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AI for Science
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Integration of AI into scientific discovery to accelerate research by helping scientists to
➢ generate hypotheses
➢ design experiments
➢ collect and interpret large datasets
➢ gain insights that might not have been possible using traditional scientific methods alone

AI for Science

Weather 
forecasting

Protein 
modeling

Material 
science

Solvers for 
differential 
equations

Equation 
discovery

Drug 
discovery



AI for Science - community
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AI for Science workshops: ai4sciencecommunity.github.io
NeurIPS 2021, ICML 2022, NeurIPS 2022, NeurIPS 2023, ICML 2024

Wang, Hanchen, et al. "Scientific discovery in the age of artificial intelligence." Nature 620.7972 (2023): 47-60.

github.com/sherrylixuecheng/AI_for_Science_paper_collection

Upcoming workshops at NeurIPS 2024:
• Foundation Models for Science: Progress, Opportunities, and Challenges
• Machine Learning and the Physical Sciences



AI for Science – Equation Discovery
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3 sin 𝑥1 + 𝑥2 × 𝑒2𝑥3
2

variables

constants

arithmetic operations

well-known functions

Closed-form expressions



Symbolic Regression (SR)
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Applications in physics, biology, medicine, material science



Symbolic Regression (SR)
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𝐸(𝑑)−𝑓(𝑚 𝑑 , 𝑣 𝑑 )
2

Dataset Objective
How do we search through the space of closed-form expressions?

• Combinatorial in the structural form
• Continuous in the parameters
• NP-hard

Virgolin, M., & Pissis, S. P. (2022). Symbolic Regression is NP-hard. 
Transactions on Machine Learning Research.



Optimization in SR
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Genetic programming Schmidt, M., & Lipson, H. (2009). Distilling Free-Form Natural Laws from Experimental Data. Science, 324(5923), 81–85.
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Popular python libraries

• gplearn

pure python implementation
easy to edit and extend
not very efficient

• PySR

fast
complicated constraints
written in Julia



Optimization in SR
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Expressions as neural networks

Sahoo, S., Lampert, C., & Martius, G. (2018). Learning Equations for Extrapolation and Control. 
Proceedings of the 35th International Conference on Machine Learning, 4442–4450. 

Martius, G. S., & Lampert, C. (2017). Extrapolation and learning equations. 5th International 
Conference on Learning Representations, ICLR 2017-Workshop Track Proceedings.

Figure 1. Sahoo et al. (2018)



Optimization in SR
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Expressions parametrized through Meijer G-functions

Crabbé, J., Zhang, Y., Zame, W., & van der Schaar, M. (2020). Learning outside the Black-Box: 
The pursuit of interpretable models.

Alaa, A. M., & van der Schaar, M. (2019). Demystifying Black-box Models with Symbolic 
Metamodels. Advances in Neural Information Processing Systems, 32.

Table 1. Alaa, A. M., & van der Schaar, M. (2019)



Optimization in SR
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Neural Networks to constrain the search space

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., & Tegmark, M. (2021). AI Feynman 2.0: Pareto-optimal symbolic 
regression exploiting graph modularity. 34th Conference on Neural Information Processing Systems (NeurIPS 2020).

Udrescu, S.-M., & Tegmark, M. (2020). AI Feynman: A physics-inspired method for symbolic regression. 
Science Advances, 6(16)

Figure 3. Udrescu et al. (2021). 



Optimization in SR
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Large pre-trained models

Biggio, L., Bendinelli*, T., Neitz, A., Lucchi, A., & Parascandolo, G. (2021). Neural Symbolic Regression that Scales. 
38th International Conference on Machine Learning.

Figure 1. Biggio et al. (2021) 



Optimization in SR
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Deep Reinforcement Learning

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santiago, C. P., Kim, S. K., & Kim, J. T. (2021). Deep Symbolic 
Regression: Recovering Mathematical Expressions From Data via Risk-seeking Policy Gradients. ICLR 2021.



