xl,x) = (0. Then x is preferred over x iff

- A
24+ A

— as A — 00: maximum relevance, as A — 0: minimum redundancy
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A probabillistic interpretation of SIFT

search for x

probabilistic model
with belief aboutf = “memory”

(“COntrO”er”) response y(x)

- : 20K
posterior variance o (x™)

Apsrl = arg){nin Var(f(x*) ‘ Y1:n y(X))

Tractable Probabilistic Model
y(x) = f(x) + &(x)
[~ &P, k)
£(Xx) lrlf/l A/(O,\/Z) — arg;nax I(f(X*); y(x)) — I(f(X*); Y(x); yl:n)

redundancy

= arg max 1(f(r*); y00) | yy.,)

elev




Does SIFT work?
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— larger gains with stronger base models!
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US NN NN-F SIFT A
NIH Grants 93.11.1 84.92.1 91.60167 538389 |31.1
US Patents 85.6(1.,5) 80.3(1.9) 108.8(@6.6) 62935 [17.4
GitHub 45.6 22) 42.120 53240 30022 J|12.1
Enron Emails  68.6 (9.8) 64.410.1) 91.6206) S3.1(114) |11.3
Wikipedia 67.51.9 66320 121.2@3.5 62721 |3.6
Common Crawl 92.6 (04) 90.4 0.5 148.8(1.5 87.50.7) [2.9
PubMed Abstr.  88.9(0.3) 87.2(04) 162.6(1.3) 84.4006) 2.8
ArXiv 85.41.2) 85.01.6 166864 825014 [2.5
PubMed Central 81.7 2.6) 81.7(2.6) 155.6(55.1) 79.526)  [|2.2
Stack Exchange 78.6(0.7) 78.20.7) 141.9a.5 76.70.79 |1.5
Hacker News  80.4(2.5) 79.228) 133.16.3) 78.4228  |0.8
FreeLaw 639141 64.1¢40 122471 64.041) 10.1
DeepMind Math 69.4 (2.1) 69.6 2.1) 121.83.1) 69.72.1) 10.3
All 80.2.5) 78.3(.5 133.31.2) 73.50.6 |4.8




Does SIFT work?
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— larger gains with larger “memory”!
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Can we learn representations over time?

Strong representations can be bootstrapped!

Selected Data - == 1.i.d. Data

MNIST from random initialization

100
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Accuracy

70 -

60 -

50 1 1 1 1
. 0 20 40 60 80 100
representations Number of Samples
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Summary

Local models
solve one problem at a time

Inductive models (most current SOTA models)
attempt to solve all possible problems at once

— local learning allows allocating compute where it is “interesting”!



I'm happy to chat!

Jonas Hubotter
jonas.huebotter@inf.ethz.ch

 Transductive Active Learning: Theory and Applications
NeurlPS 24 ‘

* Efficiently Learning at Test-Time: Active Flne-Tunlng of LLMs
NeurlPS 24 Workshop 3
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Model Bits per Byte Bits per Byte (without Wikipedia)
Jurassic-1 (178B, Licber et al., 2021) n/a 0.601
GLM (130B, Zeng et al., 2022) n/a 0.622
GPT-2 (124M, Radford et al., 2019) 1.241

GPT-2 (774M, Radford et al., 2019) 1.093

[Llama-3.2-Instruct (1B) 0.807

[Llama-3.2-Instruct 3B) 0.737

Gemma-2 (2B, Team et al., 2024) 0.721

[Llama-3.2 (1B) 0.697

Phi-3 (3.8B. Abdin et al., 2024) 0.679 0.678
Phi-3 (7B, Abdin et al., 2024) 0.678

Gemma-2 (9B, Team et al., 2024) 0.670

GPT-3 (175B. Brown et al., 2020) 0.666

Phi-3 (14B, Abdin et al., 2024) 0.651

[Llama-3.2 3B) 0.640

Gemma-2 (278, Team et al., 2024) 0.629

Test-Time FT with SIFT + GPT-2 (124m) 0.862

Test-Time FT with SIFT + GPT-2 (774m) 0.762

Test-Time FT with SIFT + Phi-3 (3.8B) 0.595 0.599

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without
copyrighted datasets. Results with GPT-3 are from Gao et al. (2020). Results with Jurassic-1 and GLM
are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete comparison,
we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia dataset.



