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Introduction modelling in climate science
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Introduction dynamical models

* discretized partial differential equations + current state
of the climate (inrtial cond.)

* oeneral circulation models (GCMs)

* used In numerical weather prediction, reanalysis data-
sets and future climate intercomparisons

e uncertainties: initial errors and model errors
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Introduction statistical models

* motivation: forecasting, scaling down the complexity
* NOT based on physical mechanisms underlying the
dynamics, but derived from past weather patterns

* Inverse stochastic models

* model Is designeq, Its parameters estimated / trained
using past weather data and stochastically integratea

* Uncertainties: which variables and non-stationarity

* temperature!
* atm. pressure!
* sea-surface temperature! in past data
* cloudiness!?

* |atent heat flux!

phase space visited

phase space
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ENSO neutra

* strong Interannual signal with great economic and so-
cletal iImpact

Normal Conditions
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*wikipedia.org
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ENSO DOSItIve

El Nifo Condltlons
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ENSO negative

La Nina Conditions
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ENSO overview

1880 1900 1920 1940 1960 1980

TIME [YEAR]

* reasons why are still largely unknown
* DOSItIVe phase characterised by a larger magnitude
than negative phase -- nonlinear interactions
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Statistical model inverse nonlinear model

e evolution of anomalies as
x = Lx + N(x)

* [iInear inverse models by assuming linear form
N(x)dx ~ Txdt + dr(%)

* describes linear feedback of hidden processes

* assume polynomial form

N,-(x)dx ~ (XTA,'X + ;X + C,-(O))dt I dr-(o)

b =1 4t BO=pL4T

/

* 50 that the main level of our model is
dxi = (xTAx+by) + ) de-+dri
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Statistical model muttilevel models

* stochastic forcing still involves serial correlations and
mMight also depend on modelled process

* additional levels Included to express the known time
increments as linear function of extended state vector

dr® = p¥ [x, r(O)] dt + rVdt

/
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Statistical model ENSO mode

* it Is known that extreme ENSO events tend to occur
N boreal winter, we Include seasonality as

R(0) _ Bo+Bssin (2nt/ T)+Bccos (2nwt/T)
cl0) — co+Cssin(2nt/ T)+cccos(2nt/ T)

* model Is estimated in the leading EOF space of Pacific
sea surface temperature anomalies

* optimal number of state vector variables and degree
of nonlinearity has to be assessed by cross-validation
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Results basic ENSO metrics
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* NINO3.4 index

e amplitude - STD of NINO3.4
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Results basic ENSO metrics

* seasonality - monthly STD of NINO 3.4

1.2 -

STD of SSTA

Statistical modelling in climate science seminar 2016 | |3



Results basic ENSO metrics

* spectrum - estimated using VWelch method
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Noise parametrization seasonality

* even multi-level model exhibit serial correlations and
seasonal dependence
*nolIse IS conditioned on system's state

STD of SSTA
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Synchronization and causality concept

* causal relations or information flow between various
scales In the same variable / process

* using wavelet transform to Infer instantaneous phase
and amplitude of the signal with selected perioa
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Synchronization and causality data

*using (conditional) mutual information to infer syn-
chronization and causality measures

_PHASE SYNCHRONIZATION. _ PHASE-AMP CAUSALITY

@'\l'
'Ch'\l
|

o
73

Ul

SSccoocsSgoccSoScoccocScocqocoScAocSSocccSScpEpESScoocoo- e C o ScoccocAacSccocSccoSoccSocScoopoS————cSSoocoooScoSoocco o

D

W

W
{ 9 r 9

PERIOD PHASE [years]
S
PERIOD AMP [years]
{

N

N

-

[
|

2 3 4 5 6 71 1 2 3 4 5 6 71
PERIOD PHASE [years] PERIOD PHASE [years]

Statistical modelling in climate science seminar 2016 | |/




Synchronization and causality model

* simulate synchronization and causality iInmodelledtime
series to uncover the mechanisms
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Su rrogate data modelling with statistical mode

* method to generate synthetic that preserve some of
the properties of the original data, while omitting the
others

* use to test statistical significance by contradiction

* DOSE a null hypothesis and then generate an ensem-
ble of surrogate time series using MC methods
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Su rrogate data modelling with statistical mode

* more sophisticated null hypothesis: explort the options
of data-based model -- create surrogate ensemble sta-
tistical model with low complexity
* OUr case: linear, no seasonal dependence, white noise
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Conclusions and outlook

e statistical models for scaling down the complexity

* modelling linear and non-linear interactions

*Various noise parametrizations

* pOSsIble usage as models for generating ensembles of
surrogate data for statistical testing

*two paths: focusing on a model rtselt (various settings,
multi variables,etc..) or connection with dynamical mod-
els (e.g.for parametrization of sub-grid phenomena etc)
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