Optimization in SR
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Recent advances

Shojaee, P., Meidani, K., Barati Farimani, A., & Reddy, C. (2024). Transformer-based planning for symbolic regression.
Advances in Neural Information Processing Systems, 36.

Landajuela, M., Lee, C. S., Yang, J., Glatt, R., Santiago, C. P., Aravena, I., ... & Petersen, B. K. (2022). 
A unified framework for deep symbolic regression.
Advances in Neural Information Processing Systems, 35, 33985-33998.

Kamienny, P. A., d'Ascoli, S., Lample, G., & Charton, F. (2022). End-to-end symbolic regression with transformers.
Advances in Neural Information Processing Systems, 35, 10269-10281.

Holt, S., Qian, Z., & van der Schaar, M. (2023) Deep Generative Symbolic Regression. 
In The Eleventh International Conference on Learning Representations.



Different types of  equations
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𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐹(𝑥, 𝑡)

𝐸 =
𝑚𝑣2

2

𝑈 = 𝑚𝑔𝑧

𝐹 = 𝑞(𝐸𝑓 + 𝐵𝑣 sin 𝜃)

𝑝 =
𝑚0𝑣

1 − 𝑣2/𝑐2 𝑇 = 2𝜋
𝐿

𝑔

𝜕2𝑢

𝜕𝑡2
= 𝑐2∇2𝑢

𝜕𝑢

𝜕𝑡
= 𝛼∇2𝑢

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦

𝑎3

𝑇2
=
𝐺𝑀

4𝜋2



Differential equations
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Challenges of  discovering differential equations
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𝐸 =
𝑚𝑣2
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Dataset Objective Dataset Objective



SINDy
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Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. 
Proceedings of the National Academy of Sciences, 113(15), 3932–3937.

ሶ𝒙(𝑡) =෍

𝑖

𝛼𝑖𝑔𝑖 𝒙, 𝑡

Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differential equations. Science Advances, 3(4)

Kaheman, K., Kutz, J. N., & Brunton, S. L. (2020). SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics. 
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2242)

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Sparse identification of nonlinear dynamics with control (SINDYc).

https://github.com/dynamicslab/pysindyPySINDy package:



Why not just estimate the derivatives?
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Our solution: Use variational trick!
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𝑑𝑥(𝑡)

𝑑𝑡
− 𝛼𝑥(𝑡) + 𝛽𝑥(𝑡)𝑦(𝑡) = 0 ⇔ න

𝑎

𝑏
𝑑𝑥 𝑡

𝑑𝑡
− 𝛼𝑥 𝑡 + 𝛽𝑥 𝑡 𝑦 𝑡 𝜙 𝑡 𝑑𝑡 = 0 ∀𝜙

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 ⇔ න

𝑎

𝑏

𝜙 𝑡 𝑑𝑡 = 0 ∀𝜙

⇔ න

𝑎

𝑏
𝑑𝑥 𝑡

𝑑𝑡
𝜙 𝑡 − 𝛼𝑥 𝑡 − 𝛽𝑥 𝑡 𝑦 𝑡 𝜙 𝑡 𝑑𝑡 = 0 ∀𝜙

න
𝑎

𝑏 𝑑𝑥 𝑡

𝑑𝑡
𝜙 𝑡 = −න

𝑎

𝑏

𝑥 𝑡
𝑑𝜙 𝑡

𝑑𝑡
+ 𝑥 𝑡 𝜙(𝑡) 𝑎

𝑏

⇔ න

𝑎

𝑏

𝑥 𝑡
𝑑𝜙 𝑡

𝑑𝑡
+ 𝛼𝑥 𝑡 − 𝛽𝑥 𝑡 𝑦 𝑡 𝜙 𝑡 𝑑𝑡 = 0 ∀𝜙

No 
𝑑𝑥

𝑑𝑡
!



