Jonas Hübotter

Transductive active learning for fine-tuning large (language) models

Transductive active learning for fine-tuning large (language) models **Efficiently learning at test-time with LLMs**

Jonas Hübotter

[**H**, Bongni, Hakimi, Krause; preprint]

A story of curve fitting

Remedies:

- Parametric models polynomial regression neural networks
- Non-parametric models kernel (ridge) regression k-nearest neighbor
- **Local** models local linear regression

…

A story of curve fitting

Local models have two components:

- *Non-parametric* "memory" k-nearest neighbor
- \rightarrow a small model class can fit a rich function class!
- \rightarrow one local model needs only little data!
- \rightarrow too good to be true?

• *Parametric* "controller" linear regression

…

…

A story of curve fitting

Local learning in a picture

inductive learning "fine-tuning" **local** learning

History

since 1950s: k-nearest neighbors Fix Hodges Cover Hart

"When solving a problem of interest, do a more general problem as an intermediation Try to get the answer that you really need a more general one."

in 1990s: local fine-tuning $\frac{3!43456789}{6!43456789}$ CNNs on MNIST

since 1980s: transductive learning (Vapnik)

since 1960s: kernel regression (Nadaraya & Watson)

since 1970s: local (linear) learning (Cleveland & Devlin)

History

since 2020s: (few-shot) in-context learning (GPT-3)

parametric controller: LLM non-parametric memory: context (+ retrieval from database)

recently: local fine-tuning (again!) with GPT-2 (Hardt & Sun)

Hypothesis for LLMs

LLMs with test-time fine-tuning?

all of natural language

Does local learning work with LLMs?

GPT-2-large Phi-3

Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1963.

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.

Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 19

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.

Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.

SIFT: selecting informative data for fine-tuning

Principle:

Select data that *maximally* reduces "uncertainty" about how to respond to the prompt.

- 1. Estimate uncertainty
- 2. Minimize "posterior" uncertainty

[**H**, Bongni, Hakimi, Krause; preprint]

• Making this tractable:

Surrogate model: logit-linear model $s(f^*(x))$ with

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

❶ Estimating uncertainty

 $W_n = \arg\min_{\mathbf{W}} \mathscr{L}^{\lambda}(\mathbf{W}; D_n)$ *W*

$$
s^{\star}(x) = s(f^{\star}(x))
$$

"truth"

• *Confidence sets:* $d_{TV}(s_n(x), s^*(x)) \leq \beta_n(\delta) \sigma_n(x)$ (w.p. 1 – *δ*)

 \rightarrow $\sigma_n(x)$ measures uncertainty about response to x!

$$
s_n(x) = s(W_n \phi(x))
$$

model trained on *n* pieces of data

error scaling key object

$$
(w.p. 1 - \delta)
$$

$$
\mathscr{L}^{\lambda}(W;D) = -\sum_{(x,y)\in D} \log s_{y}(f(x;W)) + \frac{\lambda}{2} ||W - W^{\text{pre}}||_{\text{F}}^{2}
$$

regulation
cross-entropy loss (NLL)

• Are **regularized loss minimization** and **fine-tuning** related?

Consider two alternative models:

• Proposition:

 \rightarrow models similar for $\lambda \approx 1/\eta$!

minimizer of regularized loss

single gradient-step fine-tuning ($\mathscr L$ is NLL)

$||W_{1/n} - W_{n}||_F \leq \eta ||\nabla \mathcal{L}(W_{1/n}) - \nabla \mathcal{L}(W^{pre})||_F$ [see also Ali et al.; ICML '20] Stochastic Gradient Descen $\frac{6}{10}$ $\frac{6}{10}$ ្លួ

1/lambd

•
$$
W_{\lambda} = \arg \min_{W} \mathcal{L}^{\lambda}(W) \rightarrow
$$

\n• $\widehat{W}_{\eta} = W^{\text{pre}} - \eta \nabla \mathcal{L}(W^{\text{pre}}) \rightarrow$

❶ Estimating uncertainty

 $\frac{2}{3}$

maximize relevance minimize redundancy

• Convergence guarantee (in case of no synergies):

 $\sigma_n^2(x^*) - \sigma_\infty^2(x^*) \leq O(\lambda \log n) / \sqrt{n}$

❷ Minimizing "posterior" uncertainty

irreducible uncertainty

 \rightarrow predictions can be only as good as the data and the learned abstractions!

Choose data that minimizes uncertainty of the model after seeing this data:

with $k(x, x') = \boldsymbol{\phi}(x)^\top \boldsymbol{\phi}(x')$

Not possible with nearest neighbor retrieval!

