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Pile language modeling benchmark

Pile dataset

[H, Bongni, Hakimi, Krause; preprint]
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TestTrain

Training data Learnt model Prediction

Test instance
known!

Local learning (at test-time)



A story of curve fitting
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Remedies:

• Parametric models

polynomial regression

neural networks

• Non-parametric models

kernel (ridge) regression

k-nearest neighbor

• Local models

local linear regression

…

A story of curve fitting
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Local models have two components:

• Parametric “controller”

linear regression

…

• Non-parametric “memory”

k-nearest neighbor

…

 a small model class can fit a rich function class!→
 one local model needs only little data!→
 too good to be true?→

A story of curve fitting



Local learning in a picture

all of natural 
language

all token 
sequences

inductive learning “fine-tuning” local learning

“interesting” 
language

8



History
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since 1970s: local (linear) learning (Cleveland & Devlin)

“When solving a problem of interest, do not solve 
a more general problem as an intermediate step. 
Try to get the answer that you really need but not 
a more general one.”

since 1980s: transductive learning (Vapnik)

in 1990s: local fine-tuning (Vapnik & Bottou)

CNNs on MNIST

since 1960s: kernel regression (Nadaraya & Watson)

since 1950s: k-nearest neighbors Fix Cover HartHodges



History
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recently: local fine-tuning (again!) with GPT-2 (Hardt & Sun)

since 2020s: (few-shot) in-context learning (GPT-3)

parametric controller: LLM

non-parametric memory: context (+ retrieval from database)

[Hardt, Sun; ICLR ’24]



Hypothesis for LLMs
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LLMs with test-time 
fine-tuning?

all of natural 
language

current LLMs



GPT-2 GPT-2-large Phi-3

Does local learning work with LLMs?
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GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B) Phi-3 (14B) Gemma-2 (27B)
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Key challenge: which data to select?
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SIFT: selecting informative data for fine-tuning
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Principle: 
Select data that maximally reduces “uncertainty” 
about how to respond to the prompt.

1. Estimate uncertainty

2. Minimize “posterior” uncertainty

[H, Bongni, Hakimi, Krause; preprint]



  measures uncertainty about response to !→ σn(x) x

• Making this tractable:


Surrogate model: logit-linear model  with 


• Confidence sets:

s( f ⋆(x)) f ⋆(x) = W⋆ϕ(x)

❶ Estimating uncertainty
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 linear representation hypothesis [Park, Choe, Veitch; ICML ’24]→

unknown
known

s⋆(x) = s( f ⋆(x))
“truth”

sn(x) = s(Wn ϕ(x))
model trained on  pieces of datan

dTV(sn(x), s⋆(x)) ≤ βn(δ) σn(x) (w.p. 1 − δ)
error scaling key object

ℒλ(W; D) = − ∑
(x,y)∈D

log sy( f(x; W)) +
λ
2

∥W − Wpre∥2
F

cross-entropy loss (NLL)
regularization

Wn = arg min ℒλ(W; Dn)
W



• Are regularized loss minimization and fine-tuning related?


Consider two alternative models:


• 


• 


• Proposition: 

Wλ = arg min ℒλ(W)

̂Wη = Wpre − η∇ℒ(Wpre)

∥ ∥F ≤ η∥∇ℒ(W1/η) − ∇ℒ(Wpre)∥

 models similar for !→ λ ≈ 1/η

❶ Estimating uncertainty
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W
 minimizer of regularized loss→

 single gradient-step fine-tuning (  is NLL)→ ℒ

[see also Ali et al.; ICML ’20]
W1/η − ̂Wη
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  measures uncertainty about response to !→ σn(x) x



= argmax

k(x⋆, x1)
⋮

k(x⋆, xn)
k(x⋆, x)

⊤
k(x1, x1) ⋯ k(x1, xn) k(x1, x)

⋮ ⋱ ⋮ ⋮
k(xn, x1) ⋯ k(xn, xn) k(xn, x)
k(x, x1) ⋯ k(x, xn) k(x, x)

+ λIn+1

−1
k(x⋆, x1)

⋮
k(x⋆, xn)
k(x⋆, x)

with k(x, x′ ) = ϕ(x)⊤ϕ(x′ )

• Choose data that minimizes uncertainty of the model after seeing this data:


• Convergence guarantee (in case of no synergies):

❷ Minimizing “posterior” uncertainty
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xn+1 = argmin σXn∪{x}(x⋆)
x

x

prompt

maximize relevance minimize redundancy

σ2
n(x⋆) − σ2

∞(x⋆) ≤ O(λ log n)/ n
irreducible uncertainty

 predictions can be only as good as the data and the learned abstractions!→

Not possible with nearest neighbor retrieval!



• Example: suppose embeddings are normalized


• Example: suppose  is such that . Then  is preferred over  iffx ∡ϕ(x1, x) = 0 x x1

❷ Minimizing “posterior” uncertainty (example)
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 as : maximum relevance, as : minimum redundancy→ λ → ∞ λ → 0
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too little relevance

too little 
diversity



A probabilistic interpretation of SIFT
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“memory”
probabilistic model 
with belief about f

(“controller”) response y(x)

search for x

= arg max I( f(x⋆); y(x) ∣ y1:n)

= arg max I( f(x⋆); y(x)) − I( f(x⋆); y(x); y1:n)
redundancyrelevance

x

x

Tractable Probabilistic Model

y(x) = f(x) + ε(x)

f ∼ 𝒢𝒫(μ, k)

ε(x) iid∼ 𝒩(0, λ)

xn+1 = arg min Var( f(x⋆) ∣ y1:n, y(x))
x

posterior variance σ2
n(x⋆)



Does SIFT work?
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GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B)
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26

0 10 20 30 40 50

Test-Time Iterations

90.0

92.5

95.0

97.5

100.0
B

its
pe

rB
yt

e
in

%

3%
33%
100%

 larger gains with larger “memory”!→

Does SIFT work?



Can we learn representations over time?
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Strong representations can be bootstrapped!
[H, Sukhija, Treven, As, Krause; NeurIPS ’24]



Summary
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Local models 
solve one problem at a time

Inductive models (most current SOTA models)

attempt to solve all possible problems at once

 local learning allows allocating compute where it is “interesting”!→



• Transductive Active Learning: Theory and Applications 
NeurIPS ’24


• Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs 
NeurIPS ’24 Workshop


• Active Fine-Tuning of Generalist Policies


Preprint

Jonas Hübotter 
jonas.huebotter@inf.ethz.ch

I’m happy to chat!
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