D-CODE: Algorithm
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Qian, Z., Kacprzyk, K. & van der Schaar, M. D-CODE: Discovering 
Closed-form ODEs from Observed Trajectories. (ICLR 2022)



What about higher order ODEs and PDEs?
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𝑑𝑢

𝑑𝑡

𝜕𝑢

𝜕𝑡

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑡2

𝜕2𝑢

𝜕𝑥2

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦

𝜕2𝑢

𝜕𝑡𝜕𝑥

𝑢
𝜕𝑢

𝜕𝑡

𝑢2
𝜕𝑢

𝜕𝑡

𝑢
𝜕𝑢

𝜕𝑥
𝜕2𝑢

𝜕𝑥𝜕𝑦

Difficult to search

Variational trick may not work

Kacprzyk, K., Qian, Z. & van der Schaar, M. 
D-CIPHER: Discovery of Closed-form Partial 
Differential Equations. (NeurIPS 2023)



Assumptions made by current discovery methods
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𝜕𝑢

𝜕𝑡
= 𝛼∇2𝑢 + sin(𝑥 + 𝑡)Evolution assumption: ∇ ∙ 𝑬 =

𝜌

𝜖0𝜖𝑟

Linear combinations:

෍

𝑝=1

𝑃

𝜃𝑝𝑓𝑝(𝒙, 𝒖 𝒙 , 𝜕 𝐾 𝒖(𝒙)) = 0

𝑑𝑥

𝑑𝑡
− 𝛼𝑥 + 𝛽𝑥𝑦 = 0

sin(𝜃𝑥𝑖)

𝑒𝜃𝑥𝑖



Weak SINDy
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Messenger, D. A., & Bortz, D. M. (2021). Weak SINDy: Galerkin-Based Data-Driven Model Selection. Multiscale Modeling & Simulation, 19(3), 1474–1497. 
https://doi.org/10.1137/20M1343166

Messenger, D. A., & Bortz, D. M. (2021). Weak SINDy for partial differential equations. Journal of Computational Physics, 443, 110525. 

Reinbold, P. A. K., Gurevich, D. R., & Grigoriev, R. O. (2020). Using noisy or incomplete data to discover models of spatiotemporal dynamics. 
Physical Review E, 101(1), 010203.

Current methods that utilize variational formulation
• make the evolution assumption and
• assume the PDE to be in a linear combination form or
• work only for explicit first order ODEs (D-CODE)



Derivative-bound and derivative-free part
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𝑓(𝒙, 𝒖 𝒙 , 𝜕 𝐾 𝒖(𝒙)) − 𝑔(𝒙, 𝒖(𝒙)) = 0

derivative-bound derivative-free

No additional constraints!Requires some technical constraints

Variational-Ready PDEs (VR-PDEs)



D-CIPHER
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𝜙𝑠 𝑠=1
𝑆

Test functions

ෝ𝒖(𝑑)
d=1

D

Step 2: Estimate the fields

መℰ𝑝 𝑝=1

𝑃 𝜕𝑡𝑢

𝜕𝑥
2𝑢

𝜕𝑡𝜕𝑥𝑢

𝜕𝑥 𝑢2

𝜕𝑡
2𝑢

Step 1: Choose the dictionary

𝒁 ∈ ℝ𝐷𝑆 × ℝ𝑃

Compute (Eq. 15)

Symbolic 
Regression e.g., log 𝑡 𝑒𝑥

2
sin(𝑢)

𝑔:ℝ𝑀+𝑁 → ℝ
𝒘 ∈ ℝ𝐷𝑆

Compute (Eq. 15)

Step 3: Optimization

CoLLie

min
𝜷 1=1

𝒁𝜷 −𝒘 2
Loss

𝒗(𝑑)
d=1

D

Dataset

Kacprzyk, K., Qian, Z. & van der Schaar, M. D-
CIPHER: Discovery of Closed-form Partial 
Differential Equations. 
(NeurIPS 2023)

• No linear combination assumption
• No evolution assumption
• Searches through all closed-form 

derivative-free parts
• Uses variational formulation
• Searches through a linear subspace of 

derivative-bound parts



Summary
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Symbolic Regression (SR)

Static Dynamic

Genetic Programming

Neural Networks

Neurally-guided

Large pre-trained models

Hybrids

Deep Reinforcement Learning



Summary
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DE discovery methods