• Example: suppose embeddings are normalized

$$
x_1 = \arg\min_{\boldsymbol{x} \in \mathcal{D}} \sigma_{\{\boldsymbol{x}\}}^2(\boldsymbol{x}^\star) = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \frac{(\phi(\boldsymbol{x}^\star)^\top \phi(\boldsymbol{x}))^2}{1 + \lambda} = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \left(\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})}_{\text{cosine similarity of } \phi(\boldsymbol{x}^\star), \phi(\boldsymbol{x})} \right)^2. \quad \text{(1st point)}
$$
\n
$$
x_2 = \arg\min_{\boldsymbol{x} \in \mathcal{D}} \sigma_{\{\boldsymbol{x}_1, \boldsymbol{x}\}}^2(\boldsymbol{x}^\star) = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \left[\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x}_1)}_{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})} \right]^\top \left[\underbrace{1 + \lambda}_{\measuredangle_{\phi}(\boldsymbol{x}_1, \boldsymbol{x})} \underbrace{\measuredangle_{\phi}(\boldsymbol{x}_1, \boldsymbol{x})}_{1 + \lambda} \right]^{-1} \left[\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x}_1)}_{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})} \right] \tag{2nd point}
$$

$$
x_1 = \arg\min_{\boldsymbol{x} \in \mathcal{D}} \sigma_{\{\boldsymbol{x}\}}^2(\boldsymbol{x}^\star) = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \frac{(\phi(\boldsymbol{x}^\star)^\top \phi(\boldsymbol{x}))^2}{1 + \lambda} = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \left(\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})}_{\text{cosine similarity of } \phi(\boldsymbol{x}^\star), \phi(\boldsymbol{x})} \right)^2. \quad \text{(1st point)}
$$
\n
$$
x_2 = \arg\min_{\boldsymbol{x} \in \mathcal{D}} \sigma_{\{\boldsymbol{x}_1, \boldsymbol{x}\}}^2(\boldsymbol{x}^\star) = \arg\max_{\boldsymbol{x} \in \mathcal{D}} \left[\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x}_1)}_{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})} \right]^\top \left[\underbrace{1 + \lambda}_{\measuredangle_{\phi}(\boldsymbol{x}_1, \boldsymbol{x})} \underbrace{\measuredangle_{\phi}(\boldsymbol{x}_1, \boldsymbol{x})}_{1 + \lambda} \right]^{-1} \left[\underbrace{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x}_1)}_{\measuredangle_{\phi}(\boldsymbol{x}^\star, \boldsymbol{x})} \right] \tag{2nd point}
$$

$$
\measuredangle_{\bm{\phi}}(\bm{x}^\star, \bm{x})^2 >
$$

❷ Minimizing "posterior" uncertainty (example)

→ as *λ* → ∞: maximum relevance, as *λ* → 0: minimum redundancy

• Example: suppose *x* is such that $\mathcal{A}_{\phi}(x_1, x) = 0$. Then *x* is preferred over x_1 iff $>\frac{\lambda}{2+\lambda}\measuredangle_{\boldsymbol\phi}(\boldsymbol x^\star,\boldsymbol x_1)^2.$

A probabilistic interpretation of SIFT

probabilistic model with **belief** about *f* $(''controller")$ response $y(x)$

$$
x_{n+1} = \arg\min_{x} \frac{\text{Var}(f(x^*) | y_{1:n}, y(x))}{\text{Var}(f(x^*) | y_{1:n}, y(x))}
$$

=
$$
\arg\max_{x} \left[(f(x^*); y(x) | y_{1:n}) \right]
$$

=
$$
\arg\max_{x} \left[(f(x^*); y(x)) - \left[(f(x^*); y(x); y_{1:n}) \right] \right]
$$

relevance

Does SIFT work?

 \rightarrow larger gains with larger "memory"!

Does SIFT work?

Can we learn representations over time?

Strong representations can be bootstrapped!

[**H**, Sukhija, Treven, As, Krause; NeurIPS '24]

Summary

Local models solve one problem at a time

Inductive models (most current SOTA models) attempt to solve all possible problems at once

 \rightarrow local learning allows allocating compute where it is "interesting"!

• Transductive Active Learning: Theory and Applications NeurIPS '24

• Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs NeurIPS '24 Workshop

Jonas Hübotter jonas.huebotter@inf.ethz.ch

I'm happy to chat!

Model

Jurassic-1 (178B, Lieber et al., 2021) GLM (130B, Zeng et al., 2022) $GPT-2$ (124M, Radford et al., 2019) $GPT-2$ (774M, Radford et al., 2019) Llama-3.2-Instruct $(1B)$ Llama-3.2-Instruct $(3B)$ $Gemma-2$ (2B, Team et al., 2024) Llama- 3.2 (1B) Phi- 3 (3.8B, Abdin et al., 2024) **Phi-3** (7B, Abdin et al., 2024) $Gemma-2$ (9B, Team et al., 2024) $GPT-3$ (175B, Brown et al., 2020) Phi- $3(14B,$ Abdin et al., 2024) Llama- 3.2 (3B) **Gemma-2** (27B, Team et al., 2024)

Test-Time FT with $SIFT + GPT-2$ (124M) Test-Time FT with $SIFT + GPT-2$ (774M) *Test-Time FT with* $SIFT + Phi-3(3.8B)$

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without copyrighted datasets. Results with GPT-3 are from Gao et al. (2020). Results with Jurassic-1 and GLM are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete comparison, we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia dataset.