ODEs PDEs

𝜕 estimation 𝜕 estimationWeak formulation Weak formulation

Linear in parameters

More general

SINDy Weak SINDy PDE-FIND Weak SINDy for PDEs

D-CODE D-CIPHERAdapted SR Adapted SR
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Causality in the real world: treatment effects
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Applications:
• Pharmacology (e.g., drug response)
• Physiology (e.g., tumor growth)
• Treatment regimes (e.g., treatment plan 

optimization)
• ...
• Also beyond medicine

Let us discover the underlying ODE and use it for treatment effect inference!

*Kacprzyk, K., *Holt, S., *Berrevoets, J., Qian, Z., & van der Schaar, M. 

ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference. (ICLR 2024)



Learning structural (ODE) equation for treatment inference
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Advantages over neural networks:
• Interpretable
• Naturally works for irregular sampling and continuous trajectories
• Smaller hypothesis space
• Better performance in certain scenarios



Learning structural (ODE) equation for treatment inference
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Treatment Effects Assumptions

ODE discovery assumptions

• Static features not considered in ODE discovery
• ODE discovery methods find only a single 

equation for a whole dataset
• There are diverse types of  treatment: 

continuous, binary, categorical, or multiple



Learning structural (ODE) equation for treatment inference
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In our paper, we
• provide a general framework which connects ODE discovery with TE

• reconcile the differences
• propose a 3 step workflow to turn any ODE discovery method into a TE 

algorithm
• develop INSITE as an instantiation of  our framework.



1. New assumptions
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2. Incorporating diverse treatment types
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cannot be closed-form if the treatment is categorical

Need to decide how 𝒂 is incorporated in 𝑭, so that we can simplify it into simpler closed-form 𝒇 that we can discover



2. Incorporating diverse treatment types
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3. Between-subject variability
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Dimensions of  our framework
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INSITE
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From our 3-step plan, we built a method (INSITE)

Based on SINDy – ODE discovery method

Decide how the treatment is modelled and transform the dataset 

accordingly

Model BSV on level D.

• Covariate model – group level variability

• Parameter distribution – finetune the exact parameters based on the 

initial trajectory
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Beyond Closed-Form Equations?
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Can we have machine learning models that are not closed-form equations but are equally transparent 
and interpretable?

Kacprzyk, K., Liu, T., & van der Schaar, M. (2024). Towards Transparent Time Series Forecasting. ICLR 2024

Kacprzyk, K., & van der Schaar, M. (2024). Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond 
Closed-form Equations. AISTATS 2024



SR Struggles With Expressions That Are Not Closed-Form
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Towards Flexibility: Generalized Additive Models (GAMs)
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𝑔 𝑦 = 𝑓1 𝑥1 +⋯+ 𝑓𝑛(𝑥𝑛)

e.g., 𝑔 𝑦 = 𝑦 or 𝑔 𝑦 = 1 + 𝑒𝑦 −1

shape functions



Towards Flexibility: Generalized Additive Models (GAMs)

vanderschaar-lab.com

𝑔 𝑦 = 𝑓1 𝑥1 +⋯+ 𝑓𝑛(𝑥𝑛)

e.g., 𝑔 𝑦 = 𝑦 or 𝑔 𝑦 = 1 + 𝑒𝑦 −1

shape functions



Shape Arithmetic Expressions (SHAREs)
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𝑠1(𝑥4 × 𝑠2 𝑥2 ) +
𝑥1

𝑠3 𝑥3 − 2.3

variables
constants

arithmetic operationsshape functions
+

𝑠1

×

÷

−

𝑠2 𝑠3

𝑥1

𝑥2

2.3𝑥4

𝑥3



Rule-based Transparency
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Not every closed-form expression is transparent (compact enough to understand it).

Not every SHARE is transparent.

⇒

⇒ We need rules for building transparent models.

Number of terms in the expression Depth of the expression tree



Understanding by Decomposing
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𝑠0(𝑠1 𝑥1 + 𝑥3 × 𝑠2 𝑥2 )

𝑠0( )

𝑠1 𝑥1

𝑥3

+

×

𝑠2 𝑥2



Understanding by Decomposing
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𝑠1 𝑥1

𝑥3 𝑠2 𝑥2



Understanding by Decomposing
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𝑠1 𝑥1

𝑥3

×

𝑠2 𝑥2



Understanding by Decomposing
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𝑠1 𝑥1

𝑥3

+

×

𝑠2 𝑥2



Understanding by Decomposing
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𝑠0( )

𝑠1 𝑥1

𝑥3

+

×

𝑠2 𝑥2



Rule-based Transparency
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Not every closed-form expression is transparent (compact enough to understand it).

Not every SHARE is transparent.

⇒

⇒ We need rules for building transparent models.

Rule 1 (Univariate composition): Let 𝑠 be any univariate function. 𝑠 𝑥 is
transparent. If 𝑓 is transparent then 𝑠 ∘ 𝑓 is also transparent

Rule 2 (Disjoint binary operation): Let 𝑏 ∈ {+,−,×,÷} be a binary operation. If 𝑓
and 𝑔 are transparent and have disjoint sets of arguments then 𝑏 ∘ (𝑓, 𝑔) is also
transparent.



Transparent SHAREs
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A transparent SHARE is a SHARE that satisfies the following criteria:
• Any binary operator is applied to two functions with disjoint sets of variables.
• The argument of a shape function cannot be an output of another shape 

function, i.e., 𝑠1(𝑠2 𝑥 ) is not allowed.
• It does not contain numeric constants.

Let 𝑓:ℝ𝑛 → ℝ be a transparent SHARE. Then
• The depth of the expression tree of 𝑓 is at most 2𝑛
• The number of nodes in the expression tree of 𝑓 is at most 4𝑛 − 2



Closed-Form Equations Considered as Transparent SHAREs
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𝜔 =
1 + 𝑣/𝑐

1 − 𝑣2/𝑐2
𝜔0

𝜔 = 𝑠1
𝑣

𝑐
𝜔0



SHAREs in Action
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Implementation: genetic programming + univariate neural networks

Problem: Given 𝑚 grams of water (in a liquid or solid form) of 
temperature 𝑡0 (in ℃), what would be the temperature of this water
(in a solid, liquid, or gaseous form) after heating it with energy 𝐸



SHAREs in Action
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Equations found by SR when fitted to the temperature dataset.

Equation 10



SHAREs in Action
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Shape functions from the GAM fitted to temperature dataset. 𝑅2 score: 0.758.



SHAREs in Action
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Found SHAREs when fitted to the temperature dataset.



What about dynamical systems?
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Static Symbolic Regression:

Shape Arithmetic Expressions

Dynamic Symbolic Regression:

Transparent models:
• Generalized additive models
• Linear regression
• Decision trees
• Decision rules/sets

static predictions

𝑦 = 0.87

𝑦 = „cat” 𝑦 =

time series forecasting

What does it mean for the model to be transparent when the target is a whole trajectory?



What about dynamical systems?
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Population Pharmacokinetic (PopPK) Models
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Age: 54 years
Weight: 70kg
Sex: Female

Creatinine: 120 𝜇mol l-1

Predict

𝑡

C
o

n
ce

n
tr

at
io

n

Crucial part of drug development
• How different factors impact drug 

exposure and if therapeutic 
individualisation is needed

• Efficacy and safety endpoints
• Dose adjustment

Dose: 20mg

Important for clinical practice
• Dosing guidelines recommend 

adjusting the dose to achieve a target 
AUC from PopPK model
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Age: 54 years
Weight: 70kg
Sex: Female

Creatinine: 120 𝜇mol l-1
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Dose: 20mg



Population Pharmacokinetic Models
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Age: 54 years
Weight: 70kg
Sex: Female

Creatinine: 120 𝜇mol l-1 Dose: 20mg
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• Validate the model
• Debug the model
• Certify

• Understand how various 
factors influence the 
prediction
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Age: 54 years
Weight: 70kg
Sex: Female

Creatinine: 120 𝜇mol l-1 Dose: 20mg
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• Validate the model
• Debug the model
• Certify

• Understand how various 
factors influence the 
prediction
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Time Series Forecasting from Static Features
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𝒙 ∈ ℝ𝑁 Predict
𝑦: 0, 𝑇 → ℝ

• How important is a specific covariate for the prediction?
• How similar is this instance to other instances in the dataset?

• What if: “What would happen to the model’s prediction if a specific covariate changes?”
• How to be that: “How should the covariates be modified to get a different prediction?” 
• How to still be this: “What range of drug dose values keeps the prediction the same?”



Why is it Challenging?
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• What if: “What would happen to the model’s prediction if a specific covariate changes?”
• How to be that: “How should the covariates be modified to get a different prediction?” 
• How to still be this: “What range of drug dose values keeps the prediction the same?”

Understanding/Measuring change in the trajectory.

More challenging than understanding change in single-label output.

𝑦 = 0.87 𝑦 = „cat” „dog” 𝑦 =

...



Bottom-Up Approach
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Often we want to comprehend the whole trajectory at once.

Example: When administering a drug, we may be less interested in the concentration of the drug every 
few hours but rather in understanding the entire curve, including properties like the peak plasma 
concentration and the time when it is achieved 

Example: How important is the dose for the drug concentration at 𝑡 = 1.5 hours?

Feature importance methods have been extended to time series inputs but not time series outputs. 

Bottom-Up: trajectory is understood by looking at its values at individual time points



Top-Down Approach
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Bi-level transparency for time series forecasting.
• Level 1: understanding how the trend (the general shape of the trajectory) changes as we modify the input
• Level 2: understanding how the properties of the current trend (e.g., minimum value) change as we modify the input.

Humans tend to describe trajectories by referring to the trends and properties it exhibits rather than just the values it attains



Motifs and Compositions
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(i,d,i)

increasing
(i)

decreasing
(d)

increasing
(i)

motifs

Motif describes the shape of the trajectory at a particular interval.
E.g., a set of motifs may be: increasing, decreasing, constant.

composition

Composition is the shortest sequence of motifs that describes the trajectory.

transition points



Dynamical Motifs
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✓ Encode information about the trajectory’s first and second derivatives.
✓ Transition points correspond to local minima, maxima, and inflection points.



TIMEVIEW
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Predictive Model TIMEVIEW Visualization



Visualization
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Level 1 (trends)

Predicted tumor volume

Transition points

3

2

1

Level 2 (properties)

feature

y or t coordinate



Tumor Example
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0.460.15

Tumor volume

Would the predicted tumor volume keep decreasing if we adjusted the treatment?



Tumor Example
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Tumor volume

What feature changes would lower the minimum tumor volume?



Tumor Example
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Tumor volume

How feature changes would impact the time this minimum is achieved?



Visualizing interactions
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TIMEVIEW
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To realize bi-level transparency through dynamical motifs, we need to
 
1. understand the relation between the feature vectors 𝒙 and the 

compositions of the predicted trajectories
2. understand the relation between the feature vectors 𝒙 and the 

transition points of a given composition.



Representing Time Series Using Cubic Splines
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We need to choose a set of predicted trajectories such that:
1. To every predicted trajectory we can uniquely assign a 

composition constructed from dynamical motifs
2. For every such trajectory we can calculate its composition 

efficiently

Natural choice: cubic splines!

Knots

𝑠++ 𝑠++ s+− 𝑠−− 𝑠−+|𝑠++ 𝑠++|𝑠+0

𝑠++ s+− 𝑠−− 𝑠−+ 𝑠++|𝑠+0

෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏

Can be described using B-Spline basis functions.
𝜙𝑏

𝜓𝑏,1 𝜓𝑏,2 𝜓𝑏,3𝜓𝑏,4



Representing Time Series Using Cubic Splines
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෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏

𝜙𝑏

𝜓𝑏,1 𝜓𝑏,2 𝜓𝑏,3𝜓𝑏,4
෍

𝑏=1

𝐵

𝑐𝑏𝜓𝑏,1 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,2 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,3 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,4

Calculate the cubic for each of those before training 𝑠++ 𝑠++ s+− 𝑠−− 𝑠−+|𝑠++ 𝑠++|𝑠+0

𝑠++ s+− 𝑠−− 𝑠−+ 𝑠++|𝑠+0



Architecture
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𝑀

𝐵

𝒙 ∈ ℝ𝑀

𝒄 ∈ ℝ𝐵

ො𝑦 𝑡 = ෍
𝑏=1

𝐵

𝑐𝑏𝜙𝑏(𝑡)

𝜙𝑏

𝜓𝑏,1 𝜓𝑏,2 𝜓𝑏,3𝜓𝑏,4



Model Training
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𝐷

𝑿 ∈ ℝ𝐷×𝑀

𝒕(𝑑) ∈ ℝ𝑁𝑑

𝒚(𝑑) ∈ ℝ𝑁𝑑

𝐷

Static features Time series

1

Knot selection
Appendix C.3

𝑡1 𝑡2 𝑡3 𝑡𝐵−2...

knots

𝜙𝑏 𝑏=1
𝐵

Define

Evaluate

𝚽(𝑑)
𝑑=1

𝐷

Φ𝑗𝑏
(𝑑)

= 𝜙𝑏 𝑡𝑗
𝑑

Combine
𝑀

𝐵

Encode

Predict
ෝ𝒚(𝑑) = 𝚽 𝑑 𝒉 𝒙 𝑑 Calculate loss

Backpropagate

B-Spline basis functions

Dataset

𝒉:ℝ𝑀 → ℝ𝐵

Before training

Training

Equation 4



Composition Extraction

vanderschaar-lab.com

𝜙𝑏

𝜓𝑏,1 𝜓𝑏,2 𝜓𝑏,3𝜓𝑏,4

𝑀

𝐵

𝒙 ∈ ℝ𝑀

𝒄 ∈ ℝ𝐵

ො𝑦 𝑡 = ෍
𝑏=1

𝐵

𝑐𝑏𝜙𝑏(𝑡)

Knots

𝑠++ 𝑠++ s+− 𝑠−− 𝑠−+|𝑠++ 𝑠++|𝑠+0

𝑠++ s+− 𝑠−− 𝑠−+ 𝑠++|𝑠+0

෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,1 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,2 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,3 ෍
𝑏=1

𝐵

𝑐𝑏𝜓𝑏,4



Meaningful Explanations
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𝑡

C
o

n
ce

n
tr
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n

𝑡 = 1.5

𝒙 ∈ ℝ𝑁 𝑦: 0, 𝑇 → ℝ

𝒙 ∈ ℝ𝑁

𝑦: 0, 𝑇 → ℝ

𝑠+−|𝑠−−

T1 (start): (0,0)
T1 (inflection): (0.5,0.8)
T2 (max): (1.4,1.5)
T3 (inflection): (2.7,0.6)
T4 (end): (3.5,0.2)



Meaningful Explanations
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𝒙 ∈ ℝ𝑁 𝑦: 0, 𝑇 → ℝ

𝒙 ∈ ℝ𝑁

𝑦: 0, 𝑇 → ℝ

𝑠+−|𝑠−−

T1 (start): (0,0)
T1 (inflection): (0.5,0.8)
T2 (max): (1.4,1.5)
T3 (inflection): (2.7,0.6)
T4 (end): (3.5,0.2)

𝑧 = 1.5𝑥𝑎𝑔𝑒 − 3.4𝑥𝑤𝑒𝑖𝑔ℎ𝑡 + 0.4𝑥𝑠𝑒𝑥



Future directions
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New optimization algorithms for SHAREs

Univariate functions and plotting as first-class citizens in symbolic regression

Personalized ODEs

Meaningful explanations for time series forecasting models
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